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Abstract: Air pollution has become an increasing concern in the Mekong region due to seasonal
vegetative burning triggered by related anthropogenic activities and climate change. While the
assumption of a correlation between agriculture burning and air pollution is a common postulation,
little evidence exists on the association between fire incidents and air pollution concentrations.
The current study explores the relationship between satellite-derived fire occurrence, land surface
characteristics, and particulate matter 2.5 (PM2.5) concentrations for the five Lower Mekong countries,
namely Cambodia, Laos, Myanmar, Thailand, and Vietnam, in an effort to gain new insights into fire
distributions related to air quality. Publicly available daily active fire hotspots from the VIIRS satellite
instrument, annual land cover products from the MODIS satellite, and mean monthly ground-level
PM2.5 estimates from the V5.GL.04 database were analyzed in two relational assessments; first, the
distribution of VIIRS active fire counts and fire radiative power (FRP) temporally and spatially and
secondly, the correlations between the monthly VIIRS active fire counts, cumulative monthly FRP and
mean monthly PM2.5 estimates per country and land cover type. The results suggest a statistically
significant positive correlation between monthly fire counts, cumulative FRP, and PM2.5 estimates
for each country, which differ based on land cover. The strongest correlation between monthly fire
incidences and PM2.5 estimates was found in the case of Myanmar. For all countries combined,
fires detected in forests displayed the highest correlation with monthly PM2.5 estimates. This study
demonstrates the use of the VIIRS active fire product and provides important insights into temporal
and spatial fire distributions as baseline information for fire prevention and mitigation strategies in
the Mekong region.

Keywords: VIIRS active fire; Mekong; fire emissions; land cover; PM2.5

1. Introduction

In recent years, Southeast Asian countries have been experiencing more frequent
and intense haze events [1] triggered by anthropogenic and naturally occurring fires that
have a significant influence on the extent of air pollutant concentrations. In particular,
PM2.5, defined as fine particles with a size smaller than or equal to 2.5 µm, account for
approximately 90% of the total particle mass [2,3] and are known to be harmful to human
health due to their capability of penetrating deeply into the lungs [4]. PM is primarily
derived from combustion activities [4,5], and biomass burning forms a major source of par-
ticulate matter emissions in many parts of the world, particularly in low-income countries.
Additionally, toxicological studies indicate that PM2.5 emitted by wildfires may be more
toxic than ambient PM2.5 [6].
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In the Mekong region, consisting of Cambodia, Laos, Myanmar, Thailand, and Viet-
nam, increased haze problems have been frequently linked to burning activities [2,6].
Biomass burning, as an agricultural land management practice, forms a convenient way of
preparing land for agricultural cultivation and is a popular method for crop residue dis-
posal and fortification of nutrients in the soil [7–11]. Furthermore, the common traditional
and productive shifting cultivation technique in the region implements vegetation burning
as a means of clearing forested areas and enhancing the soil for regeneration [12]. As such,
the use of fires for agricultural management is an important practice in the region. However,
left unmanaged, an increasing number and frequency of agricultural fires in combination
with rising temperatures and altered precipitation patterns may form a significant risk of
severe fire events endangering the air quality at both a local and regional scale [8].

While biomass burning is not the only source of pollution in the region, its contribution
is very significant. Related research indicates that smoke haze resulting from large-scale
biomass burning has frequently led to elevated PM levels in the Southeast Asia region.
Hongthong et al. [13], in a study conducted in northern Thailand, found that there was
a consistent trend between estimated emission and measured PM. Thepnuan et al. [14]
claim that during dry season haze episodes in upper Southeast Asia, forest and agri-waste
burning are major contributors to the aerosols. Fan et al. [15] found, in a study looking at
biomass burning during pollution events in Southeast Asia and how they impact aerosol
distribution over the low-latitude plateau in China, that 59.5% of PM2.5 mass produced by
biomass burning was sourced from the Myanmar–Thailand border. Yin et al. [16] found in
a study investigating air pollution in mainland Southeast Asia from 2001 to 2016 that the
variation of air quality is closely related to local biomass burning, and the latter contributed
more than human activities to PM2.5 emissions.

Monitoring fire occurrence is important in order to understand where and when fires
are present and how the resulting emissions affect the air quality of the areas studied.
Besides fire count, studies have associated fire radiative power (FRP) with combustion
and aerosol emission rates [17–22]. FRP refers to the rate of radiative energy emitted by a
fire at the time of observation and can serve as an approach to estimate biomass burning
emissions [12]. As a result, fire count and FRP are associated with PM2.5 emission rates in
the specific region.

Typically, PM2.5 surface concentrations are obtained from ground-based air quality
monitoring stations; nevertheless, these point measurements in space come with a limited
capacity to observe a dynamic phenomenon as air pollution changes in space and time.
The emergence of improved remote sensing techniques enables new air quality monitoring
methods at larger scales that can be used more efficiently along with field-based tech-
niques [23]. Satellite-based data offer global coverage at sub-daily frequency acquisitions
of environmental data that can be used to retrieve various fire indicators, such as burned
areas, smoke density, and the location and intensity of fire hotspots [24,25]. In order to
obtain a broader understanding of the spatial and temporal distribution of PM2.5, remotely
sensed aerosol optical depth (AOD) products can be used to approximate PM2.5 concen-
trations [22,26,27]. Nevertheless, AOD approaches based on satellite data modeling have
some limitations related to the input not being directly related to the ground PM2.5 values,
although some studies, such as the one from Ding et al. [28], have used novel approaches
to improve the spatial resolution and accuracy of AOD. Moreover, generally, satellite data
inherit certain limitations such as spatiotemporal limitations, vertical resolution issues, and
limitations in AOD estimations, among others. To mitigate these limitations, combinations
of satellite data, ground-based sensors, and modeling solutions are used. This enhances the
accuracy and also the comprehensiveness of air quality assessments [29].

Previous studies have applied remote sensing to study fire distributions and emissions
in the region. For example, Vadrevu et al. [11] investigated fire trends within Southeast
Asia using active fire hotspots from 2012 to 2016 in relation to land cover data, while Yin
et al. [16] studied the relation between fire hotspots and PM2.5 concentrations in the whole
Mekong region. More recently, Vadrevu and Eaturu [30] analyzed nighttime vegetation fires



ISPRS Int. J. Geo-Inf. 2024, 13, 206 3 of 19

using VIIRS data in the context of studying the trends in nighttime fires in South/Southeast
Asian Countries.

In the current study, the active fire hotspot product from the Visible Infrared Imaging
Radiometer Suite (VIIRS) at 375 m is examined over the period of 2012–2020, in relation
to different land cover classes in the five Mekong countries [24]. The VIIRS sensor is a
publicly available, near-real-time fire hotspot detector with a higher spatial resolution
compared to its predecessor, the MODIS fire hotspot product [24]. As a result, VIIRS can
detect smaller and less intense fire pixels. The distribution of VIIRS fire hotspots is studied
in relation to the MODIS annual Land Cover Type Product (MCD12Q1) in accordance with
the International Geosphere–Biosphere Programme (IGBP) class descriptions. To study
the relation between mean monthly PM2.5 estimates and monthly fire count, cumulative
monthly FRP per country, and land cover, we analyzed the inter-correlation between these
variables. The current study aims to provide insights into fire patterns in the Mekong
region and the implications for fine particulate matter (PM2.5) concentrations at a country
level and at a monthly scale. The results supplement previous studies by analyzing more
recent years, studying fire patterns over land covers at a larger spatial scale, and examining
the degree of association between monthly PM2.5 estimates, FRP and fire count per country,
and land cover type.

Our main hypotheses examined in the current paper are the following: (1) the distribu-
tion of VIIRS-detected fires indicates biomass burning patterns within the Mekong region,
(2) a positive correlation exists between monthly PM2.5 concentrations and monthly VIIRS
fire counts, as well as the cumulative monthly FRP.

2. Materials and Methods
2.1. Study Area

The Mekong region, which is part of Southeast Asia, is located between 5.00 N–30.00 N
and 90.00 E–110.00 E and consists of Cambodia, Laos, Myanmar, Thailand, and Vietnam.
Figure 1 depicts the regional land cover spatial distribution, as compiled based on the main
land cover classes from the MCD12Q1.061 MODIS Land Cover Type Yearly Global 500 m
LC Type1 product, and by considering the first available image of each pixel for the year
2020. Its river basin is home to approximately 65 million inhabitants and is known for its
high biological and cultural diversity [10,12]. The climate within the region can be broadly
characterized by the dry season, spanning from November to March, and the monsoon
season, encompassing the months of April to October [31]. The latter is related to months
with intense precipitation and, consequently, humid conditions [31]. Agriculture is the
most important economic activity within the region and shifting cultivation is a common
practice [10]. Agricultural burning is used to clear the land for new cultivation and slash-
and-burn techniques are frequently applied as a cost- and time-efficient method [10],
improve soil fertility, and ease harvesting and clearing. Consequently, vegetation fires are a
considerable problem in mainland SE Asia [11,32], especially during the dry season between
February and April [33], and generate significant amounts of regional air pollution [34].
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Figure 1. Main land cover classes encountered in the study area encompassing the five Mekong countries.

2.2. Datasets

Various satellite-based data sources were used in this study to spatially relate fire
incidence with land use, vegetation characteristics, and PM2.5 estimates between the years
2012 and 2020. We used the VIIRS active fire hotspots, the MODIS annual land cover, and
global monthly PM2.5 estimate products, which are further described in the sections below.

2.2.1. VIIRS Active Fire Hotspots 375 m

The VIIRS instrument, onboard the Suomi-National Polar-orbiting Partnership (S-NPP)
satellite launched in 2011, collects near-real-time environmental data [24]. The temporal
resolution can be less than 12 h depending on the latitude, which makes the data applicable
for fire monitoring and fire mitigation strategies [11]. The datasets have been used in the
context of generating fire-monitoring products, such as active fire hotspots, burned area
maps, and smoke plume detection [24,35].

The VIIRS active fire hotspot product builds upon the previous 1 km MODIS fire
product and algorithm. The improved spatial resolution of 375 m of the VIIRS sensor
enables the detection of smaller and less intense fires. In addition, various adjustments have
been made, such as the reduction in duplicate fire hotspots and smaller growth rates of pixel
sizes dependent on the view angle compared to MODIS [36]. The current study focuses on
the VIIRS 375 m active fire hotspots collected during the S-NPP mission, which are available
from 2012 to the present. Similar to the MODIS fire product, the VIIRS product provides the
location of the central point of a fire pixel and scan and track values to determine the actual
fire pixel size in addition to various information attributes, such as FRP and a confidence
value. The latter forms an indicator of the level of certainty at which a fire occurred at
the given location. The VIIRS data are freely accessible and can be downloaded from
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NASA’s FIRMS website (https://firms.modaps.eosdis.nasa.gov/download/ (accessed on
14 June 2024)).

2.2.2. MODIS Land Cover Type Product

The global MODIS Land Cover Type Product (MCD12Q1) provides land cover maps at
a 500 m spatial resolution and annual time interval [37]. Distinctions can be made between
13 different layers, including 5 different classification schemes, a quality assurance layer,
and land/water masks [38]. The land cover products were generated through a supervised
classification of MODIS Terra and Aqua reflectance data using a decision tree classifier
and their accuracy was assessed through cross-validation with initial training data [38].
For this study, the International Geosphere–Biosphere Programme (IGBP) legend was
used, given the availability of more classes suitable for the study area compared to other
existing classification schemes. MODIS land cover products are freely accessible through
various repositories, such as the Google Earth Engine (GEE) and the USGS EarthExplorer
(https://earthexplorer.usgs.gov/ (accessed on 14 June 2024)).

2.2.3. Global PM2.5 Estimates

A study by Van Donkelaar et al. [27] estimated global annual and monthly surface
PM2.5 concentrations by combining Aerosol Optical Depth (AOD), global surface PM2.5
observations, and the GEOS-Chem chemical transport model. The data are available for
the years 1998–2020 [27]. Daily AOD was retrieved from NASA’s MODIS, MISR, and
SeaWIFS instruments and transformed into a best-estimate monthly AOD based on a
weighted average [27]. The AOD was related to the PM2.5 concentrations using the GEOS-
Chem chemical transport model equation and the estimates were eventually improved
by integrating ground-based PM2.5 observations retrieved from various ground stations
around the globe [27]. We used the monthly PM2.5

[
g

m2

]
estimates at a 0.1◦ × 0.1◦ resolution

for the years 2012–2020 from the V5.GL.04 database. The data can be freely downloaded
from the website of the Washington University in St. Louis (https://sites.wustl.edu/acag/
datasets/surface-pm2-5/ (accessed on 14 June 2024)).

2.3. Methods

Figure 2 shows the workflow of the study. The distribution of VIIRS active fire counts
and FRP were investigated, both temporally and spatially. Furthermore, the correlations
between the VIIRS monthly active fire counts, cumulative monthly FRP, and mean monthly
PM2.5 estimates were studied per country and land cover type to detect potential patterns.
We used publicly available geospatial datasets to enable the repetition of the methodology
in future studies [39]. Due to the large spatial scale of the datasets required, Google
Earth Engine (GEE) [40] was used for the preprocessing and analysis of the data. GEE
is a cloud-based visualization and analysis platform that provides access to a variety of
satellite imagery and geospatial datasets at a global scale. The VIIRS active fire data were
loaded in GEE and clipped to the boundaries of the Lower Mekong countries. The Large
Scale International Boundaries (LSIB) dataset created by the U.S. Department of State
in 2017 (https://developers.google.com/earth-engine/datasets/catalog/USDOS_LSIB_
SIMPLE_2017 (accessed on 14 June 2024)) was used for that purpose. The VIIRS fires were
filtered to a “high” confidence level to only include fires with high confidence values. For
each fire hotspot center detected, the actual fire pixel size was computed using the scan and
track values associated with each hotspot [24]. More specifically, geometric calculations
are used, based on the resolution of the satellite images and the dimensions represented
by the scan and track values, which are converted into actual distances on the ground.
The MODIS dataset was used to extract land cover for each VIIRS fire pixel. The MODIS
land cover classes were merged to have a simplified set of classes including cropland
(classes 12 and 14), forest (1, 2, 3, 4, and 5), barren (16), grassland (10), shrubland/savanna
(6, 7, 8, and 9), and water/permanent wetlands (11 and 17). The majority (mode) pixel
value within the fire pixel was selected as the raster value for the specific VIIRS fire in

https://firms.modaps.eosdis.nasa.gov/download/
https://earthexplorer.usgs.gov/
https://sites.wustl.edu/acag/datasets/surface-pm2-5/
https://sites.wustl.edu/acag/datasets/surface-pm2-5/
https://developers.google.com/earth-engine/datasets/catalog/USDOS_LSIB_SIMPLE_2017
https://developers.google.com/earth-engine/datasets/catalog/USDOS_LSIB_SIMPLE_2017
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order to incorporate the contextual information within each fire pixel. This was conducted
using the GEE reduce region function. This process was repeated for the 2012–2020 time
period. The resulting feature collections were then exported into R, the programming
language that was used to create graphs (line charts and bar) using automated scripts
and the ggplot2 library. The fires detected using the MODIS land cover classes mentioned
above were then used to study the existing correlation with PM2.5 estimates. The monthly
PM2.5 data were converted to the GeoTIFF file format and clipped to the boundary of the
study area. The mean monthly PM2.5 value was calculated for each Lower Mekong country.
Mean values were compared with the monthly values of detected fire counts and with the
cumulative values of monthly FRP. This was conducted per country and per land cover,
spanning the years 2012–2020 through scatterplots. To develop a better understanding of
the relationship between monthly fire counts, FRP, and PM2.5 concentrations, the Pearson
correlation [41] and the coefficient of determination (R2) were computed. Finally, we
calculated the Maximal Information Coefficient (MIC) as a non-linear correlation matrix to
test the degree of non-linearity of our results.
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3. Results
3.1. Seasonal Fire Pattern in the Mekong Countries 2012–2020

The amount of VIIRS-detected fires differs per country (Figure 3). Myanmar displays
the highest fire count over the years studied (150,470 fires), followed by Laos (108,478) and
Cambodia (63,956). In contrast, Vietnam (25,881) and Thailand (44,525) display significantly
lesser fire counts over the years studied. In regard to the temporal distribution, a slightly
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earlier peak of the fire count is observed for Cambodia while for the rest of the countries,
the distribution seems to follow a close pattern.
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Figure 3. The temporal distribution of the VIIRS active fire counts per country for the years 2012–2020.

The hottest and driest period in the region is from November to March [31], a period
during which conditions are favorable for wildfires due to lower moisture levels and higher
temperatures. When considering all countries cumulatively in our study, a seasonal narrow
Gaussian-like distribution can be observed (Figure 4), which starts around December,
peaks around March, ends around May, and roughly agrees with the seasonal climate
characteristics of the region. In contrast, the rainy and monsoon period (April–October)
displays a steep decline in fire activity due to higher rainfall, which moistens the vegetation
and reduces the likelihood of fires spreading. Therefore, and taking advantage of this
clear temporal pattern observed in Figures 3 and 4, the analysis of subsequent results
is presented by binding the monthly data into the two seasons, dry and wet, in order
to aggregate seasonal statistics. This distribution per month and year can be useful to
stakeholders in terms of the identification of trends and patterns over time. It could also
support comparison and benchmarking against historical events.
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The spatial distribution of the total fire counts and the fire counts with the 5% highest
FRP magnitude was also investigated (Figure 5). In this figure, it is apparent that, for both
cases, Myanmar and Laos present the dominant coverage of fire occurrence spatially. In
Laos, the fires concentrate mostly in the northern part of the country and secondarily on the
easternmost part of the southern part of the country. In Cambodia, fires also tend to occur
in the northern part of the country and in Thailand at the northern part and especially at
the borders with Myanmar. For Myanmar, there are larger regions and for Vietnam, there
are isolated clusters of fire occurrences.
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to the magnitude of the FRP value for each fire count.

3.2. Fire Patterns per Land Cover

The resulting annual trend suggests that the fire occurrence in land covers differs both
spatially and temporally (see Figure 6 and Tables 1 and 2). In Vietnam and Cambodia, most
fires were detected in the shrubland/savanna classes during the years studied (2012–2020).
The difference in fire occurrence between the shrubland/savanna classes and the forest
classes appears to be smaller in Laos (7.29%) and Myanmar (−5.36%), whereas in Myanmar,
most fires were detected in forest classes (44.65%). In Laos, a high percentage of fires
(43.40%) were detected in forest classes. Especially in Thailand, high numbers of fires
(34.07%) were detected in croplands. For the years 2016–2020, these fires accounted for
the largest percentage in Thailand. Overall, only a small number of fires were detected in
grasslands, except in Cambodia (16.54%). The classes barren, water/permanent wetlands,
and urban display significantly fewer fires for each country.
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Table 1. Proportions of annual VIIRS active fire counts per simplified MODIS land cover class and
country for 2012–2020.

Land Cover Cambodia Laos Myanmar Thailand Vietnam

Forest 16.23 43.40 44.65 20.22 23.19
Shrubland/Savanna 59.67 50.69 39.29 38.72 61.09

Grassland 16.54 5.26 5.16 6.63 5.00
Cropland 6.77 0.63 10.72 34.07 10.37

Urban 0.017 0.006 0.029 0.256 0.193
Barren - - 0.003 - -

Water/Permanent Wetland 0.772 0.020 0.147 0.090 0.158
Total Fire Counts 63,955 108,477 150,470 44,525 25,881

Table 2. Proportions of seasonal VIIRS active fire counts per simplified MODIS land cover class and
country for 2012–2020.

Cambodia Laos Myanmar Thailand Vietnam

Land Cover Dry Wet Dry Wet Dry Wet Dry Wet Dry Wet

Forest 16.09 0.14 40.52 2.88 43.67 0.98 20.01 0.22 18.40 4.80
Shrubland/Savanna 58.93 0.74 49.06 1.62 38.76 0.53 37.88 0.84 51.98 9.11

Grassland 16.04 0.50 5.17 0.09 5.08 0.08 6.47 0.16 4.29 0.70
Cropland 6.72 0.06 0.62 0.01 10.52 0.20 33.50 0.58 9.59 0.78

Urban 0.016 0.002 0.006 - 0.028 0.001 0.238 0.018 0.128 0.066
Barren - - - - 0.003 - - - - -

Water/Permanent Wetland 0.636 0.136 0.020 - 0.130 0.017 0.065 0.025 0.124 0.035
Season Proportion 98.43 1.57 95.41 4.59 98.20 1.80 98.16 1.84 84.51 15.49
Total Fire Counts 62,954 1001 103,497 4980 147,755 2715 43,704 821 21,873 4008

The cumulative annual FRP per land cover (as indicated in Figure 7 and Tables 3 and 4)
follows a similar trend as the fire count. Especially the fires detected in the shrub-
land/savanna and forest classes contribute majorly to the annual total FRP. Fires detected
in the cropland class contribute less to the annual FRP, indicating that the FRP of crop-
land fires appears to be smaller than the FRP of forest or shrubland/savanna fires. The
distribution of FRP by land cover in each country shows a pattern similar to that of the fire
counts. For forests, Myanmar exhibits the highest percentage, while Vietnam shows the
greatest portion in shrubland/savanna, Cambodia in grassland, and Thailand in cropland.
However, the share of FRP by land cover changes slightly in each country. In most nations,
the percentages for grassland and cropland decrease, with an increase observed in the share
of forest. This trend is most pronounced in Myanmar and Laos, with increases of 9.61% and
9.00%, respectively. In Thailand, the proportion of cropland significantly drops by 13.09%,
while the share of shrubland/savanna markedly increases by 8.46%.

Table 3. Proportions of annual cumulative FRP per simplified MODIS land cover class and country
for 2012–2020.

Land Cover Cambodia Laos Myanmar Thailand Vietnam

Forest 16.67 52.40 54.26 27.39 28.11
Shrubland/Savanna 60.12 44.58 38.07 47.18 61.90

Grassland 17.47 2.76 3.15 4.22 3.83
Cropland 4.85 0.24 4.43 20.98 5.97

Urban 0.009 0.002 0.010 0.161 0.110
Barren - - 0.002 - -

Water/Permanent Wetland 0.875 0.020 0.068 0.072 0.084
Cumulative FRP [MW] 1,204,953.29 6,377,671.84 5,676,410.27 994,047.58 625,649.22
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Table 4. Proportions of seasonal cumulative FRP per simplified MODIS land cover class and country
for 2012–2020.

Cambodia Laos Myanmar Thailand Vietnam

Land Cover Dry Wet Dry Wet Dry Wet Dry Wet Dry Wet

Forest 16.53 0.14 48.00 4.40 53.20 1.07 27.24 0.15 22.41 5.70
Shrubland/Savanna 59.24 0.88 42.53 2.04 37.72 0.35 46.42 0.75 52.11 9.78

Grassland 17.02 0.46 2.72 0.03 3.11 0.04 4.13 0.09 3.27 0.57
Cropland 4.82 0.03 0.24 0.003 4.37 0.06 20.67 0.31 5.54 0.43

Urban 0.007 0.001 0.002 - 0.009 0.001 0.152 0.009 0.067 0.043
Barren - - - - 0.002 - - - - -

Water/Permanent Wetland 0.692 0.184 0.020 - 0.062 0.006 0.045 0.027 0.061 0.023
Cumulative FRP [MW] 1,184,535.21 20,418.08 5,964,108.15 413,563.69 5,589,597.32 86,812.95 980,705.04 13,342.54 522,150.54 103,498.68

3.3. Monthly Correlation between Fire Counts and PM2.5 Concentrations

The correlations between mean monthly PM2.5 concentrations at the country level
and VIIRS fire counts are visualized in Figure 8. The monthly data suggest a statistically
significant linear correlation between VIIRS fire counts and mean PM2.5 concentrations for
all countries (p < 0.05). Myanmar displays the highest positive correlation (R = 0.9) and
coefficient of determination (R2 = 0.81), followed by Laos and Thailand.

ISPRS Int. J. Geo-Inf. 2024, 13, x FOR PEER REVIEW 14 of 22 
 

 

 

Figure 8. Correlation between monthly fire counts and mean PM2.5 estimates per country for the 

years 2012–2020. Red line indicates the linear regression and shaded buffer area is the 95% 

confidence interval.  

Figure 8. Correlation between monthly fire counts and mean PM2.5 estimates per country for the years
2012–2020. Red line indicates the linear regression and shaded buffer area is the 95% confidence interval.



ISPRS Int. J. Geo-Inf. 2024, 13, 206 13 of 19

Due to the small number of fires detected in the urban, barren, and water/permanent
wetland classes (see Figures 6 and 7), the correlation between FRP, fire count, and PM2.5
was only computed per land cover for fires detected in the forest, cropland, grassland, and
shrubland/savanna classes.

Figure 9 presents the monthly correlation between PM2.5 concentrations and VIIRS fire
counts per land cover type for all countries combined. The monthly correlation indicates a
statistically significant positive correlation for all land covers, except for water/permanent
wetlands (p < 0.05). The number of fires detected in forests displays the highest positive
correlation, followed by shrubland/savanna, grassland, and cropland. Clusters are visible
based on the country, of which the clusters of detected fires in Cambodia and Vietnam
show less correlation to monthly PM2.5 estimates compared to other countries, in line with
observations from Figure 8. The cumulative results in Figures 8 and 9 have an MIC range
between 0.31 and 0.81, which, in combination with the R and p values reported in the results,
indicate a linear relationship between the dependent and the independent variables.
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3.4. Monthly Correlation between FRP and PM2.5 Concentration

Figure 10 displays the correlation between monthly cumulative FRP and mean PM2.5
estimates per country. Similar to the fire count, the FRP indicates a significant positive
correlation for all countries, where Myanmar and Laos display the strongest correlation
(p < 0.05). The total cumulative monthly FRP is much higher in these two countries
compared to Thailand, Vietnam, and Cambodia. Between 2012 and 2020, Myanmar had a
higher total number of fires (i.e., 150,470) than Laos (i.e., 108,477) (Figure 3); the maximum
monthly cumulative FRP appears to be equivalently high, which indicates that the FRP of
fires detected in Laos appears to be higher than in Myanmar.
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Figure 10. Correlation between monthly cumulative FRP and mean PM2.5 estimates per country for
2012–2020. Red line indicates the linear regression and shaded buffer area is the 95% confidence interval.

Figure 11 displays the correlation between monthly cumulative FRP and mean PM2.5
estimates per land cover. Similar correlations were observed compared to the monthly fire
count (Figure 9), where the FRP of fires detected in forest, shrubland/savanna, cropland,
and grassland classes display a significant positive correlation (p < 0.05). Overall, for all
land covers, Cambodia displays the lowest cumulative monthly FRP. The cumulative results
in Figures 10 and 11 have an MIC range between 0.34 and 0.78, which, in combination with
the R and p values reported in the same results, indicate a linear relationship between the
dependent and the independent variables.
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4. Discussion

In this study, Myanmar has the highest fire count for the years studied, mainly cor-
responding to the forest class. Myanmar is the country highlighted with the most fire
occurrences in a similar highlighted study performed by Vadrevu et al. [11], assessing
fire trends in South and Southeast Asia at a country level and vegetation types. The
likely cause is the slash-and-burn technique as part of the shifting cultivation of primary
or secondary forests, which is a common traditional practice in Myanmar and Cambo-
dia [11,42,43]. For Cambodia, the current study shows a significantly lower percentage
of detected fires in forests compared to previous studies [11,42], with higher percentages
of fires detected in scrubland/savannas. The simplified global-oriented IGBP land cover
definitions used in this study may have affected these observations. For instance, the
shrubland/savanna classes may include open forests and orchard plantations that have
similar spectral characteristics.

Another potential cause for the higher percentage of fires detected in scrubland/savannas
as opposed to forests could be the long-term conversion of deciduous forests to woody savan-
nas due to the repeated burning from anthropogenic impact, which is a known occurrence
in parts of northern Cambodia and in a region of Thailand [44,45]. Thailand displays the
highest fire count on croplands in recent years, which can be linked to seasonal agricultural
residue burning, in line with the initial hypothesis (the distribution of detected VIIRS fires
indicates biomass burning patterns within the Lower Mekong region) of this study [46].
After 2016, the fires in croplands increased compared to non-croplands, which could be
caused by the conversion of shrubland to agricultural land or an increase in agricultural
residue burning and a decline in fire occurrence on other land covers. Statistics from the
Food and Agriculture Organization of the United Nations (FAOSTAT) indicate increasing
agriculture land area extents (2012–2020) for Thailand and Cambodia but stable or declining
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curves for the rest of the Mekong countries, which shows that agricultural expansion could
be a contributor for the specific area [47].

The study by Vadrevu et al. [11] identifies precipitation patterns as a potential determi-
nant driver for fire occurrence, due to the significantly lower fire count during the annual
monsoon season. On the same line, Vadrevu et al. [11] claim that in Southeast Asia, the
climate driver which explains variations in fire occurrences is precipitation rather than
temperature. Exploring and observing the data year by year (Figure 3) helps to identify
any increasing or decreasing trends in fire incidents. For example, there seems to be a
decrease in fire counts in Myanmar in 2016 and 2017 and then an increase from 2018 to 2020.
Meanwhile, there seems to be a peak in fire counts in 2015 and then a decrease especially in
2017 for Laos, followed by a progressive increase until 2020. Some years may show spikes
and lows in fire activity due to various factors such as prolonged droughts, changes in
land use practices, or variations in the enforcement of fire management policies. In our
study, most fires occur in the much shorter time span of the dry season with the highest fire
count around March. This seasonal variation is important to incorporate in fire mitigation
strategies and policies because there appears to be a strong link with annual peak emissions
occurring between January and March [48].

Figures 6 and 7 show the time series of fire counts and FRP, by country and by land
cover type. A notable observation relates to fires detected on cropland classes, which appear
to display a lower mean FRP compared to fires detected on shrubland/savanna and forest
classes. This fact has been demonstrated to occur in North America, Europe, Southeast
Asia, and African savannas in a study examining the association between fire size and fire
radiative power across biomes globally [49]. In the same study, they claim that a linear
relationship describes the fire radiative power and fire patch size; however, for intermediate-
intensity fires this relationship saturates. The value of this threshold differs from one region
to another and depends on vegetation type. In line with the second hypothesis (a positive
correlation exists between monthly PM2.5 concentrations and 78 monthly VIIRS fire counts,
as well as the cumulative monthly FRP), our study suggests statistically significant positive
correlations between monthly PM2.5 concentrations and fire counts at country level, a fact
that has also been quantified (r = 0.88, p < 0.001) by Yin et al. [16] during the fire season in
Southeast Asia. Especially, PM2.5 concentrations of 20 µg/m3 and higher display a strong
linear correlation with fire counts, except for Cambodia, where concentrations of 15 µg/m3

and higher display a strong correlation.
This indicates that fire occurrence could be linked to high monthly concentrations of

PM2.5 at the country level. Due to the expected positive correlation between fire occurrence
and air pollutant concentrations, more specifically PM2.5, spatial and temporal fire patterns
can indicate where and when air quality indices may be worse as a consequence of increased
fire occurrence [9,50,51]. The positive significant correlation between monthly cumulative
FRP and mean PM2.5 concentrations per country (see Figure 9) suggests similar correlations
as the fire count; however, this provides a better indicator of fire extent. FRP describes the
intensity of a fire and is often used as a proxy for fire extent in remote sensing and wildfire
monitoring applications. Higher FRP values indicate larger and more intense fires, while
lower values correspond to smaller or less intense fires. Thus, the FRP can potentially form
an important indicator of PM2.5 levels at higher air pollution levels compared to fire count
alone. Moreover, statistically significant correlations were observed between monthly fire
counts and FRP related to different land cover types and monthly PM2.5 concentrations. The
high positive correlation between PM2.5 concentrations and detected fires in the forest and
shrubland/savanna classes substantiates previous findings that fire emissions in mainland
Southeast Asia primarily originate from deforestation and savanna fires [9]. As a result, this
study suggests that monitoring forest and shrubland/savanna fires is especially important
in Myanmar, given the high fire count detected for these classes and the high cumulative
FRP values.

It should, however, be noted that the assessment of the correlation between PM2.5,
fire count, and FRP is at a coarse spatial level (due to the monthly temporal interval and
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the country-level mean PM2.5 estimates). This correlation can be influenced by various
emission sources other than fire occurrence.

Another uncertainty involved in this study that should be taken into consideration is
the absence of ground reference fire data at a large scale, due to which the accuracy of the
VIIRS active fire product and land cover datasets could not be validated. The influence of
duplicated fire detections and missing data caused by cloud obstruction was, therefore, not
quantified, and this could be the focus of a future study. Similarly, the PM2.5 concentrations
used in this study are estimates of the real PM2.5 concentrations, which include uncertainties
and deviations from reality [27]. To decrease the uncertainty related to the spatial and
temporal resolution, it is planned to further analyze the correlation between PM2.5 estimates
and fire characteristics at smaller spatial and temporal scales with the additional aim of
quantifying the influence of external factors. For example, Pleiades satellites provide high-
resolution imagery suitable for detecting and analyzing fire characteristics with good detail.
Similarly, it is recommended to further investigate this relation by expanding the statistical
analysis beyond the correlation coefficient used in this study. Lastly, future studies could
incorporate VIIRS fire hotspots with all confidence levels, which was out of the scope of
this initial work.

5. Conclusions

Climate change as well as land use and land management changes affect fire regimes
over different time periods and regions [52,53]. The frequency and intensity of fires have
an impact on air quality and consequently on human and ecosystem health. To that
end, identifying fire patterns can provide valuable information for the integration of
wildfire-related considerations into different scale policies and development planning
and the improved management of the occurrence of excessive application of fire in land
use. The results of this study indicate that remotely sensed VIIRS fire hotspot data in
combination with descriptive environmental datasets can aid the understanding of fire
distributions, cumulative monthly FRP, and mean country-level PM2.5 emissions at different
spatial and temporal scales. Our results highlight the importance of monitoring forest
and shrubland/savanna fires in the Mekong region given the high statistically significant
positive correlation with mean monthly PM2.5 concentrations and associated negative
effects of PM2.5 exposure. The main occurrence of fires and previously identified high
PM2.5 concentrations were detected during the dry season (November–March). The fire
patterns observed are in some cases associated with crop residue burning activity in
Thailand and shifting cultivation in Myanmar during recent years. This study can provide
useful information to drive and facilitate policy-making and land practice discussions
and decisions regarding the fire season identified. These discussions, when data-driven,
could support the inclusion of different perspectives and the identification of capacity-
building mechanisms to address the problem. The decisions might include more robust
regulations on land use, incentives and training for sustainable agricultural practices,
and the identification and adoption of conservation measures. Methodologies like ours
would also allow for ongoing monitoring and evaluation that are critical to assessing the
effectiveness of established policies and interventions.
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