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Abstract: In recent years, China’s economy has experienced rapid development, and its cities
have undergone rapid expansion; however, the development of cities in the northwest region has
been relatively slow due to various geographical and economic constraints. Studying the urban
expansion in these regions is of significant importance for regional planning and development.
This study selected the provincial capitals of five underdeveloped provinces in northwestern China
as the research sample and used Landsat TM/OLI remote-sensing imagery as the primary data,
supplemented by Digital Elevation Model (DEM), meteorological, and socio-economic data, the study
extracted urban impervious surfaces using the ENDISI and MNDWI indices. It analyzed the spatial
and temporal characteristics of urban impervious surfaces from 1990 to 2020 using indicators such
as urban expansion intensity, compactness and fractal dimension, centroid migration, and standard
deviation ellipse. Furthermore, the study quantified the influencing factors using Geodetectors. The
findings reveal the following: (1) From 1990 to 2020, impervious surfaces in the five cities continued
to expand, with Xi’an experiencing the largest expansion area at 549.94 km2 and Xining the smallest
at only 132.83 km2, with an expansion intensity of merely 2.99%. However, significant disparities
existed in expansion intensity and area across different periods. (2) Overall, the compactness of the
cities decreased by 47.6% while the overall fractal dimension increased by 2.85%, indicating a trend
towards more dispersed and complex urban forms. (3) Expansion directions varied among the cities,
with Xi’an and Urumqi expanding towards the northwest, Lanzhou towards the north, Yinchuan
primarily towards the east, and Xining mainly towards the west. (4) Economic, demographic, and
investment factors were identified as the primary influencers of urban expansion, exhibiting changes
over different periods. Analyzing the similarities and differences in city development can offer
valuable insights into urban construction and sustainable development in underdeveloped areas.

Keywords: impervious surfaces; urban agglomeration expansion; ENDISI; geodetector;
underdeveloped regions

1. Introduction

According to the World Cities Report, 2022: Envisioning the Urban Future, global
urbanization is growing rapidly at an unprecedented rate, with the proportion of the
population in urban areas predicted to grow to 68% by 2050 [1]. Rapidly expanding
urbanization causes damage to water resources and biodiversity, accelerated carbon dioxide
emissions, and reduced energy use efficiency [2–5]. One of the distinctive features of
urbanization is the gradual replacement of natural surface landscapes by impervious
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surfaces (ISs), which are mainly artificial [6]. These mainly include hard roads, commercial
areas, residential areas, and rooftops of buildings in development zones [7]. Existing studies
show an increasing trend towards ISs all over the world, with an average increase of about
eight times the average loss of tree cover [8]. Therefore, analyzing trends in the expansion
of urban ISs is critical for environmental and sustainable development.

Extensive research has been conducted on the impervious surfaces in urban expansion.
The earliest studies utilizing classification methods to extract impervious surfaces and apply
them to urban expansion focused primarily on using optical and SAR remote sensing data,
with classification methods such as spectral mixture analysis, decision tree modeling, and
support vector machines [9–11]. When the research scale is expanded to the national or even
global scale, the remote sensing image data involved often becomes immense, resulting
in substantial computational demands. To address this issue, scholars have proposed
using Google Earth Engine combined with multisource and multi-temporal remote sensing
data to construct a global impervious surface area dataset [12]. These datasets often span
several decades and integrate multiple classification methods, significantly reducing the
workload for researchers conducting large-scale urban expansion studies [13,14]. Moreover,
using various urban indices to extract impervious surfaces is also an effective approach.
Indices such as the Normalized Difference Impervious Surface Index (NDISI), Enhanced
Built-Up and Bareness Index (EBBI), and Normalized Difference Built-up Index (NDBI)
require minimal preprocessing and are user-friendly, thereby improving the efficiency of
impervious surface mapping [15–18]. Utilizing impervious surfaces for urban expansion
research is an effective method.

When analyzing the expansion patterns and driving forces of urbanization, studies
in different regions and at different scales around the world show diverse conclusions. In
terms of urban expansion patterns and morphological changes, Cairo in North Africa and
Bangkok in Southeast Asia have relatively low urban compactness and relatively dispersed
urban forms [19,20]; in North America, the urban form of the United States is mainly
scattered and expanded, with typical cities being Raleigh, Washington, and Houston. The
urban form in Europe and China is dominated by central compact shapes, and most cities
are developing in the direction of compact shapes and mixed functions, such as Vienna,
Austria, and Changzhou, China [21]. As for the driving factors of urban expansion, in
highly urbanized areas such as Romania in Europe and Beijing and Shanghai in Asia,
socio-economic factors and geographical location affect the development of investment,
trade, and tourism, which is accompanied by increasing demand for accommodation,
infrastructure, and transportation. The process of urbanization is accelerating [22–24]. In
tertiary regions such as the Tibetan Plateau, Pamir, and Hindu Kush, urban expansion is
primarily driven by population growth, and topographic elevation limits urban expansion.
The construction of streets and roads promotes urbanization [25]. In the spatial and
temporal evolution of urban land at different scales, economic factors are dominant at
the provincial level, whereas population factors are most significant at the county level,
and economic, population, and traffic factors all play an important role at the prefecture-
level [26]. In summary, global urbanization presents diverse expansion patterns and
diversified drivers, influenced by geographical regions and different scales, and these
complexities make urban research richer and more challenging.

To study urban expansion in underdeveloped regions, researchers have examined the
population and political policies of these areas, suggesting a close relationship between
urbanization, population growth, and political dynamics [27–29]. In regions like Bamako in
West Africa, Cairo in North Africa, Nairobi in East Africa, central Myanmar, and southern
Vietnam in Southeast Asia, urban expansion often comes at the cost of agricultural land
and encroachment on forests and natural landscapes [30–32]. In some underdeveloped
areas of China, such as Nanchang, urban planning policies play a central role in driving
urban expansion, with physical geography exerting comparatively less influence [33]. The
international definition of an underdeveloped region encompasses multiple dimensions,
with the United Nations Development Program using life expectancy, education, and per
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capita income as indicators for assessing the Human Development Index (HDI) [34]. In 1990,
China’s HDI was 0.449, indicating a low level of overall human development. Subsequently,
China’s HDI rose to 0.588, 0.699, and 0.761 in 2000, 2010, and 2020, respectively, reaching the
world average level in 2012 [35–38]. In contrast, despite significant urban land expansion,
rapid urbanization, and remarkable economic growth in the five northwestern provinces
of China (Shaanxi, Xinjiang, Gansu, Ningxia, and Qinghai), the gap with other regions
of China continues to widen [39,40]. Their average HDI increased from 0.358 in 1990 to
0.704 in 2020, which was generally lower than the national average, categorizing them
as underdeveloped regions. However, there is a dearth of research on the expansion
patterns of these provincial capitals, particularly in comparing their divergent models and
influencing factors.

Therefore, this study selected the underdeveloped provincial capital cities (Xi’an,
Urumqi, Lanzhou, Yinchuan, and Xining) in the five provinces of northwestern China as the
study sample. It used Landsat TM/OLI image data as the primary data source, combined
with DEM, meteorological, and socio-economic data. Urban spatial morphology indices,
center of gravity migration, and standard deviation ellipse models were employed to
analyze the similarities and differences in urban impervious surface expansion patterns and
change trends in the five capital cities of the underdeveloped regions of China from 1990 to
2020. Meanwhile, the influencing factors of urban expansion in different periods and cities
were analyzed by considering socio-economic elements, natural geographic elements, and
policy documents. The aim is to study the spatiotemporal characteristics and influencing
factors of urban expansion in the underdeveloped cities of the five northwestern provinces
of China, providing insights for related research in underdeveloped areas and offering
scientific references for urban planning, construction, and sustainable development.

2. Research Area and Data Introduction
2.1. Overview of the Study Area

The Northwest Five Provinces are situated in northwestern China, encompassing
Shaanxi Province, Xinjiang Uygur Autonomous Region, Gansu Province, Ningxia Hui
Autonomous Region, and Qinghai Province, which lie between 31◦32′ and 49◦10′ N and
73◦15′–111◦15′ E (Figure 1). These provinces are predominantly inland, situated mainly
on the Loess Plateau, the Tibetan Plateau, and the Tarim Basin, and are characterized by
plateaus, mountains, and Gobi desert landscapes. The topography is intricate, precipitation
levels are low, and the climate tends to be arid overall. Although the total land area of the
five northwestern provinces accounts for 32% of the country’s landmass, their combined
GDP is 7039.53 billion yuan, representing only 5.87% of the national total. The population
of approximately 106 million inhabitants in these provinces constitutes 7.35% of China’s
total population [41]. Within these provinces, each capital city holds the highest GDP
share: Xi’an contributes 35% to its province’s GDP, Urumqi accounts for 22%, Lanzhou for
29.85%, Yinchuan for 50%, and Xining for 45.55%. These five provincial capital cities offer a
representative basis for investigating urban expansion in less developed areas.

2.2. Data Sources and Preprocessing

The remote-sensing image data used in this paper included 1990, 2000, 2010, and 2020
Landsat TM/OLI data with a spatial resolution of 30 m; the projection was the Universal
Transverse Mercator (UTM) projection (Appendix A). The DEM data adopted the SRTM1
(1 arc-second) data set in the region, with a spatial resolution of 30 m. Pre-processing
of Landsat images was carried out in the ENVI 5.3 and mainly included radiometric cal-
ibration, atmospheric correction, and geometric correction. These data were obtained
from USGS [42]. Socio-economic statistics were obtained from the Statistical Yearbook
of the Five Northwest Provinces [41]. Precipitation and temperature data were obtained
from the ERA5-Land dataset released by the European Union and organizations such
as the European Centre for Medium-Range Weather Forecasts [43]. The raw data were
month-by-month average precipitation/temperature raster data; year-by-year average pre-
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cipitation/temperature raster data were obtained by calculating the average of 12-month
average precipitation/temperature using the raster calculation tool. Using these data, the
raster values within each municipality were averaged to obtain year-by-year average pre-
cipitation (annual average of daily precipitation in that year, in units of m) and year-by-year
average air temperature (in units of ◦C) for each municipality. The average was processed to
obtain yearly average precipitation (the annual average of daily precipitation for the year in
m) and yearly average air temperature (in degrees Celsius) for each municipality. Elevation
and average slope data were calculated for each city with the help of the ArcGIS 10.5.
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3. Methods

Firstly, the Enhanced Normalized Difference Impervious Surface Index (ENDISI) and
the Modified Normalized Difference Water Index (MNDWI) were used to extract the
impervious surface of the provincial capital cities of the five northwestern provinces for the
years 1990, 2000, 2010, and 2020. Subsequently, the spatial and temporal dynamic changes
and the morphological evolution characteristics of urban expansion in the study area were
analyzed. This involved comparing the expansion rates, intensities, compactness, and
fractal dimensions of impervious surfaces across different cities and periods, as well as
examining the trajectories of center of gravity migration and standard ellipse differences.
Finally, the influencing factors of spatial and temporal dynamics in different cities were
analyzed using Geodetector. A technical block diagram of the procedure is illustrated in
Figure 2.

3.1. Urban IS Extraction Methods

The Enhanced Normalized Difference Impervious Surfaces Index (ENDISI) was pro-
posed on the basis of previous research results. It can effectively eliminate the influence
of dry land, bare rock, and bare soil on IS extraction so that water-impervious and water-
permeable surfaces can be more effectively separated and extracted [44]. Because part of
the study area contains water, when ENDISI was used to extract water-impervious surfaces
in the study area, the Modified Normalized Difference Water Index (MNDWI) was used to
mask water [45]. ENDISI and MDNWI can be calculated by Equations (1) and (2):

ENDISI =
(2BBlue+BSWIR2)

2 − (BRed+BNIR+BSWIR1)
3

(2BBlue+BSWIR2)
2 +

(BRed+BNIR+BSWIR1)
3

(1)

MNDWI =
BGreen − BSWIR1

BGreen + BSWIR1

(2)
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where BBlue, BGreen, BRed, BNIR, BSWIR1 , BSWIR2 represent the surface reflectance values of
the blue, green, and red light bands, the near-infrared band, and the first and second
short-wave infrared bands, respectively.
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3.2. Verification of Extraction Accuracy of Urban ISs

The reference data for accuracy validation used Google Earth historical contempora-
neous high-resolution images and field validation data. In ArcGIS10.5, 200 random sample
points were generated, and because the image contents for 1990 and 2000 were incomplete,
the ISs of Xining City in 2010 and 2020 were compared with Google Earth high-resolution
images from the same period and were verified by human–computer interaction. ISs in
2020 were verified in the field.

The accuracy of the extraction was verified using historical high-resolution imagery
from Google Earth and field verification data. Due to the incomplete Google Earth high-
resolution imagery for 1990 and 2000, we primarily selected Xining for verification and
validated the impervious surface extraction results for 2010 and 2020. The verification
data for 2010 were generated through random sample points in ArcGIS 10.5, while the
verification data for 2020 included both random sample points generated in ArcGIS 10.5
and field verification sample points. The random sample points generated in ArcGIS 10.5
were compared with historical high-resolution imagery data in Google Earth on a point-
by-point basis. The field verification sample points were compared through on-site field
verification. The accuracy of the extraction was calculated by determining the proportion
of correctly extracted impervious surface sample points to the total number of selected
impervious surface sample points. The calculation formula is as follows Equation (3):

A =
C
T
× 100% (3)

where A represents the extraction accuracy, C is the number of correctly extracted imper-
vious surface sample points, and T is the total number of selected impervious surface
sample points.
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3.3. Urban IS Expansion Intensity Index

The IS expansion strength index I was used to reflect the ratio of the annual average IS
expansion area over a time period to the IS area of the base year to assess the strength of IS
expansion in different regions and at different stages. It was computed using Equation (4):

I =
(

SB − SA
TSA

)
× 100% (4)

where SB is the urban IS area in the year of interest, SA is the urban IS area in the base year,
and T is the time interval in years.

3.4. Compactness Index and Fractal Dimension

The compactness index (P) is an important index used to measure the degree of spatial
aggregation of landscape patches. The smaller the P is, the more discrete the distribution of
IS patches within the city. The larger the P is, the more aggregated the IS patches, the more
compact the shape, and the less spatial segregation between the patches [46].

Fractal dimension (F) is a mathematical concept used to describe the complexity of
boundary shapes and is often applied to the study of IS and urban land-use structures.
Theoretically, the fractal dimension range is usually between 1 and 2. When F is less than
1.5, this indicates that the boundary is relatively simple and may reflect regular urban
land-use structure; when F is greater than 1.5, this indicates that the boundary is more
complex and may be caused by irregular patches or topography. When F is equal to 1.5, this
indicates that the boundary is in a state of Brownian motion and that the urban land-use
structure may be somewhere between simple and complex [47].

The compactness index (P) and fractal dimension (F) are calculated as Equations (5) and (6):

P =
2
√

πS
C

(5)

F =
2ln

(
C
4

)
ln S

(6)

where S and C are the area and perimeter of the impervious surfaces in the city.

3.5. Center of Gravity Migration and Standard Deviation Ellipses

Center of gravity migration trajectory analysis is usually based on the movement
direction of the weighted average center of geographic elements (also known as the center
of mass or center of gravity). It can be used to characterize the expansion trend of ISs in a
city because it can reveal the migration law of the center of mass of the ISs in the process
of urban expansion and can effectively reflect the dynamic process and spatial change of
the city’s development. This can help us understand the adjustment and evolution of the
urban spatial structure. The standard deviational ellipse (SDE) is a tool in spatial statistical
analysis that can quantitatively describe the directionality of the spatial distribution and
the spatial structural characteristics of ISs based on the spatial location and structure of
geographic elements by calculating parameters such as the long axis, the short axis, and
the azimuthal angle of the ellipse [48].

The spatial center of gravity of the ISs can be calculated using Equation (7):Xt =
∑n

i=1(Wixi)

∑n
i=1 Wi

Yt =
∑n

i=1(Wiyi)

∑n
i=1 Wi

(7)
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and the standard deviation ellipse azimuth can be calculated using Equation (8):

tanθ =
(∑n

i=1 W2
i
∼
x

2
i − ∑n

i=1 W2
i
∼
y

2
i ) +

√
(∑n

i=1 W2
i
∼
x

2
i − ∑n

i=1 W2
i
∼
y

2
i )

2 + 4∑n
i=1 W2

i
∼
x

2
i
∼
y

2
i

2∑n
i=1 W2

i
∼
x i

∼
y i

(8)

The long and short axes are calculated using Equation (9):
σx =

√
∑n

i=1(wi
∼
x icosθ−wi

∼
y isinθ)2

∑n
i=1 w2

i

σy =

√
∑n

i=1(wi
∼
x isinθ−wi

∼
y icosθ)2

∑n
i=1 w2

i

(9)

In Equations (6)–(8), Xt and Yt are the latitude and longitude of the center of gravity
in year t; Wi is the area of the IS within the i-th cell; xi and yi denote the longitude and
latitude of the geometric center within the i-th cell, respectively. θ is the ellipse azimuth
angle;

∼
x i and

∼
y i are the longitude and latitude of the deviation of each IS patch from the

ellipse’s center of gravity; σx and σy are the standard deviation of the ellipse in the x- and
y-directions. The long and short axes of the standard deviation ellipse can be used to reflect
the degree of dispersion of the IS in the x- and y-directions.

3.6. Driver Indicators and Geodetector

Currently, studies on factors influencing urban expansion utilize a variety of indicators.
Typically, these indicators include industrial structure and GDP, which drive the transfor-
mation of urban expansion [49]. Factors such as population growth, natural environment
and locational constraints, and increasing income levels among residents also contribute
to increased demands for residential, transportation, and public facilities, necessitating
the use of more land resources and expansion of urban areas to meet these needs [50–52].
Furthermore, rising levels of investment and improvements in education also lead cities
to expand into larger spaces [53–55]. Based on a comprehensive analysis of these urban
expansion studies and considering our study area, we have selected six major categories
(economic, population, living standards, education level, investment level, and natural
factors) comprising 18 indicators (Table 1) to quantitatively analyze the impact of these
factors on impervious surface expansion using geographic detectors. Geodetector is a set
of statistical methods for detecting spatial heterogeneity and revealing the driving forces
behind it [56]. The Geodetector model is calculated using Equation (10):

q = 1 − ∑L
h=1 Nhσ2

h
Nσ2 (10)

where q is the explanatory power of the driver of IS expansion in the study area, N is the
sample size of the study area, σ2 is the variance, and q ranges from 0 to 1. The larger the
value, the greater will be the explanatory power of the factor for IS expansion.

Table 1. The influencing factors of urban expansion are selected.

Variable Category Variable Description

Independent variables Impervious Surfaces Area (km2)/(Y)

Economic Condition/(X1)
Regional Gross Domestic Product (10,000 yuan)/(X11)

Value added of the secondary industry (million yuan)/(X12)
Value added of the tertiary industry (10,000 yuan)/(X13)
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Table 1. Cont.

Variable Category Variable Description

Population/(X2)
Registered population (10,000 people)/(X21)

Number of employees in the secondary industry (10,000 people)/(X22)
Number of employees in the tertiary industry (10,000 people)/(X23)

Living standards/(X3)
Total wages of employees on duty (10,000 yuan)/(X31)

Average salary of employees (yuan)/(X32)
Number of doctors (person)/(X33)

Educational level/(X4)
Number of full-time teachers in ordinary middle schools (person)/(X41)

Number of full-time primary school teachers (person)/(X42)
Number of full-time teachers in ordinary higher education institutions (person)/(X43)

Investment level/(X5)
Fixed Assets Investment (10,000 yuan)/(X51)

Completed investment in real estate development (10,000 yuan)/(X52)

Natural condition/(X6)

Average annual daily precipitation (m)/(X61)
Annual average temperature (◦)/(X62)

Elevation (m)/(X62)
Average slope (◦)/(X63)

4. Results and Analysis
4.1. Accuracy Assessment

This study evaluated the accuracy using Xining as the subject. In 2010, out of
200 selected impervious surface samples in Xining, 165 were correctly extracted through
comparison with Google Earth imagery, resulting in an overall accuracy of 82.5% (Figure 3a).
In 2020, out of 200 selected impervious surface samples in Xining, 175 were correctly ex-
tracted through comparison with Google Earth imagery, resulting in an overall accuracy of
87.5%. In 2023, through field validation, out of 83 selected impervious surface samples in
Xining, 69 were correctly extracted, achieving an overall accuracy of 83.13%, meeting the
requirements of this study (Figure 3b).
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4.2. Spatial and Temporal Characteristics of IS Expansion in the Capital Cities of the Five
Northwestern Provinces

In 1990–2020, the expansion of ISs in the capital cities of the five northwestern
provinces is shown in Figure 4. Information on the expansion area (EA) and expansion
intensity (EI) of urban ISs appears in Table 2.

Table 2. Area and intensity of IS expansion in capital cities of five northwestern provinces.

City

Year

1990–2000 2000–2010 2010–2020 1990–2020

EA EI EA EI EA EI Total EA Total EI

Xi’an 89.37 4.90% 326.65 12.01% 133.92 2.24% 549.94 10.04%
Urumqi 84.53 2.94% 143.27 5.98% 218.70 5.71% 446.5 7.50%
Lanzhou 38.76 2.62% 57.64 3.09% 36.43 1.49% 132.83 2.99%
Yinchuan 21.75 4.22% 85.47 11.67% 52.46 3.30% 159.68 10.33%

Xining 15.49 3.47% 72.74 12.09% 87.71 6.60% 175.94 13.13%

Overall, from 1990 to 2020, the expansion areas of the capital cities of the five north-
western provinces all became larger, among which Xi’an had the largest expansion area,
and by 2020, the overall expansion area reached 549.94 km2 (Figure 4(a4)). The Urumqi total
expansion area was in second place, at 446.5 km2 (Figure 4(b4)). The pattern of IS expansion
varied significantly but spatially showed a ring-like expansion trend. The expansion area
of the other three cities was relatively small, less than 200 km2 and the spatial change repre-
sented mainly a shift of the urban area in other directions, showing strip- and cross-shaped
expansion trends. In terms of expansion intensity, Xining, Yinchuan, and Xi’an all had
an overall expansion intensity greater than 10%, of which Xining had the highest overall
expansion intensity (13.13%) and Urumqi was in the middle expansion intensity range,
at 7.5%. Lanzhou, on the other hand, had the lowest total expansion intensity during the
30-year period, at only 2.99%.

From the perspective of each time period, the expansion trend of each city showed
a “small-large-small” trend. Between 1990 and 2000, Xi’an and Urumqi had the largest
expansion areas, reaching 89.37 km2 and 84.53 km2 respectively, and the ISs became more
compact, with Xi’an tending to extend into the western part of the city, and Urumqi
becoming more compact within the original urban area (Figure 4(a2,b2)). Lanzhou and
Yinchuan had medium-sized expansion areas, and Xining had the smallest expansion
area, at only 15.49 km2. Their urban morphology did not change significantly, and they
mainly infilled on the basis of their original urban areas, with weak overall expansion.
Xi’an and Yinchuan had the highest intensity of expansion during this period, at 4.9%
and 4.22%, respectively. From 2000 to 2010, the expansion area and intensity of the five
cities further increased. Xi’an still led the way with the largest expansion area (326.65 km2)
and highest expansion intensity (12.01%), with a more complex urban morphology and
significant expansion to the north and southwest (Figure 4(a3)). Xining and Yinchuan had
smaller expansion areas, but higher expansion intensities, reaching 11.67% and 12.09%,
respectively, and Yinchuan showed a very obvious urban infill in the north-south direction,
connecting the urban area from north to south and expanding coverage of the whole
city (Figure 4(d3)). Xining was more completely filled up in the northern part of the city,
and therefore new urban areas expanded in the western and southern parts. Lanzhou
and Urumqi also continued to grow in terms of urban expansion area and intensity, with
Urumqi’s expansion area reaching 143.27 km2 and the construction of new urban areas in
the northwest becoming more complete. Lanzhou’s expansion area also grew to 57.64 km2,
with piecemeal expansions mainly in the east and north, but with lower intensity in both
cities (Table 2).
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From 2010 to 2020, except for the expansion areas of Urumqi and Xining that were still
growing, the expansion areas of the remaining three cities have decreased considerably
(Table 2). Urumqi’s expansion area grew and broke through to 218.7 km2, which was
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the largest expansion area among the five cities in this period, with a larger expansion
range of the main urban area and further construction in the new northern area. Xining
expanded the IS area to 87.71 km2 in this period, surpassing Lanzhou and Yinchuan and
connecting the northern part of the city to the main urban area, with the urban area taking
on the shape of a cross (Figure 4(e4)). Although the intensity of urban expansion in Xi’an
declined, the area of expansion was still more than 100 km2, and the urban area crossed
over to the northeast and southwest based on the original foundation. The expansion area
and intensity in Lanzhou and Yinchuan both decreased more in this period than in the
previous period. In terms of urban morphology, Lanzhou’s northward expansion was the
most obvious, and Yinchuan’s suburbs further increased coverage of the main urban area
through further construction (Figure 4(c4,d4)).

4.3. Morphological Evolution Characteristics of IS Expansion in the Capital Cities of the Five
Northwestern Provinces

Based on information on the ISs of the five capital cities in the four periods, the
compactness and fractal dimension of each city in different periods have been calculated
(Figure 5).
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During the 30 years, the compactness of all five cities exhibited a decreasing trend with
a significant rate of decline (Figure 5a). Among them, Lanzhou experienced the highest
rate of decline (54.46%), whereas Urumqi showed the lowest rate of decline (41.29%). In
terms of periods, from 1990 to 2000, the compactness of Lanzhou and Xining increased by
0.003 and 0.001, indicating a period of intensified land use, with the expansion of these two
cities becoming increasingly compact (Figure 5a). However, after 2000, the compactness
of each city started to decline sharply. From 2000 to 2010, its rate of decline in the five
cities increased significantly. Lanzhou experienced the largest decline, dropping from 0.029
to 0.015, with a rate of decline of 48.28%, whereas Urumqi had the smallest decline, at
12.67%. The other three cities had moderate rates of decline, with Xi’an, Yinchuan, and
Xining experiencing rates of decline of 30.74%, 32.58%, and 29.65%, respectively. Since 2010,
except for Urumqi, which declined from 0.014 to 0.009 with a rate of decline of 31.89%,
the rates of decline of compactness in the other cities began to slow down. Particularly
noteworthy was Lanzhou, which exhibited the steepest rate of slowdown, with its rate of
decline dropping from 48.28% in the previous period to 20.97%. These changes reflected
significant differences in the spatial layout and urban form of the cities over the past three
decades. In general, the spatial configuration of ISs in the urban areas of the five cities
evolved from a compact form to one that is more dispersed, indicating a transition towards
a pattern of loose expansion.
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The fractal dimension of each city in 1990–2020 generally showed an increasing trend
(Figure 5b), indicating that the urban land use structure generally developed towards
complexity. Lanzhou had the strongest growth trend, from 1.376 to 1.445 with a growth
rate of 4.98%, which indicated that Lanzhou’s urban morphology became more irregular
during this period. The fractal dimension of Xi’an grew from 1.414 to 1.463 with a growth
rate of 3.47%, making it the city with the most complex boundary among the five cities.
The other three cities had a higher base of fractal dimension, with a similar growth rate of
approximately 2%. In terms of the time period, only Xi’an’s fractal dimension grew from
1990 to 2000, and this trend continued in the later period as well. Urumqi and Yinchuan had
smaller decreases, from 1.423 and 1.421 to 1.418 and 1.416; Lanzhou itself had the smallest
fractal dimension among the five cities, only 1.376, with a simpler shape, and Lanzhou and
Xining experienced decreases of 0.016 and 0.012 in this period. From 2000–2010, the fractal
dimensions of all five cities started to grow, and this trend also continued in the later period.
The urban structure shifted to more complex development, with Lanzhou City growing
the fastest; its fractal dimension grew from 1.36 to 1.423, with a growth rate of 4.63%. The
growth rate of Urumqi’s fractal dimension was low, at only 0.2%. Xi’an, Yinchuan, and
Xining had growth curves that tended to be parallel, and the growth rates were also similar,
with fractal dimensions of 1.449, 1.44, and 1.426, respectively. From 2010 to 2020, Urumqi’s
fractal dimension continued to increase to 1.45, with a growth rate of 2%; growth in all
other cities began to slow down, especially in Lanzhou, where the slowdown was most
pronounced, with the growth rate dropping to 1.49%. However, in this period, the fractal
dimensions of all five cities reached their historical maxima. These data suggested that the
shape of the IS boundary in these cities became more complex and irregular over time.

4.4. Evolution of IS Expansion Direction and Spatial Shift of Center of Gravity in the Capital Cities
of the Five Northwestern Provinces

Using the ArcMap 10.5 software, migration information for the SDA parameter and
the center of gravity coordinates for the capital cities of the five northwestern provinces
were obtained through the directional distribution tool (Figure 6); the statistical results are
presented in Table 3.

Table 3. SDE parameters for capital cities in five northwestern provinces.

City Year Barycentric
Coordinates Semi-Major Axis Semi-Minor Axis Oblateness

Xi’an 1990 108.981◦ E, 34.276◦ N 15.485 8.141 0.474
2000 108.926◦ E, 34.286◦ N 18.626 9.312 0.5
2010 108.933◦ E, 34.291◦ N 18.571 13.05 0.297
2020 108.916◦ E, 34.302◦ N 22.315 12.755 0.428

Urumqi 1990 87.524◦ E, 43.882◦ N 18.917 14.137 0.253
2000 87.519◦ E, 43.869◦ N 19.002 13.133 0.309
2010 87.547◦ E, 43.903◦ N 19.233 15.699 0.184
2020 87.506◦ E, 43.913◦ N 21.945 16.325 0.256

Lanzhou 1990 103.668◦ E, 36.113◦ N 21.631 5.674 0.738
2000 103.630◦ E, 36.111◦ N 21.239 5.772 0.728
2010 103.719◦ E, 36.239◦ N 35.693 18.473 0.482
2020 103.705◦ E, 36.317◦ N 38.566 17.261 0.552

Yinchuan 1990 106.195◦ E, 38.468◦ N 9.869 7.31 0.259
2000 106.120◦ E, 38.463◦ N 10.45 9.186 0.121
2010 106.222◦ E, 38.468◦ N 11.974 10.138 0.153
2020 106.222◦ E, 38.470◦ N 12.322 11.204 0.091

Xining 1990 101.728◦ E, 36.692◦ N 16.826 8.573 0.49
2000 101.726◦ E, 36.710◦ N 17.729 8.245 0.535
2010 101.679◦ E, 36.666◦ N 18.507 12.381 0.331
2020 101.650◦ E, 36.690◦ N 26.627 12.203 0.542
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The cities’ urban centers of gravity migrated considerably during the 30 years, with
Xi’an and Urumqi expanding mainly in a northwesterly direction, Lanzhou and Xining
expanding mainly in a north-south direction, and Yinchuan expanding mainly in an east-
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west direction. Overall, the urban centers of gravity of Xi’an and Urumqi shifted northward
by 0.026◦ and 0.031◦ and westward by 0.065◦ and 0.018◦, respectively, between 1990 and
2020, with the cities expanding northwestward. The oblateness, although decreasing after
2000, continued to grow after 2010, with the urban form developing from compact to flat.
Lanzhou had the largest northward shift in its center of gravity, with a northward shift of
0.204◦; the long semiaxis grew significantly from 21.631 km to 38.566 km, the oblateness
decreased by 0.176 after 2000, and the east-west directionality of the city’s development
diminished and slowly shifted to the north and south (Figure 6c). Yinchuan’s urban center
of gravity migration was less, its oblateness was very small (0.091), and the standard
deviation ellipse tended to become more rounded, indicating that the multi-directionality
of urban expansion in the north-south and easterly direction was more complete (Figure 6d).
Xining’s urban center of gravity migrated westward by 0.078◦, its oblateness decreased
by 0.159 during 1990–2010, and the expansion of the city was more directional, However,
by 2020, the semi-major axis of Xining surged to 26.627 km and the oblateness increased
to 0.542, indicating that the city had become more integrated in its spatial pattern of
development (Figure 6e).

In terms of time segments, Xi’an experienced the most significant migration of its
urban center from 1990 to 2000, with a subsequent decrease in migration amplitude post-
2000, settling in the Weiyang District (Figure 6). Urumqi witnessed considerable migration
during the period from 2000 to 2020, with migration parameters remaining similar. Notably,
between 2000 and 2010, its center of gravity mainly shifted northeastward, transitioning to
a northwestward migration after 2010, yet its urban center consistently remained in the
new urban area. Lanzhou and Xining exhibited the largest migration amplitudes from
2000 to 2010, with Lanzhou predominantly moving northward and Xining southwestward.
Post-2010, Lanzhou’s northward expansion persisted, but Xining shifted northwestward.
Yinchuan experienced the greatest migration volume from 1990 to 2010, but declined post-
2010. Despite briefly shifting southward, its migration primarily resumed eastward, with
minimal migration post-2010.

4.5. Analysis of Factors Influencing IS Expansion in the Capital Cities of the Five
Northwestern Provinces

Based on the selected six primary categories and 18 secondary categories of indicators
that have a greater impact on urban sprawl, the influencing factors of each city in different
periods were analyzed using Geodetector; the results are shown in Figure 7.

From 1990 to 2000, the factors as a whole contributed more to the cities of Xi’an,
Urumqi, and Lanzhou (Figure 7a,a′). During this period, the indicators with the largest
contribution rate in Xi’an were economy and population, which amounted to 0.86 and
0.82, respectively, of which the contribution rate of X23 was the largest, amounting to
0.93. Education level contributed much more to the city of Urumqi than to the other four
cities, amounting to 0.67, whereas its contribution to Xi’an was only 0.18. The level of
investment contributed the most to Xi’an, with a value of 0.66. This situation is due to the
fact that Xi’an has a better educational foundation, but the contribution of the increase in
the level of education to the expansion of the city was not as large as the driving energy of
investment. The same was true for Lanzhou, which had the smallest contribution to the
city’s development from education, at only 0.17. For the level of education in Yinchuan and
Xining in this period, the main influencing factors were population, living standard, and
education level. X32 was the main factor affecting the living standard, with values of 0.83
and 0.89, respectively; the level of investment contributed very little to these two cities in
this period, with Yinchuan scoring only 0.1. During this period, the contribution rate of
natural factors to the five cities was small, and Xi’an, which had the largest contribution rate
of natural factors, only reached 0.3. In Urumqi and Lanzhou, like Xi’an, the contribution
rate of natural factors in these three cities is much smaller than that of their economy and
population to urban expansion, indicating that the natural environment played no key
role in the development of these three cities during this period. It is worth noting that in
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Yinchuan and Xining City, the population factor contributed the most to these two cities
during this period, while the contribution rate of economic factors was even less than that
of natural factors. To a certain extent, this reflects the weak economy of Yinchuan and
Xining during this period. The thrust of urban expansion mostly depended on the increase
of population, and the economic development had not yet entered the booming period.
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From 2000 to 2010, there was a further increase in the contribution of each factor
to urban development (Figure 7b,b′). Economic factors saw the most significant growth
in Yinchuan and Xining, rising from 0.15 to 0.89 and 0.87, respectively. Conversely, the
contribution of population factors declined notably in Lanzhou, dropping from 0.679 to
0.33. Notably, living standards contributed significantly to Yinchuan and Xining during this
period, with increases of 0.411 and 0.306, respectively, driven by X31 and X33. X31 surged
from 0.06 to 0.84 and 0.73, respectively, whereas X33 climbed from 0.15 and 0.2 to 0.45 and
0.43, indicating the pivotal role of wage levels and health care in urban development. In
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Yinchuan, the contribution of the investment level soared from 0.1 to 0.84, primarily due to
increases in X51 and X52, showcasing significant achievements in investment attraction
and urban housing construction. Moreover, the contribution of education level surged the
most in Xi’an and Lanzhou, rising from 0.18 and 0.17 to 0.7 and 0.59, respectively. Notably,
the impact of X43 on urban expansion surpassed that of X41 and X42, underlining the role
of faculty strength in higher education institutions as a driving force for urban construction.
Moreover, the influence of natural factors on cities declined during this period, particularly
in Xi’an, which experienced the most significant decline, One of the reasons may be that
Xi’an is located in the Guanzhong Plain, with a vast and high-quality land to provide space
for urban development. Moreover, the contribution rate of the other five indicators during
this period, especially the economy and education, would be ignored to a certain extent.
In contrast to Xi’an, the contribution rate of natural factors to Lanzhou’s urban expansion
increased during this period. It is worth noting that if the contribution rate of natural
factors increased in this city, the urban development of this city would be subject to more
obvious natural restrictions. Lanzhou encountered certain restrictions during this period,
and so did Xining.

From 2010 to 2020, the expansion of urban areas in each city continued to be primarily
driven by economic factors, living standards, and investment (Figure 7c,c′). Notably, there
was a significant increase in the influence of living standards on urban expansion, which
was particularly evident in Xi’an, where the average contribution rate surged from 0.85
in the previous period to 0.99. The contribution rate of population to urban expansion
declined in Xi’an, Urumqi, and Yinchuan, suggesting that urban development had reached
saturation in terms of population and that the demographic dividend’s contribution to
urban development was gradually diminishing. Moreover, the contribution of economic
development level decreased in Urumqi and Yinchuan, being replaced by an increase in
the contribution of investment level, which had a greater impact on Urumqi, Lanzhou,
and Xining during this period. In addition, there were changes in the influence of natural
factors, with Lanzhou City showing the most obvious response, with the contribution
rate of natural factors increasing continuously from 0.33 to 0.44. The contribution of
X61 to urban expansion decreased further, and the impacts of X63 and X64 on urban
expansion in Lanzhou significantly increased from 0.4 and 0.18 in 2010 to 0.83 and 0.47,
respectively. Overall, the development of cities during this period was closely intertwined
with living standards, investment attraction, and the natural environment in which they are
situated. With the broad growth of the urban economy and the increase of the population,
living standards and investment become additional drivers for development within the
city. For example, when people seek a better living environment, they may migrate to
suburbs with better environmental quality. Corresponding to this, the investment of real
estate companies in urban construction continued to increase, and the contribution of
real estate development completion investment X14 continued to increase during this
period. Similarly, the economic development of cities has led to improvements in urban
infrastructure, attracting investment in fixed assets such as factories and industrial parks.
These investments are often spatially concentrated in undeveloped areas on the outskirts
of the city, which to some extent actively promotes the expansion of the city.

5. Discussion

This study found that the capital cities of the five northwestern provinces continued
to expand from 1990 to 2020, which is consistent with previous studies [57]. Urban devel-
opment varies across cities, regions, and countries and is affected by diverse economic and
demographic factors [58]. This study showed the variability in the development of the
capital cities of the five northwestern provinces: although all cities had a higher expansion
intensity and their urban forms have become more decentralized and complex, each city
has migrated differently in the direction of spatial development, and these changes have
been influenced by different factors at different times, with each factor having a different
magnitude of influence on each city.
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5.1. The Effect of Topography on Urban Development

In addition to these influencing factors on urban expansion, topographical factors can
also limit the spatial extent of urban development. Xi’an, situated in the Guanzhong Plain,
lies less than 10 km south of the Qinling Mountains (Figure 8a). Moreover, the eastern
region of Xi’an, which is characterized by the Bailu Plain with higher terrain, imposes
constraints on eastward expansion. Consequently, Xi’an’s expansion has predominantly
occurred westward and northward, leading to the establishment of areas like the Xixian
New Area and Jinghe New City.
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Urumqi, encompassed by mountains on three sides and located in the northern
foothills of the Northern Tianshan Mountains, features the Boda Mountains to the east
and the Karaza and West Mountains to the west. The northern plains have been the only
open and suitable areas for urban construction and development, driving Urumqi’s urban
expansion over the past three decades (Figure 8b). Lanzhou and Xining, both typical river
valley cities, face significant topographical constraints to their expansion. In Lanzhou,
where the Yellow River flows through, the surrounding areas are mountainous, with the
valley primarily oriented east-west. This geographical layout limits urban construction to
the river valley, resulting in constraints on available land for development. Before 2010,
Lanzhou’s urban shape resembled a “−“ type (Figure 8c). Similarly, Xining faces topograph-
ical constraints because it is located in the Huangshui Valley, surrounded by mountains
and bordered by Haidong in the east (Figure 8e). The city’s expansion is limited to the
remaining undeveloped valley areas, resulting in a city shape akin to a “+”. Conversely,
Yinchuan benefits from relatively flat terrain, with the Yellow River passing through and
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the Helan Mountains to the west. The urban area primarily occupies the eastern floodplain,
offering more open terrain and better conditions for north-south expansion (Figure 8d).

5.2. Differences in the Development of Different Chinese Cities under the Guidance of Policies

Each city has its unique development mode and rapid development period. According
to the level of social and economic development and regional development policies, Chinese
cities can be divided into four major regions: the eastern coastal region, the northwest
region, the central region, and the northeast region. Since 1992, when China established
the goal of a socialist market economy system, rapid economic development has promoted
urban expansion across the country, especially in the eastern coastal areas such as Shenzhen,
Guangzhou, and Shanghai [59–62]. Since 2000, China has continued to develop rapidly, and
its economy has further expanded after it acceded to the WTO. At the same time, the state
promulgated a series of policies to support the development of the western and central
regions, such as the Western development in 2000, the revitalization of the Northeast in
2004, and the rise of the Central region in 2006 [63]. During this period, the economy of
the five northwestern provinces grew rapidly, the capital cities in particular attracted a
large number of people, and the urban expansion was rapid. The annual growth rate of
expansion gradually increased from 2000 to 2010, which was consistent with the results
obtained by our research, and even exceeded the eastern coastal region and the northeast
region from 2005 to 2010 [64–66]. The eastern megacities are faced with land shortage,
rising land prices, and environmental degradation, so the state alleviates these problems
through strict land approval [67]. In contrast, with the encouragement of the state, the
northwest cities lag in development, but the expansion rate gradually exceeds that of the
eastern coastal areas.

Since 2010, both central and local governments have introduced development strate-
gies tailored to the provincial capitals of the five northwestern provinces. In Xi’an, efforts
to protect the ecological environment led to the formulation of the “Qinling Ecological
Environment Protection Plan”, which restricted urban expansion to the south. The city
also implemented the strategy of “eastward expansion, westward development, southern
control, northern crossing, and central optimization”, promoting coordinated development
between Xi’an and surrounding cities [68,69]. In Urumqi, the 2014 Government Work
Report outlined plans for the new North City District, and the city successfully hosted the
Asia-Europe Expo and the Silk Road Economic Belt Urban Cooperation Forum in 2017,
attracting investments totaling 296.6 billion yuan to drive urban development. Lanzhou
gained approval from the State Council in 2012 to establish the first national-level new
area, initiating northward expansion and addressing the challenge of limited development
space. The local government of Lanzhou launched the “Remaking Lanzhou” strategy, ex-
panding the urban planning area to 5810 square kilometers [70]. In 2018, the State Council
approved the “Lanzhou-Xining Urban Agglomeration Development Plan”, focusing on
integrating into the Belt and Road Initiative, actively promoting high-quality development,
and nurturing the Lanzhou-Xining urban agglomeration as a vital city cluster supporting
national and ecological security in the northwest region [71]. Since then, the development
of Lanzhou and Xining has entered a new phase, balancing urban development with eco-
logical protection, providing opportunities for investment attraction, and actively driving
urban development forward.

5.3. Some Suggestions for Regional Urban Construction and Planning

This paper analyzes the spatial morphological changes of the capital cities of the
five provinces in Northwest China in the past 30 years and quantitatively evaluates the
influence of various social and economic indicators on urban expansion. However, be-
cause policy factors are difficult to quantify, we cannot include them in a comprehensive
quantitative analysis. Future research should strive to incorporate policy factors into the
overall quantitative analysis framework. The urban expansion of the capital cities of the
five provinces in northwest China is a typical example of urban development in western
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China. These areas initially relied on economic and demographic support for development
but were also constrained by topographical constraints. In Lanzhou, a typical solution is
to develop new urban areas on suitable land. National and local policies should take into
account the natural environment and topographical conditions of specific cities, link up
with national strategic planning, adjust the intensity and direction of urban development
according to the role and function of cities in regional development, and achieve more
balanced inter-regional development.

6. Conclusions

This study took the capital cities of five provinces in China’s underdeveloped north-
western region as its study sample. It used TM/OLI data from 1990 to 2020 as the infor-
mation source, extracted the impervious surfaces of the five cities in each period based on
the ENDISI and MNDWI indices, quantitatively analyzed them through a variety of urban
form indicators such as the intensity of sprawl, sprawl pattern, direction of sprawl, and the
migration of the city’s center of gravity, and analyzed the factors influencing urban sprawl
in terms of six first-level and eighteen second-level categories of indicators by means of the
Geodetector software (version 1.0-4). The following conclusions were reached:

(1) From 1990 to 2020, the IS area of the five provincial capital cities increased year by year,
but the intensity and area of expansion varied significantly from one period to another
and from one city to another, with Xi’an having the largest expansion area, Xining
having the highest expansion intensity, and Lanzhou expanding the least in terms of
both area and intensity. During 1990–2000, the expansion of Xi’an and Urumqi was the
largest, with expansion areas both greater than 80 km2. From 2000 to 2010, the growth
rate of expansion area and intensity in the five cities was extremely high, making
this the most significant growth period in these three decades. Xi’an and Urumqi
expanded by more than 100 km2, and the other cities showed two- to fourfold growth.
From 2010 to 2020, except for Urumqi, which maintained a continuous growth rate
in urban expansion, the intensity of the other cities’ expansion began to slow down,
but their expansion areas remained large. The shift of the center of gravity of the five
cities is affected by the topographic conditions in which they are located.

(2) From 1990 to 2020, the forms of the five cities become more decentralized, the shapes
of city boundaries become more complex and irregular, and the directions of urban
expansion diversified. Among them, Lanzhou experienced the greatest change, with
a decrease of 54.46% in compactness and an increase of 4.98% in fractal dimension.
Both Xi’an and Urumqi expanded to the northwest during 1990–2020. The center of
gravity migration in Xi’an mainly occurred in 1990–2000, with a migration distance
of 4.7 km; Urumqi, on the other hand, had a relatively large migration in 2000–2020,
but experienced a northeasterly and then northwesterly migration direction, with
a migration distance of 8.5 km. Lanzhou showed an overall trend of northward
expansion, especially after 2000, with a migration distance of 23.7 km. Yinchuan and
Xining differed in their direction of expansion, with Yinchuan migrating eastward
and Xining migrating westward, and with the largest migration occurring from 2000
to 2010.

(3) From 1990 to 2020, the contribution rate of the same factor to different cities and
different periods, as well as the contribution rate of different factors to the same
cities and the same periods, differed significantly. During 1990–2000, economy and
population were the main influencing factors of urban expansion, with the greatest
influence in Xi’an, Urumqi, and Lanzhou, while natural factors had little impact on
urban expansion. The contribution rate of each influencing factor to urban expansion
increased during 2000–2010, with the most obvious increase in education and invest-
ment. Driven by the policy of Western development, the influence of economic factors
on urban expansion in Yinchuan and Xining increased, the influence of population
on urban expansion in Lanzhou declined, and the influence of natural factors was
mainly reflected in Lanzhou and Xining. From 2010 to 2020, the contribution of living
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standards, investment, and economy to urban expansion was further strengthened,
and the influence of natural factors on Lanzhou was highlighted more significantly.
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Appendix A

Table A1. Details of the Landsat images used in this study areas.

City Image Type Image Data Path/Row Cloud Cover (%)

Xi’an Landsat5 TM 07/04/1990 127/036 0
Landsat5 TM 20/05/2000 127/036 0
Landsat5 TM 26/12/2010 127/036 3
landsat8 OLI 21/12/2020 127/036 0.69

Urumqi Landsat5 TM 07/04/1990 143/029 1
Landsat5 TM 07/04/1990 143/030 3
Landsat5 TM 25/09/2000 143/029 3
Landsat5 TM 25/09/2000 143/030 2
Landsat5 TM 21/09/2010 143/029 0
Landsat5 TM 20/08/2010 143/030 1
landsat8 OLI 02/10/2020 143/029 0.31
landsat8 OLI 02/10/2020 143/030 2.68

Lanzhou Landsat5 TM 12/04/1990 130/035 1
Landsat5 TM 18/03/1990 131/035 0
Landsat5 TM 29/08/2000 130/035 12
Landsat5 TM 21/09/2000 131/035 0
Landsat5 TM 29/01/2010 130/035 1
Landsat5 TM 05/02/2010 131/035 0
landsat8 OLI 30/04/2020 130/035 3.87
landsat8 OLI 17/02/2020 131/035 7.73

Yinchuan Landsat5 TM 17/12/1990 129/033 0
Landsat5 TM 28/12/2000 129/033 1
Landsat5 TM 08/12/2010 129/033 2
landsat8 OLI 01/11/2020 129/033 1.14

Xining Landsat5 TM 22/12/1990 132/034 1
Landsat5 TM 22/12/1990 132/035 1
Landsat5 TM 17/12/2000 132/034 5
Landsat5 TM 17/12/2000 132/035 3
Landsat5 TM 29/12/2010 132/034 13
Landsat5 TM 29/12/2010 132/035 2
landsat8 OLI 24/12/2020 132/034 3.38
landsat8 OLI 24/12/2020 132/035 1.87
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