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Abstract: Building information modeling (BIM) has recently become more popular in historical
buildings as a method to rebuild their geometry and collect relevant information. Heritage BIM
(HBIM), which combines high-level data about surface conditions, is a valuable tool for conservation
decision-making. However, implementing BIM in heritage has its challenges because BIM libraries are
designed for new constructions and are incapable of accommodating the morphological irregularities
found in historical structures. This article discusses an architecture survey workflow that uses TLS,
imagery, and deep learning algorithms to optimize HBIM for the conservation of the Nabatean built
heritage. In addition to creating new resourceful Nabatean libraries with high details, the proposed
approach enhanced HBIM by including two data outputs. The first dataset contained the TLS 3D
dense mesh model, which was enhanced with high-quality textures extracted from independent
imagery captured at the optimal time and location for accurate depictions of surface features. These
images were also used to create true orthophotos using accurate and reliable 2.5D DSM derived from
TLS, which eliminated all image distortion. The true orthophoto was then used in HBIM texturing to
create a realistic decay map and combined with a deep learning algorithm to automatically detect
and draw the outline of surface features and cracks in the BIM model, along with their statistical
parameters. The use of deep learning on a structured 2D true orthophoto produced segmentation
results in the metric units required for damage quantifications and helped overcome the limitations
of using deep learning for 2D non-metric imagery, which typically uses pixels to measure crack
widths and areas. The results show that the scanner and imagery integration allows for the efficient
collection of data for informative HBIM models and provide stakeholders with an efficient tool for
investigating and analyzing buildings to ensure proper conservation.

Keywords: nabatean heritage; HBIM; multi sensor data; deep learning; structural health

1. Introduction

The use of interactive parametric objects in the BIM platform allows for reliable model-
ing that provides information about a structure’s geometry and associated attributes. Even
though the BIM method is primarily used during the design and construction phases of
new buildings, it has grown in popularity in the heritage sector, known as heritage BIM.
The Heritage Building Information Model (HBIM) can be used in heritage conservation,
restoration, monitoring, management, and structural evaluation [1–5]. One of the cur-
rent limitations of heritage BIM is the lack of parametric libraries designed for historical
structures in BIM software [6]. This emphasizes the significance of creating new libraries
with parametric architectural elements for various types of heritage structures that can be
adapted as needed [7–11]. However, creating such resourceful libraries necessitates detailed
and accurate surveys of the architectural elements [12]. The irregular and unique structures
forming historic buildings make this task complicated compared to standard BIM modeling.
Nowadays, it is possible to generate informative models for various types of objects, thanks
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to research activity in the field of 3D modeling using terrestrial laser scanners (TLSs) and
digital photogrammetry. The surveyed data are then transformed into parametric modeling
using a method known as scan-to-BIM using different BIM platforms [13,14].

TLS point clouds provide accurate 3D data coordinates for building surfaces quickly
and in large quantities when compared to traditional surveying techniques [15]. It is
critical in complex and large structure surveys to locate and optimize TLS stations to
achieve complete registration of the entire scene [16]. Mobile mapping systems and SLAM
(simultaneous location and mapping) techniques can enhance the scanning of complex
heritage buildings [17]. The system can provide real-time 3D point clouds generated by
automatic scan-to-scan registration with an accuracy of a few centimeters [18]. However,
the generated points are a collection of discrete data records that lack semantic information
about surface characteristics [19]. Additionally, the majority of TLSs can colorize their
point clouds by acquiring digital images with a built-in camera attached. However, colored
data may not be of sufficient quality for identifying structure surface features and their
relevant conditions. The scanner’s position may not always coincide with the optimal
camera position and time for color recording [20]. Several solutions are proposed for
combining the advantages of laser scanners and photogrammetry to improve the color
of laser point clouds [21]. The camera mathematical model is used to back project points
from 3D object space to 2D image space coordinate systems, thereby attaching image infor-
mation to geometric data. Additionally, cloud-to-cloud registration of photogrammetry
and laser data improves recorded outcomes in heritage applications [22,23]. The common
problem, known as the mixed pixel effect, which appears in the borders of cracks and the
outlines of edges [24,25], can also present inaccurate data interpretation and surface crack
drawing during HBIM tracing and modeling. Currently, photogrammetry is an efficient
and cost-effective method of recording historical structures. Photographs taken at optimal
standpoints and times provide an accurate representation of color and façade features. The
processing pipeline in photogrammetric commercial software is standard and efficient for
3D reconstruction. Limitations in image quality, camera networks around the surveyed
object, shadows, and model scale are the main issues, which could have an impact on
photogrammetric processing and the final 3D point cloud [26,27].

The multisensory integration of TLSs and photogrammetry overcomes their respective
bottlenecks, making it the most effective method for digitizing complex and large historical
buildings and sites. Integration has the potential to improve geometric and radiometric
data [28]. Several hybrid approaches have been proposed recently to improve scan-to-HBIM
processing. For example, [5,29] discussed the benefits of photogrammetric UAV flexibility
in inaccessible areas as a supplement to TLS occlusion. Other researchers used multisensory
data to improve the quality and quantity of input data at scan-to-BIM, improving modeling
results [30,31]. Ref. [32] used point clouds, images, and historical data to accurately model
complex and uneven surfaces of historic buildings in the BIM platform. The ability to
incorporate high-level structural information into the HBIM model to highlight surface
pathologies such as material degradation, environmental conditions, and crack damage
is critical for conservation activities [33–35]. Several studies investigated the mapping of
material components and decay in a BIM environment using a color legend with the Revit
Materials Browser [36,37]. Others kept images or orthophotos alongside BIM surfaces as
complementary and attached data to help with heritage conservation [38,39]. However, in
heritage applications, employing BIM models that accurately represent the building in its
original state remains a challenge [40].

On the other hand, the process of recording and measuring cracks through human-
based visual inspection is subjective and time-consuming [41]. Quantifying and monitoring
the extent of damage and decay using metric surveys, gypsum strips, and sensors installed
in historical structures requires professionals, and there are difficulties entailed in distribut-
ing the devices in large-scale structures [42–45]. These methods can only provide discrete
point measurements at specific locations, and some of them require long-term bonding with
the structure surface, making them unsuitable for aesthetic and functional reasons in her-
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itage applications. Recently, machine/deep learning models have been changing the way
researchers detect, interpret, recognize, and classify historical building components [46–49].
Algorithms based on artificial neural networks employ multiple processing layers to learn
feature representations of data at various levels of abstraction. Models can capture contex-
tual information by considering larger spatial contexts. This enables them to understand
and distinguish edges based on surrounding patterns, leading to more robust results, such
as the calculation of area and perimeter for a certain feature. The algorithms used to detect
cracks in 2D photos typically use pixels to measure crack width and area. However, the
photographs are distorted due to the camera’s central perspective projection and suffer
from a lack of uniform scale, making it difficult to determine the dimensions within the
photograph [50]. Thus, different methods have been proposed for converting the pixel unit
system to the metric unit system by utilizing the camera interior parameters [51,52] or the
laser calibration method [53]. However, limitations such as image perspective, distance,
and angle of camera optical axes with respect to the surface can impact the results and are
thus still being discussed. Contrary to 2D algorithms, deep learning processing in the 3D
unstructured 3D point cloud is very challenging. The main challenge is in the complexity
and variety of point clouds, which results from irregular sampling, variable object density,
various object types, and the availability of labeled datasets [54]. Fully automated feature
extraction methods from point clouds are currently at the cutting edge [55,56]. On the
other hand, orthophotos eliminate perspective distortions in imagery and provide uni-
formly scaled imagery, making them a useful tool for quantifying and positioning surface
features [57]. An orthophoto based on accurate and reliable 2.5D DSM that removes all
imagery distortion is also called a true orthophoto [58,59]. Orthophotos generated by
photogrammetric processing are widely used in heritage applications [38,50,60,61]. Their
quality is affected by several factors, including image resolution, camera parameters, and
the accuracy of the digital surface model (DSM). However, using the photogrammetric
pipeline to generate DSMs from images has several challenges, including texture-less ele-
ments, error propagation, and noise from long image sequences of large-scale structures,
all of which may result in matching failures that affect the SFM results used to generate the
DSM [27,62].

This paper proposes a multi-source documentation approach, depicted in Figure 1,
to enrich the HBIM platform with high-level data about surface conditions that are useful
for conservation work. In addition to developing new resourceful Nabatean libraries, the
proposed approach improved HBIM by adding two data outputs. The first dataset was
the TLS 3D dense mesh model, which was enhanced with high-quality textures extracted
from independent imagery. The produced models were combined with the parametric
model to provide a realistic representation of the decay regions. The second dataset used
true orthophotos produced by TLS and independent images taken at the best time and
position for proper radiometric information for the realistic texturing of the HBIM model,
and this was combined with a deep learning algorithm to automatically detect and draw
the outline of surface features and cracks on the HBIM model, along with their relevant
statistical parameters. The use of deep learning for true ortho images provided the practical
metric information needed for damage quantifications and helped overcome the previously
discussed issues and limitations of using deep learning in 2D non-metric imagery or
3D point clouds. During true orthoimage production, a reliable digital surface model
(DSM) derived from TLS’s point cloud was used to remove perspective distortions from
independent perspective photos. This resulted in an accurate metric system. The extracted
feature components, along with their statistical attributes like length, area, and perimeter,
were then attached to the BIM model for analysis of all types of surface weathering forms,
including their extent, typology, cause, and the conservation activities required. Data
fusion was used during the recording of the AlDeir monument in the ancient city of Petra
of Jordan, a UNESCO World Heritage Site. To summarize, the following contributions are
covered in this paper:
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1. Creating a new HBIM library of Nabatean-built architectural elements with detailed
parametric objects representing the as-built condition at the level of development
(LOD) 300.

2. A fusion-based approach using TLS and high-resolution imagery survey results to
enrich scan-to-BIM with realistic renderings of surface material decay.

3. A deep learning approach using true orthophotos to automate the detection and
quantification of façade degradation and cracks for enriching the HBIM.
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Figure 1. The workflow of the proposed approach.

The following sections comprise the paper’s structure: Section 2 covers data collection
and pre-processing. The creation of the Nabatean BIM library is discussed in Section 3.
Section 4 describes how diagnostics data were implemented in the HBIM. The application
of deep learning in HBIM is discussed in Section 5. Section 6 discusses the results and
Section 7 presents the conclusions.

2. Data Collection
2.1. AlDeir Monument in Petra City

The ancient city Petra, located in southern Jordan, was the capital of the Nabataean
empire from 400 B.C. to 106 A.D. Because of its location close to the incense trade routes,
the Nabataeans, a group of Arab nomads, invested in making Petra a significant regional
trading center [63]. Many fascinating ancient world monuments of exceptional architectural
quality can be found in Petra. Petra’s temples, tombs, theaters, and other structures occupy
more than one thousand square kilometers. The structures were carved into the rose-
colored sandstone cliffs. In 1985, UNESCO designated Petra as a World Heritage Site. It
was chosen as one of the world’s New Seven Wonders in 2007 [64]. Figure 2a depicts the
AlDeir monument (monastery), one of Petra’s largest monuments. According to [65,66], the
AlDeir monument, which is located northwest of the ancient city, is thought to have been
carved in the middle of the first century AD. More than eight hundred steps cut into the rock
lead up to a 47 m wide by 48.3 m high, remarkably well-preserved façade. The upper part of
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AlDeir’s façade is made up of two half-pediments that frame a circular tholos form with a
conic roof and an urn, similar to the Al-Khazneh (treasury) model shown in Figure 2b. The
tholos is framed by columns with Nabataean “horned capitals” and pediments are linked
by a continuous frieze that has a simple design of alternating triglyphs and disks. The
facade is structured by a doorway architecture with pilasters, capitals, and other decorative
elements. During the Christian Byzantine era, it was used as a monastery, with the interior
hall repurposed as a chapel and crosses carved into the back wall. Worshippers and priests
congregated in the open area in front of this temple, making it a popular pilgrimage site.
Recent environmental monitoring of Petra monuments has revealed significant recession
and weathering processes. The World Monument Fund inscribed Petra on its list of the
world’s one hundred most endangered monument assemblies in 1998. This can be related to
the nature of the building materials used at these sites, which are primarily porous inorganic
materials, as well as the uncontrolled environmental conditions surrounding them, such
as salt damage, which is the primary damage process for Petra monuments [67,68]. This
highlights the importance of developing a management and conservation strategy for this
important heritage of rock-cut architecture.
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2.2. Sensor Applied

In our research, the surface 3D point cloud was collected using the Mensi GS100
Laser Scanner. This scanner provides a panoramic view with a 360-degree horizontal and
60-degree vertical field of view. The device is capable of measuring up to 5000 points
per second with a precision of 6 mm at a maximum capture range of 100 m [69]. During
data collection, the scanner’s attached camera takes a calibrated video snapshot with a
resolution of 768 × 576 pixels, which is then automatically mapped to the corresponding
point measurements. A single laser scan cannot typically cover an entire structure. The
amount of self-occlusion and obstacles, as well as the object’s size in relation to the sensor
range, all affect how many scans are necessary. To resolve the occlusions, five different
viewpoint scans were performed during the data collection at the AlDeir monument, which
resulted in nearly 6 million points with an average ground sampling distance (GSD) of 3 cm.
After collecting TLS data, noise data were removed in the first step of processing. Cloud
Compare software v2.11.3 was then used to align all of the scans into a local coordinate
system without georeferencing, as the research’s goal was to create a BIM model. Co-
registration was achieved by using corresponding tie points rather than Ground Control
Points (GCPs). Figure 3a depicts one of the collected scans, whereas Figure 3b depicts the
registration results of the different scans. According to the registration data report, the
alignment error (RMS error) was around 30 mm. Figure 4 depicts AlDeir’s final model
with shaded and colored data. The coloring was provided from the camera attached to a
TLS. The large and complex building may have had different lighting conditions due to
multiple scans taken at different times, resulting in a non-homogeneous appearance and
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color jumping in the final model. Additional digital images were taken with a Nikon D2x
camera at a resolution of 4288 × 2848. These images were taken near-simultaneously to
ensure consistent lighting conditions and radiometric properties for laser data coloring.
This improved the visual quality of surface features and orthophoto production, which will
be discussed in the following sections.
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3. Nabatean BIM Library

HBIM is a novel way to model historic structures with remotely sensed data. HBIM
is a unique collection of reusable parametric objects based on architecture survey data.
Parametric objects capture all information about the geometry of the elements and have
customizable parameters linked with them. Once the parametric objects have been modeled,
libraries of the modeled elements should be generated and used as a BIM plug-in to make
reconstruction, rehabilitation, management, and maintenance processes of architectural
heritage more efficient for the rest of its life cycle. Although BIM software has a standard
objects library, the uniqueness of heritage building elements poses an important challenge
when modeling their geometry. Creating new detailed parametric objects necessitates
precise survey data collection and the determination of the Level of Detail (LOD). The
LOD determines the accuracy of an element’s geometry and associated information [70,71].
The American Institute of Architects (AIA) defined five Levels of Development (LODs) to
specify the BIM model’s detailing levels. LOD 100 contains the least amount of graphical
and embedded information and LOD 400 contains the most of both [72]. Our research
aimed to achieve LOD 300, which means that the BIM model would include both the
built geometry and the condition data required for management and maintenance using
both laser data and independent imagery. In the framework of HBIM, the point clouds
are exported to the BIM platform after they have been registered. While the used BIM
platforms have a large family library, few predefined objects met the needs of modeling our
project, necessitating the creation of new Nabataean architectural element families. These
families simplified the process of rebuilding 3D BIM models for other Nabatean buildings
with similar shapes. The Autodesk Revit platform was used for BIM modeling because it is
a versatile and powerful modeling tool that allowed us to create modeled families directly
for the project. There were two phases identified by the AlDeir building’s BIM modeling.
The first phase involved modeling regular architectural features like plain walls, cylindrical
and rectangular columns, and exterior walls. The second phase involved creating new
libraries of common heritage features of the Nabataean built heritage.

Nabataean building facades share many architectural and ornamental features. The
AlDeir building’s HBIM documentation, which included well-preserved typical Nabatean
architectural elements, enabled the creation of 3D parametric models that could be used
as a valuable library of Nabatean built heritage. It will set a precedent for future docu-
mentation of the built heritage in the ancient city of Petra. Ad Deir’s architectural design
is a sophisticated blend of Nabatean and Hellenistic elements, as well as an evolution of
the Nabataean style. The primary architectural elements are pediments, column capitals,
tholos, cornices, continuous friezes, and door frames. The tholos is framed by columns
with Nabataean “horned capitals” and the pediments are joined by a continuous frieze
with alternating triglyphs and disks. The facade is constructed by a doorway architecture
with pilasters, capitals, and other decorative elements.

The modeling strategy for building components was adapted according to the ele-
ment’s nature. In a BIM workflow, the existing 2D and 3D families make modeling simpler
and faster. However, many structural elements found in Nabataean monuments are unique
and do not have equivalents in existing BIM libraries. As a result, using Autodesk Revit,
the monument was modeled with both system and in-place families. The segmentation of
the object’s point cloud served as the primary starting point for the scan-to-BIM modeling
process. Different horizontal and vertical cross-sections were generated from the AlDeir
point clouds to identify and quantify the various architectural elements in the monument,
as depicted in Figure 5a. The system families built key elements such as walls, roofs, and
floors. In system families, the dimensions of the walls and roofs and door width, length,
and depth were crucial for creating the correct profiles and demonstrating the feature para-
metric function, which could modify each element. In addition, direct tape measurements
were used to determine the thickness of some components where point clouds were missing
due to occlusion.
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The lack of libraries that satisfied the HBIM project requirements of modeling the
unique cultural elements and decorative components of the Nabataean monuments ne-
cessitated the full modeling of these families. In our experimentation, this problem was
resolved by creating in-place components using simple Boolean operations. Revit is more
effective with available 2D and 3D families than using model-in-place elements, which
can increase file size and reduce software performance. However, in-place families were
more adaptable to model unique, complex, and free-form objects within the project context.
In-place elements provided the flexibility to make precise adjustments and modifications to
the model directly in response to specific project requirements and the unique characteris-
tics of each architectural element. New in-place families were developed and implemented
in the BIM platform and the profiles were extracted and drawn from point cloud data.
Different family parameters were defined, such as the dimensions, materials, and text that
described the state conditions. To locate the outline of these components, the point cloud
was divided into sections and elevations. The components were then traced and modeled,
as shown in Figure 5b,c. The entablature, three-quarter and half columns with Nabataean
capitals, tholos elements, cavetto cornice, and various decorative elements were created
using Revit’s in-place regular and free-form modeling tools, depicted separately in Figure 6.
The elements were classified into the appropriate category within the project as a family
created for this purpose. The database and the new library were linked together to provide
a practical method for modeling common Nabataean architectural features. Figure 7 depicts
the complete AlDeir BIM model, which included all architectural elements.
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4. Implementing Diagnostics Data in HBIM

The use of HBIM and informative data to record building deterioration and threats
improves structural health quality control. The proposed data fusion approach, which
incorporated TLS, imagery, and computer vision, enhanced the HBIM by adding two
data outputs that reflected structure conditions. The first dataset contained a TLS three-
dimensional dense mesh model that was enhanced with high-quality textures derived from
various images. The second dataset used a true orthophoto from TLS and imagery data for
texturing the BIM model.

4.1. Realistic Renderings of Surface Material Decay

Texture mapping is the visual and graphic representation of the mechanical and
physical properties of materials. The current BIM platform’s primary goal was to manage
the geometry of the new structures, so texture was not as important. The majority of
HBIM applications handle texture by either creating a custom texture from the object
image or using the program’s default texture library [31,73,74]. However, neither provides
consistent and reliable visual effects of the as-built surface. Surface mesh, on the other hand,
enables the accurate rendering of irregular architectural shapes and as-built conditions.
The meshing process converted point cloud data into triangle polygon representations.
Although the laser scanner had an attached camera that collected color for each 3D point
cloud, the color data could be of insufficient quality to display surface conditions and
features, as shown in Figure 8. The ideal camera position did not always coincide with the
scanner position. The suggested method combined TLS geometric data with independent
photos. These photos were taken at the optimal positions and times, considering the
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shadow and occlusion issues, to provide realistic representations of surface color. Before
utilizing the complementary characteristics of both datasets, the selected image needed to
be registered with TLS. In our approach, conjugate control points were defined manually
from the selected image and registered TLS point cloud. This method solved the camera’s
external parameters (orientation and position). The solved parameters were then used to
find image texture coordinates and project RGB values for the laser scanner point, using the
collinearity Equations (1) and (2). Figure 9 illustrates how these equations were obtained
from the central projection of an object point via the sensor plane to the perspective center
(PC) of the camera. The angular parameters (ω, Ø, κ) were used to extract the camera
rotation matrix elements rij in the equations. In the equations, the focal length of the camera
is c, the camera position coordinates in the object space are (Xo, Yo, Zo), and the principal
point coordinates of the image are (xo, yo). The object point coordinates are (XA, YA, ZA),
while the image point coordinates are (xa, ya). We used our own C++ code to map the
texture RGB color values of the image to 3D point clouds. Figure 10b depicts the colored
point cloud, which was then meshed in obj format files, as shown in Figure 10c,d, and
managed in the REVIT platform. This HBIM model allowed us to access various models in
real time, including point clouds, textured mesh models, and parametric elements, resulting
in a powerful tool that benefits all stakeholders.

xa = x0 − c
r11(XA − Xo) + r21(YA − Yo) + r31(ZA − Zo)

r13(XA − Xo) + r23(YA − Yo) + r33(ZA − Zo)
(1)

ya = y0 − c
r12(XA − Xo) + r22(YA − Yo) + r32(ZA − Zo)

r13(XA − Xo) + r23(YA − Yo) + r33(ZA − Zo)
(2)ISPRS Int. J. Geo-Inf. 2024, 13, x FOR PEER REVIEW 12 of 27 
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4.2. HBIM Texture Mapping

True orthophotos eliminate all imagery distortion by employing a digital surface
model (DSM), a 2.5D representation of the structure, yielding uniformly scaled imagery
that allows the user to position objects. In our approach to producing true orthophotos, TLS
point cloud was used for developing a reliable DSM, while radiometric information was
taken from independent and oriented images obtained from the photogrammetric process.
The process began with sampling the laser scanner point cloud into a regular grid DSM
plan, with each cell (pixel) of the plan containing a unique value associated with the model
point, as shown in Figure 11. Another grid plan with the same DSM pixel size was created
to serve as a framework for true orthophotography. The relevant imagery data were then
projected into the orthophoto pixel using DSM information and camera parameters using
collinearity equations. The RGB value of the true orthophoto was calculated using pixels
from the source image corresponding to the visible points. The white labels were applied
to invalid pixels or pixels from shadow areas (which lacked DSM data). We used C++ as a
programming language. Figure 12 shows the DSM and the resulting true orthophotos at a
0.6 mm/pixel resolution for the monument facade.
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Users can detect surface decay and object deterioration in heritage structures using
texture mapping with true orthophotos at a uniform scale. Using HBIM texture data, we
could also reconstruct realistic renderings of the built heritage. Because the generated
orthophotos had the same dimensions as the corresponding HBIM surfaces, they were
precisely and consistently warped. The true orthophoto file could be accessed and placed
directly on the decal for texturing the objects, as shown in Figure 13, because its width and
height corresponded to the actual size of the decal on the software options bar.
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5. Deep Learning in HBIM

Computer vision-based edge detection technology has been extensively researched for
heritage buildings. Several techniques have been investigated, including threshold segmen-
tation [75,76], morphology [77], wavelet transform [78], and filter-based algorithms [76,79].
Traditional computer vision algorithms typically focus on analyzing specific features within
images, using parameters designed for specific datasets. To address this limitation, re-
searchers have increasingly turned to machine learning techniques for image-processing
tasks [80,81]. Since convolutional neural networks (CNNs) were presented by Lecun et al.
in 1998, they have been applied to various tasks including image classification [82,83],
object detection [84,85], semantic segmentation [86,87], and crack detection [88,89].

Deep learning models, particularly those for semantic segmentation, have been exten-
sively studied and have shown promising results in edge detection. Deep learning models
can extract edges from input images without the need for explicit feature engineering [90].
The models can capture contextual information by considering larger spatial contexts. This
enables them to understand and distinguish edges based on surrounding patterns, leading
to more robust results, such as the calculation of area and perimeter for a certain feature [91].
Research on edge detection based on deep learning has proposed techniques such as image
classification, object recognition, semantic segmentation, and the classification of buildings’
degradation state [92]. In recent studies on crack detection and segmentation, various deep
learning architectures have been applied [93,94].

Deep learning techniques require enough data to complete the model training phase.
However, the current dataset comprising images from heritage sites fell short of meeting
these requirements. To address this particular problem, researchers have turned to transfer
learning as an alternative approach [95,96]. Transfer learning, a powerful technique in
deep learning, allows models to leverage knowledge gained from one task and apply it
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to another related task. By utilizing pretrained models trained on extensive datasets and
complex tasks, transfer learning enables the initialization of new models for solving novel
problems. This approach circumvents the need to train a model from scratch, significantly
reducing the demand for training data and computational resources. In recent studies
on image analysis and segmentation, transfer learning has been employed as an effective
approach. Xu et al. [97] used the transfer learning approach to automatically segment and
label histopathology images. Zhang et al. [98] applied transfer learning to identifying and
extracting crack information from images of earthen heritage sites.

5.1. Holistically Nested Edge Detection (HED)

Holistically nested edge detection (HED), a CNN algorithm, employs a distinctive
approach for multi-scale image convolution, based on the VGG16 architecture with modifi-
cations. In this model, the fully connected layers are removed after the last pooling layers,
retaining only the convolutional layers, as shown in Figure 14. HED progressively reduces
image resolution through five sets of 3 × 3 convolutional layers separated by 2 × 2 max
pooling layers. After each set, a side output layer is generated. The final output, predicting
pixel edge likelihood, is obtained by optimally fusing these five side output layers. Prior to
HED application, images undergo preprocessing, including cropping, normalization, and
blob construction.
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The training process for HED involves utilizing a labeled dataset to optimize the
model’s parameters and enable accurate edge detection. The training procedure first
includes dataset preparation, where a dataset containing images with corresponding edge
annotations is curated. Second, images from the dataset are preprocessed and fed into
the HED model as input. The preprocessing may include normalization, resizing, or any
other necessary transformations to ensure uniformity. Third, the model is initialized with
its architecture, weights, loss function definition, and optimization algorithm. Then, the
model is trained through multiple iterations (epochs) over the entire dataset. Finally, the
model’s performance is evaluated on a separate validation set to ensure that it generalizes
well to unseen data and does not overfit the training set. The model is implemented using
the publicly available Caffe library; this Caffe model is encoded in two files: a text Caffe
JSON file with the model definition and a text file with the neural network weights. For
a detailed overview of the HED architecture and its functionality, refer to Xie and Tu,
Kokkinos [99,100].

5.2. Deep Learning Processing

In our approach, a deep learning algorithm was used to process true orthophotos
produced from TLS and imager data fusion. True orthoimages offer numerous advantages,
including metric accuracy and radiometric information that can be used to quantitatively
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and qualitatively analyze various datasets. The use of deep learning for structured 2D
true orthophotos produced segmentation results in metric units and helped overcome the
previously discussed limitations of using non-metric photos and 3D point clouds.

Prior to implementing the proposed methodology in the case study, an initial experi-
ment was conducted to assess the effectiveness of the algorithm for edge detection, feature
extraction, and image segmentation under different conditions. The results were compared
with those obtained using traditional methods such as the Canny and Sobel operators, as
illustrated in Figure 15. The experiment involved the use of various examples of historical
building facades located in Jordan. For instance, example (A) represents the facade of Al-
Abidit palace in Jordan; the palace was constructed in the second century BC by Hyrcanus
during the reign of Seleucids IV and has large stones and different types of cracks. This
example also demonstrates variations in tone for the same feature from one location to
another in the image. Example (B) depicts the left door of the Alkhazneh monument in
the ancient city of Petra. This example was chosen due to the significant weathering and
numerous forms of erosion visible on the walls, as well as the low lighting conditions. In
example (C), a part of the main facade of Amra palace in Jordan is represented, a UNESCO
World Heritage site built in the Jordan desert between 705 and 715 A.D during the reign
of the Umayyad Caliph Walid I. This example exhibits irregular stones with varying sizes
and colors, as well as irregularities in architectural features. These examples were captured
at different times and under diverse conditions. The selection of these images aimed to
ensure diversity, enhance contrast, and present challenges for automated segmentation.
The implementation of the HED model was performed using Python 3.9. Figure 15 illus-
trates the effectiveness of traditional edge detection algorithms such as Canny and Sobel in
extracting edges.

In contrast, the proposed pretrained network algorithm, HED, enhanced crack de-
tection capability and provided labeled contextual semantic information about edges and
cracks, including area and length. This information can be utilized for material conservation
analysis. Therefore, employing deep learning to offer informative and semantic segmen-
tation in the digital cultural heritage domain can aid in identifying various architectural
elements and surface details with precision, thereby enhancing the process of Historical
Building Information Modeling (HBIM) for historical buildings. The comprehensive pro-
cess of employing the HED model for edge detection and feature extraction and then image
segmentation of the main facade’s orthophoto of the AlDeir monument is illustrated in
Figure 16. It can be observed that, at each step, a side output was extracted based on the
scale. Five different scales were used to extract the image features. Following resizing to
the original scale, the connected component step was executed, considering the features.
OpenCV’s Gaussian blur and Otsu’s threshold were then employed to connect components.
All segments were labeled, and statistical analysis was performed for each labeled segment.
The analysis included calculations for area, equivalent diameter as the diameter of the circle
whose area was equal to the area of the segment, perimeter, mean intensity, and solidity
as the area of a segment divided by its convex hull area. The next step was to filter very
small objects that did not represent a visible feature in the image. Table 1 displays the
statistical results for some labeled segments that identified cracks and decayed areas on
the main facades of the AlDeir monument. The whole vector data derived from output
segmentation, as well as the Excel sheet containing statistical information, were integrated
into the Historic Building Information Model (HBIM). They will be repetitively produced
over time to enhance the model for conservation and monitoring purposes.



ISPRS Int. J. Geo-Inf. 2024, 13, 231 17 of 25ISPRS Int. J. Geo-Inf. 2024, 13, x FOR PEER REVIEW 18 of 27 
 

 

 A B C 

(a) 

   
    

(b) 

   
    

(c) 

   
    

(d) 

   
    

(e) 

   
Figure 15. Experimental examples of feature extraction for building facades (A–C). (a) Original im-
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Figure 15. Experimental examples of feature extraction for building facades (A–C). (a) Original images.
(b) Canny operator results. (c) Sobel operator results. (d) HED output. (e) HED segmentation.
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Table 1. The statistical results of some selected labeled segments representing cracks and decay in the
AlDeir facade.

Label Area
(m2)

Equivalent
Diameter (m)

Perimeter
(m)

Mean_Intensity
in Red Band

Mean_Intensity in
Green Band

Mean_Intensity
in Blue Band Solidity

13 0.32 0.63 1.91 38.3 73.0 135.2 0.91
18 0.05 0.24 0.42 63.7 107.3 164.3 0.98
31 0.14 0.41 0.93 15.7 45.3 100.6 0.91
50 0.54 0.83 2.60 13.8 53.5 126.5 0.92
78 0.21 0.52 1.40 77.1 116.4 178.3 0.88

6. Discussion

HBIM and BIM differ fundamentally in terms of information content and modeling
approach. HBIM emphasizes the importance of understanding the conservation status of
structure and materials, providing stakeholders with a knowledge tool to aid in diagnostic
investigations. Recent scan-to-HBIM approach challenges include issues with modeling
irregular features, a lack of pre-defined libraries of parametric objects, and mapping the
decay state of built heritage, required for structure assessment. The proposed workflow
presents a novel study that evaluated the potential advantages of combining TLS, imagery
data, and image processing to enhance the HBIM platform with shared and useful data
for conservation work. In addition to creating new HBIM libraries of Nabatean built
heritage, the proposed approach introduces a new perspective on HBIM modeling focused
on the automation of damage and crack detection and quantification using deep learning.
The fusion method is adaptable because images can be taken independently of the TLS
camera at the optimal time and location for radiometric data collection. This paper’s major
contributions to cutting-edge approaches are as follows:

1. This work provides a complete set of “as-built” parametric models to aid Nabatean
design and preservation activities. This project developed a new Nabatean-built HBIM
library as a plug-in Autodesk Revit family with detailed parametric objects that can be
adapted as needed.

2. Texture mapping is also useful in cultural heritage to demonstrate structural
conditions, material degradation, and stages of rebuilding. The majority of HBIM apps
manage texture by either developing a customized texture collected from the object pictures
or using the program’s default texture [31,35]. Many studies have been conducted on
the use of color legends to map material deterioration and surface pathologies in BIM
models [36,37,101]. The results are unrealistic visual renderings of structure decay states
that need conservation. The workflow combined TLS data with high-resolution imagery
obtained independently at the optimal position and time for true orthophoto production,
which was then utilized to texture the final HBIM model. A reliable DSM from TLS
was used to remove perspective distortions from the photos during true orthoimage
production, resulting in metric unit data that could be used directly for quantitative analysis.
As shown in Figure 13, the orthophoto and accompanying HBIM surfaces had similar
proportions, allowing for precise and consistent texture warping across the BIM geometry.
The findings, as depicted in Figure 17a,b, provide a clear interpretation of surface features
and serve as a useful tool for accurately representing the types, nature, and spatial extent
of façade degradation.

3. Modeling historic buildings with their structural deformations and cracks is still
a challenge in HBIM applications. Pathologies can be manually modeled and vectorized
in HBIM [30,102] or with virtual gauges [73]. Manual work may be subjective and time-
consuming. Machine learning and computer vision algorithms have shown excellent results
in detecting cracks in 2D photos. However, due to the camera’s central perspective pro-
jection, such photographs lack a uniform scale, making pixel-based dimension estimation
difficult. Several methods were proposed to convert these pixels to the metric unit system
by using the camera parameters [51,52]. Even so, issues concerning image perspective,
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camera distance, and the angle of the camera optical axes in relation to the surface may
still have an impact on the outcome. In the present work, the authors investigated the
potential of deep learning approaches for the supervised classification of irregular heritage
data using true orthophotos. The true orthophotos preserved the planimetric dimension of
the geometry in the 2D space, which simplified data manipulation and helped overcome
issues with using deep learning in non-metric or 3D point cloud processing. Figure 17c
demonstrates the rich extraction efficiency of the suggested pre-trained network algorithm,
which enhanced the ability to detect cracks and provided labeled and contextual semantic
information about edges and cracks, including area, length, and perimeter, which can be
used for material conservation analysis. The vector data derived from output segmenta-
tion were subsequently mapped in the BIM model, as seen in Figure 18. Contextual and
statistical information, as well as other derived data, were linked to the Historic Building
Information Model (HBIM), as shown in Figure 19, to provide a single platform for all
stakeholders involved in the conservation process.
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7. Conclusions

This paper described a multi-source workflow for an informative HBIM platform
aimed at improving data sharing and collaborative work among all specialists, particularly
those involved in monitoring and conservation interventions. TLS and imagery surveys
were used to create a resourceful library for Nabatean architectural elements and develop a
non-invasive analysis to quantify structure damage levels. The proposed approach enriched
the HBIM with two data outputs to evaluate and map degradation in the façades. The
first dataset was the TLS 3D dense mesh model, which was enhanced with high-quality
textures extracted from independent imagery. The second dataset utilized true orthophotos
and a deep learning algorithm for HBIM texturing and to automatically detect and draw
the outlines of surface features and cracks, with their relevant statistical parameters. A
reliable DSM model derived from the TLS point cloud was used to remove perspective
distortions from the photos during true orthoimage production, resulting in metric unit
data that could be used for quantitative analysis. These findings could be used to guide
conservation efforts and develop adaptable and effective monitoring programs that assess
the extent of damage and predict a defect’s potential growth.
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