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Abstract: Changes in land use and land cover (LULC) have a significant impact on urban planning
and environmental dynamics, especially in regions experiencing rapid urbanization. In this context,
by leveraging the Google Earth Engine (GEE), this study evaluates the effects of land use and land
cover modifications on surface temperature in a semi-arid zone of northwestern Algeria between
1989 and 2019. Through the analysis of Landsat images on GEE, indices such as normalized difference
vegetation index (NDVI), normalized difference built-up index (NDBI), and normalized difference
latent heat index (NDLI) were extracted, and the random forest and split window algorithms were
used for supervised classification and surface temperature estimation. The multi-index approach
combining the Normalized Difference Tillage Index (NDTI), NDBI, and NDVI resulted in kappa
coefficients ranging from 0.96 to 0.98. The spatial and temporal analysis of surface temperature
revealed an increase of 4 to 6 degrees across the four classes (urban, barren land, vegetation, and
forest). The Google Earth Engine approach facilitated detailed spatial and temporal analysis, aiding
in understanding surface temperature evolution at various scales. This ability to conduct large-scale
and long-term analysis is essential for understanding trends and impacts of land use changes at
regional and global levels.

Keywords: Landsat imagery; remote sensing; land use land cover; LST; indices; Google Earth Engine;
semi-arid zone

1. Introduction

From the Industrial Revolution of the mid-19th century until today, the process of
urbanization has continuously accelerated. Currently, around 68% of the world’s popu-
lation, equivalent to 3 billion people, reside in urban areas. This figure is predicted to
increase to 5 billion by 2030 [1]. The dual processes of industrialization and urbanization
are expected to gradually improve the living conditions of the population but also induce
adverse environmental effects, such as air, water, and soil pollution, as well as a consid-
erable increase in temperatures in cities, owing to the urban heat island effect (UHI) [2].
According to the specialized literature, the urban heat island phenomenon may be due to
the artificialization of green surfaces and the replacement of permeable natural land with
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mineral materials such as concrete and asphalt because of their high capacity for storage
and re-emission of solar radiation [3]. This results in a decrease in green surfaces and
their associated benefits. Surface properties and composition also have a direct impact on
environmental air temperature. Furthermore, Oke [2] has shown that urban geometry and
the albedo of reflective building surfaces have a significant role in reflecting solar radiation
and contributing to the urban heat island effect.

Concentrations of air pollutants are usually 5–25 times higher in cities than in the
countryside [4]. Therefore, the temperature increase due to the urban heat island has a
severe impact on human health and results in higher electrical energy use [5,6]. According
to Johnson and Wilson [7], these heat islands correspond to “death islands” in high-density
neighborhoods of vulnerable populations in several cities, particularly in the United States.
This observation has led scientists to focus on urban characteristics and surface heat islands,
because the surface temperature is the main biophysical parameter used in urban health
studies [8,9] and can be quantified by remote sensing [10,11].

High-resolution satellite imagery and advanced image-processing techniques have
revolutionized the monitoring and mapping of LULC. Remote sensing has become indis-
pensable for studying landscape dynamics, which are crucial in the face of rapid urbaniza-
tion and environmental changes. It provides detailed and current data on various scales,
assisting researchers, urban planners, and policymakers in sustainably managing natural
resources, planning cities, and conserving biodiversity. However, the precise extraction of
different LULC classes remains a major challenge, particularly in semi-arid areas. Complex
landscapes, seasonal variations, and spectral similarities between certain LULC classes,
such as urban areas and barren land, complicate the classification process [12]. Semi-arid
environments pose additional challenges owing to the predominance of bare soil and low
vegetation cover, making it even more difficult to differentiate between LULC classes.

Several methods have been developed to overcome these obstacles, ranging from
spectral unmixing [13] (classification) to artificial neural networks [14], as well as object-
oriented and knowledge-based classification methods [15]. Among these approaches, the
use of combinations of multiple spectral indices has yielded promising results.

By subtracting the NDVI from the NDBI, introduced in [16], built-up and bare areas
are distinguished with positive values, while other land covers have values from 0 to
−1, achieving an accuracy of 92.6% for reliable urban area mapping in Nanjing, China.
Rasul et al. [17], in a study conducted in Iraq, proposed the Dry Built-up Index (DBI)
and the Dry Bare Soil Index (DBSI) to map built-up and bare areas in arid and semi-arid
climates using Landsat 8. The results showed an overall classification accuracy of 93%
and 92%, respectively. Another study [12] identifies the most effective spectral index for
differentiating urban areas from bare land in the semi-arid environments of Djelfa, Messaad,
and Ain Oussera using a multi-index approach with BUI, BRBA, NDTI, and DBSI. The study
shows that the combination of indices (DBSI/NDTI/BUI) offers a mapping performance
with an accuracy of up to 98.7%.

In 2023, a study [18] conducted in a province of Pakistan proved the effectiveness of
combining the spectral indices NDVI, MNDWI, and NDBI to classify vegetation, built-up
areas, bare land, and water bodies. The performance of the models was evaluated, with RF
showing the best results in terms of accuracy, surpassing a support vector machine (SVM)
and Classification and Regression Trees (CARTs). The Kappa coefficients for the models
were 94% for CARTs, 95% for the SVM, and 97% for RF.

Additionally, the NDTI, an index proposed in [19] to differentiate built-up areas from
bare land, has also been applied to soil management and agricultural practices [20,21]. The
results demonstrated that the NDTI provided a better distinction between the two classes.
Furthermore, the use of the SVM algorithm for classification based on the multi-index
NDTI significantly improved the accuracy and precision of mapping heterogeneous urban
areas.

These methodological advancements are crucial for improving the accuracy of LULC
classification, particularly in complex environments such as semi-arid areas. However,
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beyond land classification, it is essential to understand the environmental impacts of LULC
changes, particularly on land surface temperature (LST). Faisal Mumtaz [22] asserted that
urbanization influences LULC and the thermal environment. Another equally important
parameter influencing LULC changes is unplanned urban expansion, which affects bio-
diversity, ecosystems, and surface temperature. The latter is considered an indicator for
assessing the urban thermal environment [23].

Other studies have demonstrated that the spatial variation in LST influences LULC,
indicating that the increase in LST is caused by changes in LULC. Several studies have
examined the impact of LULC dynamics on surface urban heat islands in different cities
worldwide [10–25]. The specific objectives were to evaluate the spatial variability of LST
with LULC, study the relationship between different LULC indices and LST, and explore
the application of remote sensing to calculate LST.

Another study [26] addressed the impact of LULC changes on the LST in the megacity
of Dhaka. The objective was to quantify the impact of LULC changes on LST and map
changes in the spatial and temporal distribution of LST. Landsat TIR data from 1990 to 2011
were used to retrieve LST, and transition matrices were utilized to determine LULC changes
over several periods. Statistical analyses were conducted to establish the relationship
between the LST and biophysical parameters. The results revealed that the expansion of
urban built-up areas at the expense of natural cover (floodplains and agricultural lands)
significantly affected the spatial and temporal distribution of surface temperature. The
urban built-up areas consistently displayed the highest ambient radiant temperatures
during the study period. A decrease in vegetation cover and an increase in urban cover
were associated with an increase in LST, indicating amplification of the UHI effect over
time.

One study [27] focused on the impact of LULC changes on LST and the intensity of
the UHI in the city center of Sivas, Turkey, from 1989 to 2015. Landsat-4 TM, Landsat-7
ETM+, and Landsat-8 OLI satellite images were used to classify LULC into five categories
based on the Maximum Likelihood algorithm: agriculture, vegetation, urban/built-up
areas, water, and bare land. The classification was validated with auxiliary data and GPS
reference points, achieving Kappa coefficients of 0.79 in 1989, 0.87 in 1999, and 0.92 in 2015.
LST was calculated from the thermal bands of the Landsat images, and the UHI intensity
was determined by comparing the urban and rural temperatures. The results show an
increase in built-up urban areas and agricultural land, along with a decrease in bare land.
Urban areas and bare land had the highest surface temperatures, whereas areas with dense
vegetation had lower temperatures. UHI intensity increased overall by 2.25 ◦C during this
period, indicating a rising trend in urban temperature compared to rural areas.

Another study [28] conducted in the Oued Fekan sub-basin in northwest Algeria
analyzed the relationship between LST, NDVI, and NDBI using remote sensing data from
Landsat-8 OLI-TIRS images for four different seasons. The results revealed that urban
expansion has a significant impact on LST and that NDBI is a better indicator of urban heat
island effects than NDVI. The study suggests measures, such as increasing green spaces
and better urban planning, to mitigate these effects and promote sustainable development.

In an analysis [29] of the spatiotemporal dynamics of LULC changes and their effect
on the creation of UHI in Tehran from 1988 to 2018, the authors used Landsat 5 TM and
Landsat 8 OLI/TIRS satellite data for supervised classification based on the Maximum
Likelihood algorithm to delineate five LULC classes: impervious land (IL), vegetative land
(VL), water bodies (WBs), farmland (FL), and open land (OL). The results revealed an
increase in impermeable areas and a decrease in vegetative land, with higher temperatures
in impermeable areas and lower temperatures in vegetative land. A negative correlation
was found between NDVI and LST, indicating that an increase in vegetation reduces
LST, whereas a positive correlation between NDBI and LST shows that an increase in
impermeable surfaces increases LST. The Kappa coefficient, reflecting classification accuracy,
showed a consistent improvement from 0.841 in 1988 to 0.909 in 2018.



ISPRS Int. J. Geo-Inf. 2024, 13, 237 4 of 24

These studies share the common essential task of selecting and sorting appropriate
satellite images to meet their specific objectives. These images must be processed and
corrected to eliminate distortions and atmospheric error. Subsequently, LST and LULC
maps were compiled using remote sensing and geographic information system (GIS)
software. This process is lengthy and complex, increasing the risk of errors at each step
from image selection to processing and data interpretation. This was also highlighted
by [29] in the section “Limitations and Future Scope of the Study.”

To overcome the limitations of the traditional methods mentioned earlier and take
advantage of the multi-index approach, the GEE platform has proven to be a powerful
and efficient tool. With its cloud processing capability, GEE allows the analysis of large
amounts of geospatial data on a global scale. Supervised classification algorithms, such
as RF, available in GEE, enable the automation and refinement of LULC detection and
classification with high accuracy. To fully leverage the benefits offered by the GEE platform
and overcome the limitations of the traditional methods, we set the following objectives:

1. Extract LST using Landsat 5 and 8 OLI (operational land imager) and TIRS (thermal
infrared sensor) data from GEE and build spatial distribution maps of LST for the
region of interest, Tlemcen municipality;

2. Improve the accuracy of LULC classification: utilize the multi-index approach by
combining the indices NDBI, NDVI, and NDTI with the GEE to achieve a Kappa
coefficient greater than 0.90;

3. Extract the LULC indicators NDVI, NDBI, and NDLI via the GEE platform and
determine the correlations of LST with these indices.

The outcomes of this study could aid urban planners and decision makers in mitigating
the adverse impacts of urban expansion on surface temperature in semi-arid regions. This
study’s findings offer crucial insights into the trajectories of land use and land cover
changes, their effects on LST, and the potential for implementing measures to mitigate
the urban heat island effect, which could be of great importance for urban planners and
municipal experts.

2. Materials and Methods
2.1. Study Area

Our study area was Tlemcen municipality, which is situated in the northwest region of
Algeria, and is part of the wilaya of Tlemcen. The study area spans an approximate area of
42.1 square kilometers, ranging in latitude from 34◦56′ 4.5882′′ to 34◦51′28.6128′′ N and in
longitude from −1◦22′8.1006′′ to −1◦15′26.3154′′ O (Figure 1). The average elevation of the
study area is 60 m, with some points reaching up to 1000 m. The region features a semi-arid
climate with a dry summer and a rainy winter, with the dry period sometimes stretching
for up to 6 months. The temperature varies from 6 ◦C to 33 ◦C throughout the year, rarely
dropping below 2 ◦C or exceeding 38 ◦C. On average, the annual rainfall is approximately
370 mm; February has the highest number of rainy days, with an average of 5.7 days.

The municipality of Tlemcen was selected based on several important criteria, includ-
ing the fact that it is a medium-sized city with no previous studies conducted on the region,
as well as the following:

- Tlemcen is a pivotal city that connects the Sahara to northern Algeria.
- It is particularly renowned for its significant agricultural lands, primarily consisting

of wheat and similar crops.
- There is a gap in the understanding of environmental dynamics and the potential

impacts of LULC changes on LST, as no research has been conducted in this region
to date.
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2.2. Presentation of the Data Used
2.2.1. Data for LULC

This study utilized the GEE platform to prepare data; we acquired satellite data over
the years 1989, 1999, 2009, and 2019. Choosing 10-year intervals enabled the detection
and analysis of significant changes in land use, land cover, and the evolution of surface
temperature over an extended period. This approach allows for a precise and targeted
analysis of long-term environmental changes. Landsat 5 Landsat thematic Mapper (Land-
sat TM) images were used to obtain data for 1989, 1999, and 2009, whereas Landsat 8
(operational land imager/thermal infrared sensor) OLI/TRIS images were used for the
year 2019. The spectral bands used in the combination of the three indices (NDBI, NDVI,
NDTI) are detailed in Table 1.

Table 1. Landsat band characteristics for NDVI, NDBI, NDLI, and NDTI.

Satellite Bands Pixel Size Wavelength Description

Landsat 5 TM ρGREEN: B2 30 m 0.53–0.61 µm Green
Landsat 5 TM ρRed: B3 30 m 0.63–0.69 µm Red-band reflectance
Landsat 5 TM ρNIR: B4 30 m 0.76–0.90 µm NIR-band reflectance
Landsat 5 TM ρMIR: B5 30 m 1.55–1.75 µm midinfrared
Landsat 5 TM ρSWIR: B6 60 m 10.4–12.5 µm Thermal Infrared
Landsat 5 TM ρSWIR: B7 30 m 2.09–2.35 µm Short-wave Infrared
Landsat 8 OLI ρGREEN: B3 30 m 0.52–0.60 µm Green
Landsat 8 OLI ρRed: B4 30 m 0.64–0.67 µm Red-band reflectance
Landsat 8 OLI ρNIR: B5 30 m 0.85–0.88 µm NIR-band reflectance
Landsat 8 OLI ρMIR: B6 30 m 1.56–1.66 µm midinfrared
Landsat 8 OLI ρSWIR: B7 30 m 2.10–2.30 µm Short-wave Infrared

2.2.2. Data for Retrieval of LST, NDVI, NDBI, NDLI, NDTI

During the study, four Landsat images, all from August, were used from 1989 to 2019;
these images were acquired from GEE. The spatial resolution of all these images was 30 m
(Table 2). The images were filtered using the desired date and a cloud cover of less than
10%. We used the split window algorithm, which is strongly recommended by the scientific
literature [30]. Furthermore, all images used for surface temperature extraction included
previously atmospherically corrected SR from the Landsat 8 OLI/TIRS sensors.
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Table 2. Details of Landsat datasets (1989–2019).

Satellite
Type/Sensor Acquisition Date Time

(GMT)
Path/
Row

Cloud
Cover

Thermal Conversion
Constants

K1 K2

Landsat 5
LANDSAT/LT05/C01/T1_SR 11 August 1989 10:05:25 198/36 6 607.76 1260.56

Landsat 5
LANDSAT/LT05/C01/T1_SR 7 August 1999 10:16:19 198/36 0 607.76 1260.56

Landsat 5
LANDSAT/LT05/C01/T1_SR 2 August 2009 10:27:45 198/36 0 607.76 1260.56

Landsat 8 OLI
LANDSAT/LC08/C01/T1_SR 5 August 2019 10:44:29 199/35 6.81 774.855 1321.078

The images contained five visible and near-infrared (NIR) bands and two short-
wave infrared bands, processed to orthorectified surface reflectance (SR), and two thermal
infrared bands processed to orthorectified brightness temperature (BT). These data were
atmospherically corrected using Land Surface Reflectance Code (LaSRC) [31] and include a
cloud, shadow, water, and snow mask produced using the C version of Function of Mask
(CFMASK) and a per-pixel saturation mask (https://gee.stac.cloud/B69zEhWZA8UDd
v95Jq9wpQUFv9mXwakFcBX7TsndhevENXNKqRVMheoKCQ2tWvJGp1N5eXUrsaU
1KErZLfDRiiy8a3tEeDrk4baT3TYq/2FFvzA2zeqoVZ5Nv2es9fLhN3K3iBAvr84aKpT
ytQ3v5rrR6KJ1qJdc1Y7nmnFmdVwP5KsDC45XctKuHj1hPSkP6NhTeRU3zECHa4iVp
d1xdXua4HWnF5hLF9s2eR), accessed on 1 June 2024. For Landsat 5, SRs were derived
using the Landsat Ecosystem Disturbance Adaptive Processing System algorithm, which
calculates the radiative transfer for atmospheric data from the moderate resolution imaging
spectroradiometer (MODIS) and National Centers for Environmental Prediction (NCEP).

The following section describes the step-by-step process of mapping LULC, generating
LST, NDBI, NDVI, and NDLI and quantifying the correlation between LST and indices.
Figure 2 summarizes the conceptual research framework of this study.

https://gee.stac.cloud/B69zEhWZA8UDdv95Jq9wpQUFv9mXwakFcBX7TsndhevENXNKqRVMheoKCQ2tWvJGp1N5eXUrsaU1KErZLfDRiiy8a3tEeDrk4baT3TYq/2FFvzA2zeqoVZ5Nv2es9fLhN3K3iBAvr84aKpTytQ3v5rrR6KJ1qJdc1Y7nmnFmdVwP5KsDC45XctKuHj1hPSkP6NhTeRU3zECHa4iVpd1xdXua4HWnF5hLF9s2eR
https://gee.stac.cloud/B69zEhWZA8UDdv95Jq9wpQUFv9mXwakFcBX7TsndhevENXNKqRVMheoKCQ2tWvJGp1N5eXUrsaU1KErZLfDRiiy8a3tEeDrk4baT3TYq/2FFvzA2zeqoVZ5Nv2es9fLhN3K3iBAvr84aKpTytQ3v5rrR6KJ1qJdc1Y7nmnFmdVwP5KsDC45XctKuHj1hPSkP6NhTeRU3zECHa4iVpd1xdXua4HWnF5hLF9s2eR
https://gee.stac.cloud/B69zEhWZA8UDdv95Jq9wpQUFv9mXwakFcBX7TsndhevENXNKqRVMheoKCQ2tWvJGp1N5eXUrsaU1KErZLfDRiiy8a3tEeDrk4baT3TYq/2FFvzA2zeqoVZ5Nv2es9fLhN3K3iBAvr84aKpTytQ3v5rrR6KJ1qJdc1Y7nmnFmdVwP5KsDC45XctKuHj1hPSkP6NhTeRU3zECHa4iVpd1xdXua4HWnF5hLF9s2eR
https://gee.stac.cloud/B69zEhWZA8UDdv95Jq9wpQUFv9mXwakFcBX7TsndhevENXNKqRVMheoKCQ2tWvJGp1N5eXUrsaU1KErZLfDRiiy8a3tEeDrk4baT3TYq/2FFvzA2zeqoVZ5Nv2es9fLhN3K3iBAvr84aKpTytQ3v5rrR6KJ1qJdc1Y7nmnFmdVwP5KsDC45XctKuHj1hPSkP6NhTeRU3zECHa4iVpd1xdXua4HWnF5hLF9s2eR
https://gee.stac.cloud/B69zEhWZA8UDdv95Jq9wpQUFv9mXwakFcBX7TsndhevENXNKqRVMheoKCQ2tWvJGp1N5eXUrsaU1KErZLfDRiiy8a3tEeDrk4baT3TYq/2FFvzA2zeqoVZ5Nv2es9fLhN3K3iBAvr84aKpTytQ3v5rrR6KJ1qJdc1Y7nmnFmdVwP5KsDC45XctKuHj1hPSkP6NhTeRU3zECHa4iVpd1xdXua4HWnF5hLF9s2eR


ISPRS Int. J. Geo-Inf. 2024, 13, 237 7 of 24

ISPRS Int. J. Geo-Inf. 2024, 13, x FOR PEER REVIEW 7 of 25 
 

 

 
Figure 2. Conceptual framework of the study. Figure 2. Conceptual framework of the study.



ISPRS Int. J. Geo-Inf. 2024, 13, 237 8 of 24

2.3. LULC Classification

To extract LULC information, we used the random forest model with supervised
classification, as it is considered the most effective algorithm for this purpose [30]. Subse-
quently, the land use of the study area was classified into four distinct categories, namely
urban, vegetation, bare land, and forest. The urban category encompasses residential,
commercial, industrial, and road areas, as well as all impermeable surfaces. The vege-
tation category primarily includes agricultural lands, wheat fields, or similar crop- and
other grass-covered areas, whereas bare land refers to exposed soil and surfaces lacking
vegetation or construction.

This section explains the code script computing in GEE for extracting the LULC of
Tlemcen municipality. Figure 2, step 1, summarizes the LULC extraction in the GEE.

To select the date range for Landsat, we defined the start and end dates. Next, we
loaded Landsat images and filtered them using the specified geographic zone and date
range. Additionally, we applied a filter to select images with less than 10% cloud cover,
which was necessary to reduce the impact of cloud cover and seasonal variations on the
classification results.

We printed a collection of filtered images to the console. Then, we calculated the
median of the filtered image collection and clipped it to the specified zone. To display the
image on the map, we added it as a layer with specific visualization parameters (min and
max values, and the bands used for RGB composition). We centered the map view on the
specified zone with a zoom level of 9 and selected specific bands (Table 1) from the image
for further processing. We then used a multi-index approach by combining the NDVI,
NDBI, and NDTI to provide essential information on vegetation, agricultural lands, and
built-up areas.

We created training data by merging different land cover points (urban, bare soil,
vegetation, and forest (Table 3)) into a single collection called training points. Next, we
created training regions by ‘overlaying’ these points on the image stack, selecting all the
bands and associating them with the land cover property. The scale was set at 30 m.

Table 3. Description of LULC classes in the case study: Tlemcen.

No. LULC Class Description of Class

1 Urban Residential, commercial, industrial, roads, and all impervious surfaces
2 Barren land Exposed soil and surfaces without any vegetation or construction
3 Vegetation Agricultural land, wheat fields, or similar crop- and other grass-covered areas
4 Forest Area with forest features

We then randomized the collection to ensure a good mix of training and validation
data and split the dataset into approximately 70% for training and 30% for validation.

Next, we classified the data using a random forest model with supervised classification.
This determines the number of trees from a collection of the sample training data. Previous
research has shown that RF algorithms effectively handle data overfitting and possess a
high processing power [30]. Furthermore, RF methods tend to offer higher accuracy than
other classification approaches, such as support vector machines, Maximum Likelihood,
and single decision trees [30]. This approach involves training the model with labeled data
to ensure high classification accuracy. The next phase is necessary to validate the previously
performed classification.

Accuracy Assessment of Supervised Classification

We used an accuracy assessment process to verify the accuracy of computer-classified
maps and produced descriptive statistics to compare the classification results with actual
field data [32,33]. The GEE platform enabled us to obtain the medians of bands 2, 3, 4, 5, 6,
and 7 for each scene throughout the study year. Approximately 450 samples were generated
for each year to ensure the dependability of the results. To evaluate the performance of
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the random forest model, the samples were divided into training and validation sets, with
70% of the samples being employed as training samples and the remaining 30% used for
validation.

The accuracy of the retained classified imagery was assessed using 150 reference pixels
for each class identified by a sample selected from the displayed Landsat imagery. For each
selected year, about 600 samples were created to ensure the reliability of the results. We
then analyzed the categorized image accuracy using the validation samples from 4 years.

The confusion matrix is frequently used to obtain analytical and descriptive data for
classification accuracy. It consists of values shown in columns and rows, indicating the
contrast between different sample points (polygons, pixels, or pixel clusters) assigned to
a particular land cover class and the ground conditions of the class as a whole [34]. The
matrix’s assessment indices for overall accuracy are producer and user accuracy and the
Kappa coefficient (KC) [35]. The producer accuracy is the ratio of all classified pixels in the
error matrix diagonals to all classified pixels in that category in the error matrix column.

The KC, based on [29], was calculated using Equation (1):

Kappa Coe f f icient (KC) =
N∑r

i=1 xii − ∑r
i=1(xi+ × x+i)

N2 − ∑r
i=1(xi+ × x+i)

(1)

where N is the sum of pixels in the error matrix; r is the sum of columns/rows; xii is the
number of correctly classified pixels in the ith column and row; x + i is the sum of pixels in
the i the column; xi+ is the sum of pixels in the i the row; and N2 is the square of the total
number of pixels.

2.4. LST Retrieval

This second step involves calculating the LST on the GEE platform. The main factors
considered in the LST calculation were NDVI, brightness temperature (BT), and land surface
emissivity (LSE). The thermal bands from Landsat 5 and Landsat 8 were also considered in
the LST calculation process. Figure 2, step 2, summarizes the LST retrieval process.

First, the spectral radiance of the thermal band was converted to BT using Equation (2)
in the tool’s algorithm [36,37]:

TB =
k2

ln
(

K1
Lλ

+ 1
) (2)

where TB is the at-satellite BT (C◦), Lλ is the top-of-atmosphere (TOA) spectral radiance
(W/(m2 srad µm)), K1 is the band-specific thermal conversion constant from the metadata
(W/(m2 srad µm)), k2 is the band-specific thermal conversion constant from the metadata
(K), and ln is the natural logarithm. We then derived the emissivity values of the corrected
LST (C◦) with the aid of the at-satellite TB [38,39] using Equation (3):

LST(K◦) =
TB[

1 + λ
(

TB
E

)
Ln(ε)

] (3)

where λ is the wavelength of the emitted radiance (i.e., 11.5 µm in band 6 for Landsat 4/5/7
and 10.8 µm in band 10 for Landsat 8), E is (h × v)/s (1.4388 × 10−2 mK), h is Planck’s
constant (6.626 × 10−34 mK), v is the velocity of light (2.998 × 108 m/s), s is the Boltzmann
constant (1.38 × 10−23 JK), and ε is the emissivity of the land surface. Then, the emissivity
of the land surface (ε) was calculated using Equation (4) based on [33,40], as follows:

(ε) = N(Pv) + n (4)

where N is 0.004; n is 0.986; and Pv is the vegetation proportion expressed by Equation (5)
as described in [40,41]:

Pv =

(
NDVI − NDVImin

NDVImax − NDVImin

)2
(5)
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where NDVI is the value of the Digital Number (DN) obtained from the NDVI image,
and NDVImax and NDVImin are the highest and lowest DN values obtained from the
NDVI image. Last, we converted the LST value (in ◦K) into degrees Celsius (◦C) using
Equation (6) as described in [41]:

LST(◦C) = LST(◦K)− 273.15 (6)

2.5. Calculation of Spectral Indices

The NDVI is one of the most commonly used indices in remote sensing [42]. This
index uses the ratio of red to NIR bands (Table 1) to identify live green vegetation and takes
values ranging between −1 and +1, where negative values indicate non-vegetated areas
and positive values represent areas covered in vegetation [43].

We used the NDVI to investigate the vegetation distribution and extract emissivity
values within the study area for the four years of interest: 1989, 1999, 2009, and 2019. The
NDVI was calculated using Equation (7):

NDVI =
(ρNIR − ρRed)
(ρNIR + ρRed)

(7)

where ρNIR is the NIR-band reflectance and ρRed is the red-band reflectance.
The NDBI is another indicator used to understand urban climates [44]. This index

uses the ratio of the mid-infrared (MIR) band to the near-infrared (NIR) band (Table 1)
to identify built-up areas and impervious surfaces [45]. Its values range from −1 to +1,
where a significant positive value denotes a built-up area, a small positive value indicates
bare soils, and a negative value represents water bodies and vegetation [43]. This index
allowed us to map and analyze land cover and obtain spatial information for built-up
and impervious areas for 1989, 1999, 2009, and 2019. The NDBI was calculated using
Equation (8):

NDBI =
(ρMIR − ρNIR)
(ρMIR + ρNIR)

(8)

where ρMIR and ρNIR represent the reflectance values for the mid-infrared and near-
infrared bands of Landsat images, respectively.

The NDLI has been shown to be a reliable indicator for estimating potential surface
evapotranspiration, incorporating the three regularly utilized satellite mission channels of
green, red, and shortwave-infrared (Table 1). The NDLI has the unique capacity to optimize
spectrum sensitivity on biophysical land surface parameters [46]. This index was calculated
using Equation (9):

NDLI =
(ρGREEN − ρRED)

(ρGREEN + ρRED + ρMIR)
(9)

where ρGREEN, ρRED, and ρMIR represent the reflectance values for the green, red, and
mid- infrared - bands of Landsat images, respectively.

2.6. Correlation Analysis

We assessed the correlations of LST with the NDVI, NDBI, and NDLI of the study
area (reflecting the surface and LST changes in the Tlemcen municipality) for each year
using the correlation coefficient (R). Through the collection of independent pixels selected
at random from the entire study region, these indices were used to develop quantitative
connections with LST.

r =
∑n

i=1 (xi − x)× (y i − y)√
∑n

i=1(xi − x)2 ×
√

∑n
i=1(yi − y)2

(10)

where r represents Pearson’s correlation coefficient; x represents the independent variables
measuring the value of xi; y represents the dependent variable measuring value of yi; xi
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and yi represent the individual sample points indexed (i); and x and y represent the mean
of the sample.

3. Results

This section is divided into four parts: the first part presents the results of the accuracy
assessment of LULC classification, the second part covers the results of LULC, the third
part presents the results of LST, and the fourth part discusses the relationship between LST,
LULC, and indices.

3.1. Accuracy Assessment of LULC Classification

The Kappa coefficient was employed to assess the LULC classification’s correctness in
more detail. The total accuracy throughout the four periods was above 90%, suggesting a
robust land cover classification and good agreement between the referenced and classified
maps [47].

Previous studies [48] indicate that a Kappa coefficient greater than 75 means that the
classification and reference data are sufficient to assess accuracy. If the accuracy of the
classification is within acceptable limits, the requirements are met. Table 4 presents the
detailed accuracy of LULC.

Table 4. Producer accuracy and Kappa coefficient for LULC.

Years Kappa Coefficient Producer Accuracy

2019 0.98 0.98
2009 0.97 0.98
1999 0.96 0.97
1989 0.96 0.96

3.2. LULC of the Study Area

Tlemcen’s classified land cover maps for the periods of interest (i.e., 1989, 1999, 2009,
and 2019) are presented in Figure 3 and quantified in Table 5 and Figure 4. The LULC was
classified into four broad classes, comprising urban areas, vegetation, barren land, and
forest. The findings of the LULC classification study for 1989 indicated that vegetation
was widespread, particularly in the central and southeastern regions of the study area.
Urban zones were mostly concentrated in the central and western parts of the municipality
(old town and residential neighborhoods). On the other hand, the northern region of the
municipality consisted of bare and rocky soils, while the southern region was characterized
by dense forest cover. The results of the LULC classification study conducted in 2019
revealed a significant evolution in the different land cover classes, with a notable change
in their spatial distribution. Urban expansion was observed towards the north, mainly
due to geographical constraints in the south of Tlemcen. This urban growth resulted in
a reduction in bare soil in the north and a decrease in vegetation, primarily consisting of
agricultural land, in the east.

Table 5. LULC distribution in 1989, 1999, 2009, and 2019.

Years Urban (ha) % Barren Land (ha) % Vegetation (ha) % Forest (ha) % Total

1989 1079 25.65 1149 27.3 1821 43.27 159 3.78 100%

1999 1343 31.91 1382 32.84 1315 31.25 168 4.00 100%

2009 1349 32.06 1416 33.66 1266 30.08 177 4.20 100%

2019 1786 42.44 499 11.85 1726 41.01 197 4.70 100%
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Figure 4. Description of LULC statistics of Tlemcen from 1989 to 2019.

The classification revealed that built-up areas increased by 264 ha (3%) during the
first decade (1989–1999) and 440 ha (10.39%) during the last decade (2009–2019). Con-
versely, built-up areas increased slightly (by 6 ha; 0.14%) between 1999 and 2009, whereas
the increase was considerable between 2009 and 2019. The amount of vegetation cover
decreased by 12.02% (506 ha) during the first 10 years (1989–1998). However, it increased
by 460 ha (10.93%) between 2009 and 2019. Overall, the results indicated a decrease of
95 ha (−2.26%) in vegetation cover. Barren land surface increased by 267 ha (6.35%) during
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the first three decades (1989–2009). Conversely, it decreased sharply (by 917 ha; 21.8%) in
the last decade. This decrease was due to use of barren land to construct new extensions
totaling 551 ha. The barren land class was the most dominant between 1999 and 2009.
However, it considerably decreased in 2019 (21.84%).

Finally, the results showed a significant shift in urban classes, contributing significantly
to the formation of urban heat islands and other environmental issues. These results are
consistent with previous findings [29,49,50].

3.3. LST of the Study Area

The LST was analyzed for August, which is considered the hottest month in our
study area, over the 4 years of study. Figure 5 depicts the spatial distribution of surface
temperatures for 1989, 1999, 2009, and 2019.

Figure 5. LST distribution for Tlemcen in (a) 2019, (b) 2009, (c) 1999, and (d) 1989.

Table 6 summarizes the statistical temperature results. The surface temperatures in
Tlemcen municipality were in the ranges of 27.30–41.03 ◦C, 27.95–44.46 ◦C, 24.15–38.06◦,
and 24.95–34.26 ◦C during the four distinct periods (i.e., 2019, 2009, 1999, and 1989,
respectively).

Furthermore, the LST analysis revealed that the minimum and maximum surface
temperature values in 1989 were 24.95 ◦C and 37.26 ◦C, respectively. In 1999, the minimum
was 24.16 ◦C, and the maximum reached 38.06 ◦C. In 2009, the minimum and maximum
both increased, reaching values of 27.96 ◦C and 44.46 ◦C, respectively. Finally, in 2019,
the minimum surface temperature was 27.30 ◦C, and the maximum was 41.03 ◦C. The
spatialization results for the surface temperature revealed an increase of 2.89 ◦C between
1989 and 2019. Consequently, the year 2009 is marked by the highest average temperature.
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Table 6. Summary statistics of LST for Tlemcen during the decades of interest.

Year Minimum Maximum Mean Standard Deviation

1989 24.95 37.26 32.23 2.07
1999 24.16 38.06 31.31 2.42
2009 27.95 44.46 37.40 2.98
2019 27.30 41.03 35.12 2.42

The industrial area located in the northeast of the town had the warmest area over the
4 years of this research; this was owed to the materials covering the roofs of the buildings
(asbestos and reinforced concrete). The two northeastern and northwestern parts also had
high-temperature values since 1999, as these areas have clusters of new dwellings (collective
housing, dense individual housing, and informal housing). Notably, the spatial patterns of
surface temperature showed that the urban core had cooler temperatures compared with
the neighboring districts. This distinction arises from the lush environment of the core,
which has a significant abundance of trees.

3.4. Relationship between LULC and LST

For a thorough analysis of the relationship between LST and LULC, it is essential to
study the thermal patterns of the different LULC classes [51]. Table 7 displays the mean
surface temperature values by LULC class (urban, barren land, vegetation, and forest)
during 1989, 1999, 2009, and 2019. The barren land class recorded the highest temperatures
of 34.21 ◦C in 1989 and 33.34 ◦C in 1999, increasing to 39.54 ◦C in 2009 and 37.27 ◦C in 2019,
an average increase of 4.62◦. The average temperatures of the urban class were 32.02 ◦C,
30.87 ◦C, 36.72 ◦C, and 35.05 ◦C in 1989, 1999, 2009, and 2019, respectively. The LST of the
urban class increased by 5 ◦C between the first two and the last two decades. Ranking third,
the vegetation class also experienced an increase in temperature between 1989 and 2009,
with an average increase of 5.03 ◦C (Table 7). Thus, the barren land and urban areas had
the highest temperatures, compared with the vegetation and forest classes. This difference
can be explained by the high evaporation rates of vegetation, reducing the temperatures at
the soil’s surface [52,53].

Table 7. Mean LST (◦C) over each LULC class in Tlemcen from 1989 to 2019.

Year Urban Barren Land Vegetation Forest

1989 30.28 31.064 30.54 26.67
1999 30.7 33.46 30.41 26.4
2009 36.04 39.73 36.69 31.36
2019 35.01 37.67 35.27 30.02

Although the average temperature values for each class increased, 2009 was the hottest
year (Table 7). The spatial distribution of temperatures showed elevated temperatures in
the northeast and west of Tlemcen. These areas include the new urban extensions. We also
found that temperatures were highest in the northeast industrial area during the four years
studied (i.e., 1989, 1999, 2009, and 2019). According to the remote sensing data, Tlemcen
experienced intense urbanization during the last decade of this study. In fact, the northern
section of the municipality experienced soil artificialization. In addition, the center of
the municipality experienced a transition from agricultural surfaces to mineral surfaces.
However, this change was not consequence-free, as it harmed the natural environment and
contributed considerably to the increase in surface temperatures of the region.

3.5. Mapping of NDVI and Relationship with LST

NDVI maps of Tlemcen are presented in Figure 6 for 1989, 1999, 2009, and 2019.
Statistical information for NDVI is shown in Table 8. The mean NDVI observed in 1989
and 1999 was 0.18. However, after this first decade, the value of NDVI increased in
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2009 to about 0.29, then decreased in 2019 to 0.26. Plausible reasons for the increase in
the average value of NDVI are the building of new parks in urban areas, such as Park
El Hartoun and Park Lalla Setti in the south, and the increase in forest area, as shown
in Figure 4. All these activities were initiated to organize the “Tlemcen Islamic Culture
Capital” event in 2011 (chosen by ISESCO: the Islamic World Educational, Scientific, and
Cultural Organization). The highest NDVI values were observed between 1989 and 2009,
in the south (Les Petits Perdreaux Forest) and the center (presence of agricultural land)
of the region. However, the northeast and northwest of the municipality had low NDVI
values, which can be explained by the prevailing rocky soil and the presence of abundant
impervious surfaces (Figure 6). 

2 

 
 Figure 6. Spatial normal difference vegetation index (NDVI) in Tlemcen. NDVI maps are shown for

(a) 2019, (b) 2009, (c) 1999, and (d) 1989.

Table 8. Summary statistics of NDVI for Tlemcen during the decades of this study.

Year Minimum Maximum Mean Standard Deviation

2019 0.038 0.73 0.26 0.13
2009 0.054 0.68 0.29 0.10
1999 0.042 0.43 0.18 0.07
1989 0.06 0.40 0.18 0.05

The correlation between NDVI and LST was negative during the four years of interest,
as shown in Table 9. This correlation indicates that LST increases when NDVI decreases,
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and decreases when the NDVI increases. Les Petits Perdreaux Forest, located in the south
of the municipality, recorded the highest NDVI and the lowest LST values. The outcomes
of this study are in agreement with those of previous investigations [10,29,54,55].

Table 9. Correlations between NDVI and LST in 1989, 1999, 2009, and 2019.

1989 1999 2009 2019

Correlation −0.131 1 −0.472 1 −0.382 1 −0.408 1

1 The correlation is meaningful at the level of 0.01 (bilateral).

3.6. Mapping of NDBI and Its Relationship with LST

NDBI maps of Tlemcen are presented in Figure 7 for 1989, 1999, 2009, and 2019.
Statistical information for NDBI is provided in Table 10. The mean NDBI values observed
in 1989 and 1999 were 0.065 and 0.060, respectively. Following the first decade, the value
of NDBI decreased in 2009, whereas it rose to values of 0.056 and 0.033 in 2019. This was
clearly the result of a decrease in barren land surface areas.

1 
 

 
 Figure 7. Spatial NDBI in Tlemcen. NDBI maps are shown for (a) 2019, (b) 2009, (c) 1999,

and (d) 1989.
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Table 10. Summary statistics for NDBI in Tlemcen during the decades of interest.

Year Minimum Maximum Mean Standard Deviation

1989 −0.13 0.20 0.065 0.07
1999 −0.17 0.19 0.060 0.06
2009 −0.36 0.66 0.056 0.09
2019 −0.31 0.20 0.033 0.09

As shown in Figure 7, the highest NDBI values in 1989, 1999, and 2009 were recorded
in the northern area of the region. The latter is characterized by barren land that underwent
unplanned urbanization in the northwest during the 1990s, whereas rapid urbanization took
place (in terms of collective and individual dwellings) in the northeast area, coupled with
the absence of vegetation. The average NDBI values were spread over Tlemcen municipality,
indicating significant impermeability of surfaces along with vegetation surfaces (Figure 7a).

There were positive correlations between NDBI and LST during the last four years, as
shown in Table 11, with the R value increasing between 1989 and 2019. This phenomenon
is represented by a maximal value of NDBI covering the whole municipality. These results
are in accordance with those of previous studies [52,56].

Table 11. Correlations between NDBI and LST in 1989, 1999, 2009, and 2019.

1989 1999 2009 2019

Correlation 0.319 1 0.677 1 0.626 1 0.659 1

1 The correlation is meaningful at the level of 0.01 (bilateral).

3.7. Mapping of NDLI and Its Relationship with LST

NDLI maps of Tlemcen are presented in Figure 8 for the four years of interest (i.e., 1989,
1999, 2009, and 2019). Statistical information for NDLI is provided in Table 12. The mean
NDLI observed in 1989 was −0.062, increasing to −0.058 and −0.052 in 1999 and 2009,
respectively.

Table 12. Summary statistics for NDLI in Tlemcen during the decades of interest.

Year Minimum Maximum Mean Standard Deviation

1989 −0.10 0.003 −0.062 0.015
1999 −0.11 0.0022 −0.058 0.017
2009 −0.13 0.013 −0.052 0.020
2019 −0.12 0.02 −0.062 0.020

As shown in Figure 8, the maximum values of NDLI in 1989 show a peak, mainly
in the Les Petits Perdreaux Forest surface, located on the road to the villages of Safsaf
and Sidi Othmane. The latter is known for its fertile agricultural land. Over the years
considered, the maximal values dissipated. However, these values were centered at Les
Petits Perdreaux Forest owing to the loss of agricultural surface and mineralization of the
vegetation surfaces in the center of the municipality. Furthermore, there was a gap between
the NDLI values, based on the shift of the standard deviation from 0.015 in 1989 to 0.020 in
2019 (Table 12).



ISPRS Int. J. Geo-Inf. 2024, 13, 237 18 of 24

ISPRS Int. J. Geo-Inf. 2024, 13, x FOR PEER REVIEW 18 of 25 
 

 

As shown in Figure 7, the highest NDBI values in 1989, 1999, and 2009 were recorded 
in the northern area of the region. The latter is characterized by barren land that under-
went unplanned urbanization in the northwest during the 1990s, whereas rapid urbani-
zation took place (in terms of collective and individual dwellings) in the northeast area, 
coupled with the absence of vegetation. The average NDBI values were spread over Tlem-
cen municipality, indicating significant impermeability of surfaces along with vegetation 
surfaces (Figure 7a).  

There were positive correlations between NDBI and LST during the last four years, 
as shown in Table 11, with the R value increasing between 1989 and 2019. This phenome-
non is represented by a maximal value of NDBI covering the whole municipality. These 
results are in accordance with those of previous studies [52,56]. 

Table 11. Correlations between NDBI and LST in 1989, 1999, 2009, and 2019. 

 1989 1999 2009 2019 
Correlation 0.319 1 0.677 1 0.626 1 0.659 1 

1 The correlation is meaningful at the level of 0.01 (bilateral). 

3.7. Mapping of NDLI and Its Relationship with LST 
NDLI maps of Tlemcen are presented in Figure 8 for the four years of interest (i.e., 

1989, 1999, 2009, and 2019). Statistical information for NDLI is provided in Table 12. The 
mean NDLI observed in 1989 was −0.062, increasing to −0.058 and −0.052 in 1999 and 2009, 
respectively. 

 

Figure 8. Spatial NDLI in Tlemcen. NDLI maps are shown for (a) 2019, (b) 2009, (c) 1999, and (d) 
1989. 

Figure 8. Spatial NDLI in Tlemcen. NDLI maps are shown for (a) 2019, (b) 2009, (c) 1999,
and (d) 1989.

There were negative correlations between NDLI and LST, with r = −0.742, −0.647,
and −0.579 for 1999, 2009, and 2019, respectively (Table 13), which can be attributed to
high-water-content surfaces, as the amount of water transferred to the atmosphere through
evaporation reduces surface temperature. Consequently, the results align with those of
previous studies [46,57].

Table 13. Correlations between NDLI and LST in 1989, 1999, 2009, and 2019.

1989 1999 2009 2019

Correlation −0.260 1 −0.742 1 −0.647 1 −0.579 1

1 The correlation is meaningful at the level of 0.01 (bilateral).

4. Discussion
4.1. Urban Transformation and Thermal Changes in Tlemcen: 30 Years of Evolution

Over the past three decades, the evolution of urban areas has been marked by ir-
regular fluctuations. The increase was very slight between 1999 and 2009 due to urban
policies implemented during that period, when the country was emerging from a period
of widespread insecurity, which slowed down the construction of major housing projects.
During the last decade, from 2009 to 2019, the city experienced a boom in the construction
of major housing projects, such as the National Agency for Housing Improvement and
Development (AADL) and participatory social housing (LSP), primarily in the northeastern
part of the study area. These results align with those obtained in [58] for the intercommunal
grouping of Guelma, where urbanization saw a slight increase between 2000 and 2010.
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The study of urban expansion, particularly in the northeast and northwest of Tlemcen,
provides crucial information on temperature fluctuations in the city. Notably, neighbor-
hoods built after 1990 exhibited higher temperatures than those built in the old city. Con-
versely, the historic center within the city walls displays significantly cooler temperatures.
This observation may be attributed to the age of this area of the city, which encompasses
the confluence of the colonial fabric, constructed according to colonial principles, and the
medieval urban fabric, constructed with specific materials characterized by high thermal
inertia, developed according to Arab-Muslim urbanization principles. This situation under-
scores the importance of preserving the unique characteristics of Tlemcen’s historic center,
such as the plane trees and horse chestnuts, as well as the traditional architecture, which
contributes to urban sustainability and the reduction in the urban heat island effect.

This study revealed a significant increase in temperature across all categories, with
the barren land class being the hottest each year. This situation can be explained by its low
thermal inertia and low evapotranspiration due to the absence of vegetation cover. These
results are consistent with the conclusions of [59], and the data from the correlation matrix
presented in the Tables 14–17 show a strong negative correlation between NDBI and NDLI
over the four years studied.

Table 14. Correlation matrix between the indices in 2019.

2019 Lst Ndvi Ndbi Ndli

Lst 1 −0.401 0.659 1 −0.59 1

Ndvi −0.40 1 1 −0.74 1 0.73 1

Ndbi 0.65 1 −0.74 1 1 −0.80 1

Ndli −0.59 1 0.73 1 −0.80 1
1 The correlation is meaningful at the level of 0.01 (bilateral).

Table 15. Correlation matrix between the indices in 2009.

2009 Lst Ndvi Ndbi Ndli

Lst 1 −0.38 1 0.62 1 −0.64 1

Ndvi −0.38 1 1 −0.66 1 0.64 1

Ndbi 0.62 1 −0.66 1 1 −0.66 1

Ndli −0.64 1 0.64 1 −0.66 1
1 The correlation is meaningful at the level of 0.01 (bilateral).

Table 16. Correlation matrix between the indices in 1999.

1999 Lst Ndvi Ndbi Ndli

Lst 1 −0.47 1 0.67 1 −0.74 1

Ndvi −0.47 1 1 −0.76 1 0.69 1

Ndbi 0.67 1 −0.76 1 1 −0.82 1

Ndli 0.67 1 0.69 1 −0.82 1 1
1 The correlation is meaningful at the level of 0.01 (bilateral).

The results of this study showed that the average temperatures of urban and vegetated
areas were almost similar. However, the correlations of these two types of areas with
surface temperature were completely opposite. This divergence can be explained by
the fact that the vegetated areas identified in the images were mainly agricultural lands,
particularly dedicated to wheat cultivation and other similar crops, characterized by very
sparse vegetation. In August, when the surface temperatures were measured, these areas
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had a cover of dehydrated wheat stalks after harvest or were devoid of cover for other
crops. According to [27], these areas are considered bare lands, and the temperatures of
this type of class vary depending on the soil type (clayey, sandy, peaty) and exogenous
parameters, such as air temperature. Indeed, Mallik, J. et al. [60] demonstrated that the
average air temperature corresponds to that measured using remote sensing on Landsat
images. These results corroborate the conclusions of [27,29,58].

Table 17. Correlation matrix between the indices in 1989.

1989 Lst Ndvi Ndbi Ndli

Lst 1 −0.13 1 0.31 1 −0.26 1

Ndvi −0.13 1 1 −0.76 1 0.71 1

Ndbi 0.31 1 −0.76 1 1 −0.87 1

Ndli −0.26 1 0.71 1 −0.87 1 1
1 The correlation is meaningful at the level of 0.01 (bilateral).

In accordance with the results obtained by other researchers [27,33,61], the correlation
between vegetation and surface temperature was negative, which can be attributed to the
decrease in vegetation cover and its transformation into mineral surfaces. However, it is
important to note the variability in the standard deviation, which reached its maximum in
2019 with a value of 0.13, compared with a value of 0.05 in 1989. This reveals an increased
heterogeneity in vegetation cover in 2019 compared to 1989, when the vegetation cover
was more homogeneous, leading to a weaker correlation between vegetation and surface
temperature.

The mapping of evapotranspiration over the three-decade period covered in this study
presents a clear visualization of the thermal dynamics at play. However, an intriguing
aspect emerges, with a significant decrease in evapotranspiration at the historical center.
This reduction can be justified by the progressive degradation of the landscape framework
including the construction of new buildings with low-albedo and low-inertia materials, at
this specific location in the city over time.

These results underscore the impact of urban development on local thermal conditions,
thus emphasizing the need for integrated and sustainable urban management practices. It is
essential to adopt sustainable approaches in urban planning to minimize adverse effects on
the microclimate of the city. This involves promoting environmentally friendly architecture,
developing green spaces, preserving historical areas, and implementing urban policies
that aim to balance growth with the conservation of natural resources. Sustainable urban
management is crucial for preserving the quality of life of residents while maintaining the
unique and historical character of the city of Tlemcen.

4.2. GEE: Advancing LULC and LST Research

Conventional approaches to evaluating the effects of alterations in land usage on
surface temperature usually entail the manual compilation of data from diverse sources,
including meteorological stations, field assessments, and satellite information. Such meth-
ods can be laborious, requiring substantial investment of time and effort. Researchers are
required to carry out on-site investigations, establish meteorological stations, and accumu-
late data over designated periods to determine the impact of land use changes on surface
temperature. However, the development of the GEE platform has had great significance
in this field, yielding notable advantages in the exploration of alterations in land use and
their effects on surface temperature. Various pivotal factors warrant careful consideration
within this comparative evaluation, which is summarized in Table 18 below.
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Table 18. Contrasting features of Google Earth Engine (GEE) and traditional approaches in geospatial
data analysis.

Feature GEE Conventional Method

Data scale Access to global data with high spatial and
temporal resolution Limited to local or regional scales

Processing time Rapid processing of large amounts of data using
cloud computing

Requires manual pre-processing of data before
analysis

Data selection Offers a variety of pre-processed data, reducing
manual data collection

Requires effort to select, filter, and pre-process
data

Advanced analysis
Provides advanced analysis tools such as

spectral imaging, time series analysis, and image
classification

Traditional analysis approach, less equipped
with advanced tools

Accessibility Accessible online to researchers worldwide May be limited by availability of local
resources

5. Conclusions

This study evaluated the impact of LULC changes on LST in Tlemcen municipality,
from 1989 to 2019, leveraging the power of GEE. Using a multi-index approach by com-
bining the three spectral indices NDVI, NDTI, and NDBI, we achieved results with Kappa
coefficients greater than 0.95, thus meeting our set objective for Kappa coefficients. The
analysis included four LULC classes, urban, vegetation, barren land, and forest, showing
significant urban growth and a corresponding decrease in barren and agricultural lands.
Surface temperatures increased by an average of 2.89 ◦C, with an increase of 5 ◦C in urban
and vegetative areas, 3.35 ◦C in forests, and 6.61 ◦C in barren lands. Negative correlations
were found between surface temperature (LST) and both NDVI and NDLI, indicating lower
temperatures with denser vegetation. Positive correlations with NDBI were associated
with higher temperatures due to increased impermeable surfaces. This study highlights
the effectiveness of GEE in analyzing the impacts of LULC changes and suggests its use
for better urban planning and land management. For future studies, it will be essential
to combine other spectral indices to more precisely distinguish between different LULC
classes. The use of other satellites, such as Sentinel, could improve the quality and resolu-
tion of the data obtained. Additionally, varying the studies across different seasons would
be beneficial to capture the seasonal variations of LULC classes and better understand their
dynamics.

Finally, remote sensing techniques and the new GEE platform have dramatically
changed how we access and apply geographic data. The extensive geodata library, ad-
vanced algorithms, and cloud computing capabilities of GEE, including the classification
model, allow for easier, faster, and more accessible data analysis, allowing us to better
study the impact of LULC changes on the temperature in a semi-arid climate. The results
presented here could serve as a theoretical basis for urban planning and decision-making
for better future land management to prevent excessive and anarchic land use.

Author Contributions: The authors of this study have made significant contributions to the overall
research process. Imene Selka played a major role in study design, data collection, statistical analysis,
and manuscript writing. Abderahemane Medjdoub Mokhtari provided fundamental contributions
to the general study design, formulation of the research problem, and result interpretation. Kheira
Anissa Tabet Aoul was essential in refocusing the research scope and design, revising the article’s
structure and content, finalizing the conclusion, and reviewing the writing. Djamal Bengusmia
offered valuable technical expertise in data analysis and contributed to result interpretation, while
Kacemi Malika contributed to the critical analysis of the results. Khadidja El-Bahdja Djebbar played a
key role in the literature review and theoretical framework development. All authors participated
in the final manuscript revision and approval, ensuring the work’s accuracy and integrity. Their



ISPRS Int. J. Geo-Inf. 2024, 13, 237 22 of 24

individual contributions were crucial to the completion of this study and are duly recognized. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received funding from the United Arab Emirates University towards the APC.

Data Availability Statement: The original contributions presented in the study are included in the
article, further inquiries can be directed to the corresponding author.

Acknowledgments: The authors express gratitude to the team of the National Office of Rural
Development Studies (BNEDER) for their valuable contribution in the correction of coding on Google
Earth Engine (GEE).

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. United Nations, Department of Economic and Social Affairs, Population Division. World Urbanization Prospects: The 2018 Revision

(ST/ESA/SER.A/420); United Nations: New York, NY, USA, 2019.
2. Oke, T.R. Boundary Layer Climates, 2nd ed.; Routledge: London, UK, 2009.
3. Mohajerani, A.; Bakaric, J.; Jeffrey-Bailey, T. The urban heat island effect, its causes, and mitigation, with reference to the thermal

properties of asphalt concrete. J. Environ. Manag. 2017, 197, 522–538. [CrossRef] [PubMed]
4. Liebard, A.; De Herde, A. Traité D’architecture et D’urbanisme Bioclimatiques; Du moniteur: Paris, France, 2005.
5. Fung, W.; Lam, K.; Hung, W.; Pang, S.; Lee, Y. Impact of urban temperature on energy consumption of Hong Kong. Energy 2006,

31, 2623–2637. [CrossRef]
6. Akbari, H.; Cartalis, C.; Kolokotsa, D.; Muscio, A.; Pisello, A.L.; Rossi, F.; Santamouris, M.; Synnef, A.; Wong, N.H.; Zinzi, M.

Local climate change and urban heat island mitigation techniques—The state of the art. J. Civ. Eng. Manag. 2015, 22, 1–16.
[CrossRef]

7. Johnson, D.P.; Wilson, J.S. The socio-spatial dynamics of extreme urban heat events: The case of heat-related deaths in Philadelphia.
Appl. Geogr. 2009, 29, 419–434. [CrossRef]

8. Xiao, H.; Weng, Q. The impact of land use and land cover changes on land surface temperature in a karst area of China. J. Environ.
Manag. 2007, 85, 245–257. [CrossRef] [PubMed]

9. Feizizadeh, B.; Blaschke, T. Examining urban heat island relations to land use and air pollution: Multiple end member spectral
mixture analysis for thermal remote sensing. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 1749–1756. [CrossRef]

10. Feng, H.; Liu, H.; Wu, L. Monitoring the relationship between the land surface temperature change and urban growth in Beijing,
China. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 4010–4019. [CrossRef]

11. Weng, Q. Thermal infrared remote sensing for urban climate and environmental studies: Methods, applications, and trends.
ISPRS J. Photogramm. 2009, 64, 335–344. [CrossRef]

12. Dib, S.; Nouari, S.; Bengusmia, D. Extraction of Urban Areas Using Spectral Indices Combination and Google Earth Engine in
Algerian Highlands (Case Study: Cities of Djelfa, Messaad, Ain Oussera). Anuário Do Inst. De Geociências 2021, 45, 17. [CrossRef]

13. Dennison, P.E.; Roberts, D.A. Endmember selection for multiple endmember spectral mixture analysis using endmember average
RMSE. Remote Sens. Environ. 2003, 87, 123–135. [CrossRef]

14. Hu, X.; Weng, Q. Estimating impervious surfaces from medium spatial resolution imagery using the self-organizing map and
multi-layer perceptron neural networks. Remote Sens. Environ. 2009, 113, 2089–2102. [CrossRef]

15. Grippa, T.; Lennert, M.; Beaumont, B.; Vanhuysse, S.; Stephennen, N.; Wolff, E. An open-source semi-automated processing chain
for urban object-based classification. Remote Sens. 2017, 9, 358. [CrossRef]

16. Zha, Y.; Gao, J.; Ni, S. Use of normalized difference built-up index in automatically mapping urban areas from TM imagery. Int. J.
Remote Sens. 2003, 24, 583–594. [CrossRef]

17. Rasul, A.; Balzter, H.; Ibrahim, G.R.F.; Hameed, H.M.; Wheeler, J.; Adamu, B.; Ibrahim, S.; Najmaddin, P.M. Applying built-up
and bare-soil indices from Landsat 8 to cities in dry climates. Land 2018, 7, 81. [CrossRef]

18. Zhao, Z.; Islam, F.; Waseem, L.A.; Tariq, A.; Nawaz, M.; Islam, I.U.; Bibi, T.; Rehman, N.U.; Ahmad, W.; Aslam, R.W.; et al.
Comparison ofThree Machine Learning Algorithms Using Google Earth Engine for Land UseLand Cover Classification. Rangel.
Ecol. Manag. 2024, 92, 129–137. [CrossRef]

19. Deventer, A.; Ward, A.D.; Gowda, P.H.; Lyon, J.G. Using thematic mapper data to identify contrasting soil plains and tillage
practices. Photogramm. Eng. Remote Sens. 1997, 63, 87–93.

20. Eskandari, I.; Navid, H.; Rangzan, K. Evaluating spectral indices for determining conservation and conventional tillage systems
in a vetch-wheat rotation. Int. Soil. Water Conserv. Res. 2016, 4, 93–98. [CrossRef]

21. Sharma, S.; Dhakal, K.; Wagle, P.; Kilic, A. Retrospective tillage differentiation using the Landsat-5 TM archive with discriminant
analysis. Agrosystems Geosci. Environ. 2020, 3, e20000. [CrossRef]

22. Mumtaz, F.; Tao, Y.; Leeuw, G.D.; Zhao, L.; Fan, C.; Elnashar, A.; Bashir, B.; Wang, G.; Li, L.L.; Naeem, S.; et al. Modeling
spatiotemporal land transformation and its associated impacts on land surface temperature (LST). Remote Sens. 2020, 12, 2987.
[CrossRef]

https://doi.org/10.1016/j.jenvman.2017.03.095
https://www.ncbi.nlm.nih.gov/pubmed/28412623
https://doi.org/10.1016/j.energy.2005.12.009
https://doi.org/10.3846/13923730.2015.1111934
https://doi.org/10.1016/j.apgeog.2008.11.004
https://doi.org/10.1016/j.jenvman.2006.07.016
https://www.ncbi.nlm.nih.gov/pubmed/17126988
https://doi.org/10.1109/JSTARS.2013.2263425
https://doi.org/10.1109/JSTARS.2013.2264718
https://doi.org/10.1016/j.isprsjprs.2009.03.007
https://doi.org/10.11137/1982-3908_2022_45_44537
https://doi.org/10.1016/S0034-4257(03)00135-4
https://doi.org/10.1016/j.rse.2009.05.014
https://doi.org/10.3390/rs9040358
https://doi.org/10.1080/01431160304987
https://doi.org/10.3390/land7030081
https://doi.org/10.1016/j.rama.2023.10.007
https://doi.org/10.1016/j.iswcr.2016.04.002
https://doi.org/10.1002/agg2.20000
https://doi.org/10.3390/rs12182987


ISPRS Int. J. Geo-Inf. 2024, 13, 237 23 of 24

23. Zhang, Y.S.; Odeh, I.O.A.; Ramadan, E. Assessment of land surface temperature in relation to landscape metrics and fractional
vegetation cover in an urban/peri-urban region using Landsat data. Int. J. Remote Sens. 2013, 34, 168–189. [CrossRef]

24. Sun, C.; Wu, Z.; Lv, Z.; Wei, J. Spatial-temporal analysis of land surface temperature and its interplay with land use change. In
Proceedings of the 2nd International Conference on Information Engineering and Computer Science—Proceedings, ICIECS,
Wuhan, China, 25–26 December 2010. [CrossRef]

25. Xu, Y.; Qin, Z.; Wan, H. Spatial and temporal dynamics of urban heat island and their relationship with land cover changes in
urbanization process: A case study in Suzhou, China. J. Indian Soc. Remote Sens. 2010, 38, 654–663. [CrossRef]

26. Dewan, A.M.; Corner, R.J. Impact of Land Use and Land Cover Changes on Urban Land Surface Temperature. In Dhaka Megacity;
Springer Geography, Dewan, A., Corner, R., Eds.; Springer: Dordrecht, The Netherlands, 2014. [CrossRef]
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