Multiscale Visualization of Surface Motion Point Measurements Associated with Persistent Scatterer Interferometry
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
- Data: Describing all the PSI datasets generated and the auxiliary data used for the needs of the current investigation, as well as for visualization.
- Cartographic scales: Investigation of visualization parameters for multiscale PSI generalization, using tailored cartographic scales (color scheme, symbol size, etc.), following specific cartographic rules. Generalized datasets are joined with auxiliary data, based on their attributes, and are then utilized for database creation.
- Geo-visualization: Web application development, contributing to the automation of the multiscale generalization of PSI datasets, while adhering to cartographic rules, as well as cartographic web map application development, contributing the appropriate visualization and investigation of PSI datasets at different cartographic scales.
3.1. Data
3.1.1. PSI Measurements
3.1.2. Auxiliary Data
- ESA Land Cover 2020 [44], at 10 m spatial resolution.
- Geology layer, consisting of two different datasets. The first one was digitized via the freely available geological map of Greece (1:500,000) of the Hellenic Geological and Mining Research Authority (E.A.G.M.E) [45]. The second one (1:50,000) was obtained through the Cartography and Geoinformatics Laboratory of the University of the Aegean.
- Road network data, as obtained via OpenStreetMap [46]. The road network was separated throughout various datasets, according to OSM’s visualization for each cartographic scale.
- Minning, airport, and geosite data used were obtained from the Cartography and Geoinformatics Laboratory of the University of the Aegean.
3.2. Data Pre-Prosessing and PSI Generalization
3.2.1. Investigation of Cartographic Scales and Visualization Parameters
- 1:1,000,000
- 1:500,000
- 1:200,000
- 1:100,000
- 1:50,000
- 1:20,000
- 1:10,000
- 1:5000
3.2.2. PSI Generalization Algorithm
4. Results
4.1. Target Points Generalization
4.2. Web Applications
4.2.1. Web Cartographic Application for PSI Visualization
4.2.2. Web Application for PSI Generalization
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gehlot, S.; Hanssen, R.F. Monitoring and Interpretation of Urban Land Subsidence Using Radar Interferometric Time Series and Multi-Source GIS Database. In Remote Sensing and GIS Technologies for Monitoring and Prediction of Disasters; Springer: Berlin/Heidelberg, Germany, 2008; pp. 137–148. [Google Scholar]
- Kraak, M.-J.; Ormeling, F. Cartography: Visualization of Geospatial Data; CRC Press: Boca Raton, FL, USA, 2020. [Google Scholar]
- Crosetto, M.; Monserrat, O.; Cuevas-González, M.; Devanthéry, N.; Crippa, B. Persistent Scatterer Interferometry: A Review. ISPRS J. Photogramm. Remote Sens. 2016, 115, 78–89. [Google Scholar] [CrossRef]
- Ao, M.; Wang, C.; Xie, R.; Zhang, X.; Hu, J.; Du, Y.; Li, Z.; Zhu, J.; Dai, W.; Kuang, C. Monitoring the Land Subsidence with Persistent Scatterer Interferometry in Nansha District, Guangdong, China. Nat. Hazards 2015, 75, 2947–2964. [Google Scholar] [CrossRef]
- Aslan, G.; Foumelis, M.; Raucoules, D.; De Michele, M.; Bernardie, S.; Cakir, Z. Landslide Mapping and Monitoring Using Persistent Scatterer Interferometry (PSI) Technique in the French Alps. Remote Sens. 2020, 12, 1305. [Google Scholar] [CrossRef]
- Crosetto, M.; Monserrat, O.; Jungner, A.; Crippa, B. Persistent Scatterer Interferometry: Potential and Limits. In Proceedings of the Proceedings of the 2009 ISPRS Workshop on High-Resolution Earth Imaging for Geospatial Information, Hannover, Germany, 2–5 June 2009; Volume 25. [Google Scholar]
- Mouratidis, A.; Costantini, F.; Votsis, A. Correlation of DInSAR Deformation Results and Active Tectonics in the City of Thessaloniki (Greece). In Proceedings of the 2011 Joint Urban Remote Sensing Event, Munich, Germany, 11–13 April 2011; pp. 421–424. [Google Scholar]
- Ferretti, A.; Fumagalli, A.; Novali, F.; Prati, C.; Rocca, F.; Rucci, A. A New Algorithm for Processing Interferometric Data-Stacks: SqueeSAR. IEEE Trans. Geosci. Remote Sens. 2011, 49, 3460–3470. [Google Scholar] [CrossRef]
- Papageorgiou, E.; Foumelis, M.; Trasatti, E.; Ventura, G.; Raucoules, D.; Mouratidis, A. Multi-Sensor SAR Geodetic Imaging and Modelling of Santorini Volcano Post-Unrest Response. Remote Sens. 2019, 11, 259. [Google Scholar] [CrossRef]
- Chen, Y.; Li, J.; Li, H.; Gao, Y.; Li, S.; Chen, S.; Guo, G.; Wang, F.; Zhao, D.; Zhang, K.; et al. Revealing Land Surface Deformation Over the Yineng Backfilling Mining Area, China, by Integrating Distributed Scatterer SAR Interferometry and a Mining Subsidence Model. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 16, 3611–3634. [Google Scholar] [CrossRef]
- Caprino, A.; Puliero, S.; Lorenzoni, F.; Floris, M.; da Porto, F. Satellite SAR Interferometry and On-Site Traditional SHM to Monitor the Post-Earthquake Behavior of the Civic Tower in L’Aquila (Abruzzo Region, Italy). Remote Sens. 2023, 15, 1587. [Google Scholar] [CrossRef]
- Shin, Y.; Lee, H. Subsidence of a Coal Ash Landfill in a Power Plant Observed by Applying PSInSAR to Sentinel-1 SAR Data. Remote Sens. 2023, 15, 4127. [Google Scholar] [CrossRef]
- Costantini, F.; Mouratidis, A.; Schiavon, G.; Sarti, F. Advanced InSAR Techniques for Deformation Studies and for Simulating the PS-Assisted Calibration Procedure of Sentinel-1 Data: Case Study from Thessaloniki (Greece), Based on the Envisat/ASAR Archive. Int. J. Remote Sens. 2016, 37, 729–744. [Google Scholar] [CrossRef]
- Singh, H.; Pandey, A.C. Land Deformation Monitoring Using Optical Remote Sensing and PS-InSAR Technique Nearby Gangotri Glacier in Higher Himalayas. Model. Earth Syst. Environ. 2021, 7, 221–233. [Google Scholar] [CrossRef]
- Nahli, A.; Simonetto, E.; Tatin, M.; Durand, S.; Morel, L.; Lamour, V. On the combination of psinsar and gnss techniques for long-term bridge monitoring. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2020, 43, 325–332. [Google Scholar] [CrossRef]
- Parwata, I.N.S.; Osawa, T. Surface Deformation Monitoring Induced by Volcanic Activity of Mount Agung, Indonesia, by PS-InSAR Using Sentinel-1 SAR from 2014–2021. In Proceedings of the 2021 7th Asia-Pacific Conference on Synthetic Aperture Radar (APSAR), Bali Island, Indonesia, 15 November 2021; pp. 1–4. [Google Scholar]
- Ho Tong Minh, D.; Ngo, Y.-N. Compressed SAR Interferometry in the Big Data Era. Remote Sens. 2022, 14, 390. [Google Scholar] [CrossRef]
- Even, M.; Schulz, K. InSAR Deformation Analysis with Distributed Scatterers: A Review Complemented by New Advances. Remote Sens. 2018, 10, 744. [Google Scholar] [CrossRef]
- Li, Y.; Zuo, X.; Yang, F.; Bu, J.; Wu, W.; Liu, X. Effectiveness Evaluation of DS-InSAR Method Fused PS Points in Surface Deformation Monitoring: A Case Study of Hongta District, Yuxi City, China. Geomat. Nat. Hazards Risk 2023, 14, 2176011. [Google Scholar] [CrossRef]
- Foumelis, M.; Delgado Blasco, J.M.; Brito, F.; Pacini, F.; Papageorgiou, E.; Pishehvar, P.; Bally, P. SNAPPING Services on the Geohazards Exploitation Platform for Copernicus Sentinel-1 Surface Motion Mapping. Remote Sens. 2022, 14, 6075. [Google Scholar] [CrossRef]
- Müller, J.C.; Zeshen, W. Area-Patch Generalisation: A Competitive Approach. Cartogr. J. 1992, 29, 137–144. [Google Scholar] [CrossRef]
- Raposo, P.; Touya, G.; Bereuter, P. A Change of Theme: The Role of Generalization in Thematic Mapping. ISPRS Int. J. Geo-Inf. 2020, 9, 371. [Google Scholar] [CrossRef]
- Müller, J.C.; Weibel, R.; Lagrange, J.P.; Salgé, F.; Müller, J.C.; Lagrange, J.P.; Weibel, R. Generalization-State of the Art and Issues. In GIS And Generalisation; CRC Press: Boca Raton, FL, USA, 2020; pp. 3–17. [Google Scholar]
- Töpfer, F.; Pillewizer, W. The Principles of Selection. Cartogr. J. 1966, 3, 10–16. [Google Scholar] [CrossRef]
- Robinson, A.H.; Morrison, J.L.; Muehrcke, P.C.; Kimerling, A.J.; Guptill, S.C. Elements of Cartography, 6th ed.; John Willey Sons: New York, NY, USA, 1995; 544p. [Google Scholar]
- Belussi, A.; Catania, B.; Clementini, E.; Ferrari, E. Spatial Data on the Web: Modeling and Management; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Becirspahic, L.; Karabegovic, A. Web Portals for Visualizing and Searching Spatial Data. In Proceedings of the 2015 38th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), Opatija, Croatia, 25–29 May 2015; pp. 305–311. [Google Scholar]
- Zerdoumi, S.; Hashem, I.A.T.; Jhanjhi, N.Z. A New Spatial Spherical Pattern Model into Interactive Cartography Pattern: Multi-Dimensional Data via Geostrategic Cluster. Multimed. Tools Appl. 2022, 81, 22903–22952. [Google Scholar] [CrossRef]
- Yi, J.S.; Kang, Y.; Stasko, J.; Jacko, J.A. Toward a Deeper Understanding of the Role of Interaction in Information Visualization. IEEE Trans. Vis. Comput. Graph. 2007, 13, 1224–1231. [Google Scholar] [CrossRef]
- Buja, A.; Cook, D.; Swayne, D.F. Interactive High-Dimensional Data Visualization. J. Comput. Graph. Stat. 1996, 5, 78–99. [Google Scholar] [CrossRef]
- Ferretti, A.; Passera, E.; Capes, R. End-to-End Implementation and Operation of the European Ground Motion Service (EGMS): Algorithm Theoretical Basis Document. 2021. Available online: https://land.copernicus.eu/user-corner/technical-library/egms-algorithm-theoretical-basis-document (accessed on 10 April 2023).
- Bredal, M.; Dehls, J.; Larsen, Y.; Marinkovic, P.; Lauknes, T.R.; Stødle, D.; Moldestad, D.A. The Norwegian National Ground Motion Service (InSAR.No): Service Evolution. AGU Fall Meet. Abstr. 2019, 2019, G13C-0559. [Google Scholar]
- Crosetto, M.; Solari, L.; Balasis-Levinsen, J.; Bateson, L.; Casagli, N.; Frei, M.; Oyen, A.; Moldestad, D.A.; Mróz, M. Deformation monitoring at european scale: The copernicus ground motion service. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2021, 43, 141–146. [Google Scholar] [CrossRef]
- Crosetto, M.; Solari, L.; Balasis-Levinsen, J.; Casagli, N.; Frei, M.; Oyen, A.; Moldestad, D.A. Ground deformation monitoring at continental scale: The European ground motion service. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2020, 43, 293–298. [Google Scholar] [CrossRef]
- Kalia, A.; Frei, M.; Lege, T. BodenBewegungsdienst Deutschland (BBD): Konzept, Umsetzung Und Service-Plattform. ZfV-Zeitschrift für Geodäsie, Geoinf. und Landmanagement, 2021. [Google Scholar] [CrossRef]
- Hanssen, R.F. Actuele Bodemdalingskaart Nederland. Available online: https://bodemdalingskaart.nl/en-us/ (accessed on 27 March 2024).
- Rilevamento Elettromagnetico dell’Ambiente (IREA) of Consiglio Nazionale delle Ricerche (CNR) IREA-CNR InSAR WEB GIS. Available online: http://webgis.irea.cnr.it/webgis.html (accessed on 27 March 2024).
- Soulakellis, N.A.; Novak, I.D.; Zouros, N.; Lowman, P.; Yates, J. Fusing Landsat-5/TM Imagery and Shaded Relief Maps in Tectonic and Geomorphic Mapping. Photogramm. Eng. Remote Sens. 2006, 72, 693–700. [Google Scholar] [CrossRef]
- Kosmas, C.; Gerontidis, S.; Marathianou, M. The Effect of Land Use Change on Soils and Vegetation over Various Lithological Formations on Lesvos (Greece). Catena 2000, 40, 51–68. [Google Scholar] [CrossRef]
- Kosmas, C.; Gerontidis, S.; Detsis, V.; Zafiriou, T.; Marathianou, M. The Island of Lesvos (Greece). In Medalus Project: Mediterranean Desertification and Land Use. Manual on Key Indicicators of Desertificaton and Mapping Environmentally Sensitive Areas to Desertification; Kosmas, C., Kirkby, M., Geeson, N., Eds.; European Union: Brussels, Belgium, 1999; Volume 18882. [Google Scholar]
- Zouros, N.C. Geomorphosite Assessment and Management in Protected Areas of Greece Case Study of the Lesvos Island–Coastal Geomorphosites. Geogr. Helv. 2007, 62, 169–180. [Google Scholar] [CrossRef]
- Wang, J.; Zouros, N. Educational Activities in Fangshan UNESCO Global Geopark and Lesvos Island UNESCO Global Geopark. Geoheritage 2021, 13, 51. [Google Scholar] [CrossRef]
- Blasco, J.M.D.; Foumelis, M.; Stewart, C.; Hooper, A. Measuring Urban Subsidence in the Rome Metropolitan Area (Italy) with Sentinel-1 SNAP-StaMPS Persistent Scatterer Interferometry. Remote Sens. 2019, 11, 129. [Google Scholar] [CrossRef]
- WorldCover ESA WorldCover. Available online: https://worldcover2020.esa.int/documentation (accessed on 30 August 2023).
- Hellenic Geological & Mining Research Authority. Available online: https://www.eagme.gr/site/services (accessed on 30 August 2023).
- OpenStreetMap. Available online: https://www.openstreetmap.org/ (accessed on 30 August 2023).
- Kalaitzis, P.; Foumelis, M.; Vasilakos, C.; Mouratidis, A.; Soulakellis, N. Interactive Web Mapping Applications for 2D and 3D Geo-Visualization of Persistent Scatterer Interferometry SAR Data. ISPRS Int. J. Geo-Inf. 2023, 12, 54. [Google Scholar] [CrossRef]
- Poncoş, V.; Stanciu, I.; Teleagă, D.; Maţenco, L.; Bozsó, I.; Szakács, A.; Birtas, D.; Toma, Ş.-A.; Stănică, A.; Rădulescu, V. An Integrated Platform for Ground-Motion Mapping, Local to Regional Scale; Examples from SE Europe. Remote Sens. 2022, 14, 1046. [Google Scholar] [CrossRef]
- Laurini, R. Geographic Knowledge Infrastructure: Applications to Territorial Intelligence and Smart Cities; Elsevier: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Mańk, A.K. Cartographic Symbolization for High-Resolution Displays. Master’s Thesis, TU Wien, Vienna, Austria, 2019. [Google Scholar]
- Ledermann, F. Minimum Dimensions for Cartographic Symbology—History, Rationale and Relevance in the Digital Age. Int. J. Cartogr. 2023, 9, 319–341. [Google Scholar] [CrossRef]
Cartographic Scale. | Cell Size (m) | PSI Dataset | No. of Points | Point Density (Points/km2) |
---|---|---|---|---|
1:1,000,000 | 250 | PSI Med | 14,348 | 15 |
1:500,000 | 125 | PSI Med | 31,189 | 66 |
1:200,000 | 50 | PSI Med | 45,749 | 99 |
1:100,000 | 25 | PSI Full | 158,030 | 376 |
1:50,000 | 12.5 | PSI Full | 231,166 | 507 |
1:20,000 | 5 | PSI Full | 283,419 | 580 |
1:10,000 | 2.5 | PS/DS | 11,169 | 9422 |
1:5000 | 1.25 | PS/DS | 11,169 | 9422 |
Cartographic Scale | No. of Points of Generalized Dataset | No. of Original PSs of the Generalized Dataset | Percentage of Original PSs of the Generalized Dataset |
---|---|---|---|
1:1,000,000 | 14,348 | 4017 | 28% |
1:500,000 | 31,189 | 19,507 | 62.5% |
1:100,000 | 158,030 | 89,980 | 57% |
1:50,000 | 231,166 | 184,595 | 80% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kalaitzis, P.; Foumelis, M.; Mouratidis, A.; Kavroudakis, D.; Soulakellis, N. Multiscale Visualization of Surface Motion Point Measurements Associated with Persistent Scatterer Interferometry. ISPRS Int. J. Geo-Inf. 2024, 13, 236. https://doi.org/10.3390/ijgi13070236
Kalaitzis P, Foumelis M, Mouratidis A, Kavroudakis D, Soulakellis N. Multiscale Visualization of Surface Motion Point Measurements Associated with Persistent Scatterer Interferometry. ISPRS International Journal of Geo-Information. 2024; 13(7):236. https://doi.org/10.3390/ijgi13070236
Chicago/Turabian StyleKalaitzis, Panagiotis, Michael Foumelis, Antonios Mouratidis, Dimitris Kavroudakis, and Nikolaos Soulakellis. 2024. "Multiscale Visualization of Surface Motion Point Measurements Associated with Persistent Scatterer Interferometry" ISPRS International Journal of Geo-Information 13, no. 7: 236. https://doi.org/10.3390/ijgi13070236
APA StyleKalaitzis, P., Foumelis, M., Mouratidis, A., Kavroudakis, D., & Soulakellis, N. (2024). Multiscale Visualization of Surface Motion Point Measurements Associated with Persistent Scatterer Interferometry. ISPRS International Journal of Geo-Information, 13(7), 236. https://doi.org/10.3390/ijgi13070236