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Abstract: Examining the interconnected dynamics of urbanization and climate change is crucial due
to their implications for environmental, social, and public health systems. This study provides a
comprehensive analysis of these dynamics in the Peshawar Valley, a rapidly urbanizing region in
Khyber Pakhtunkhwa, Pakistan, over a 30-year period (1990–2020). A novel methodological frame-
work integrating remote sensing, GIS techniques, and Google Earth Engine (GEE) was developed to
analyze land use/land cover (LULC) changes, particularly the expansion of the built-up environment,
along with the land surface temperature (LST) and heat index (HI). This framework intricately links
these elements, providing a unique perspective on the environmental transformations occurring in
the Peshawar Valley. Unlike previous studies that focused on individual aspects, this research offers a
holistic understanding of the complex interplay between urbanization, land use changes, temperature
dynamics, and heat index variations. Over three decades, urbanization expanded significantly, with
built-up areas increasing from 6.35% to 14.13%. The population surged from 5.3 million to 12.6 million,
coupled with significant increases in registered vehicles (from 0.171 million to 1.364 million) and
operational industries (from 327 to 1155). These transitions influenced air quality and temperature
dynamics, as evidenced by a highest mean LST of 30.30 ◦C and a maximum HI of 55.48 ◦C, marking
a notable increase from 50.54 ◦C. These changes show strong positive correlations with built-up
areas, population size, registered vehicles, and industrial activity. The findings highlight the urgent
need for adaptive strategies, public health interventions, and sustainable practices to mitigate the
environmental impacts of urbanization and climate change in the Peshawar Valley. Sustainable urban
development strategies and climate change mitigation measures are crucial for ensuring a livable
and resilient future for the region. This long-term analysis provides a robust foundation for future
projections and policy recommendations.

Keywords: urbanization; climate change; land use land cover (LULC); land surface temperature (LST);
heat index (HI); remote sensing and GIS; environmental implications

1. Introduction

The impact of recent climate change resonates globally, prompting city authorities and
scientists to prioritize strategies aimed at mitigating rising temperatures in urban areas
and fostering the creation of more sustainable, livable cities [1]. As the global population
expands rapidly [2,3], there is a notable shift from rural to urban regions [4], resulting
in a significant rise in urbanization [5]. Between 2010 and 2050, it is estimated that the
urban population worldwide will increase by 80% [6], leading to ongoing transformations
in land use and land cover (LULC) patterns [7]. The rapid conversion of natural land
into impermeable and constructed surfaces results not only in raising heat absorption
within urban environments [5,8,9], but this also phenomenon indirectly contributes to
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social and environmental degradation, biodiversity loss, and the destruction of urban
ecosystems worldwide [10,11]. In addition to the evident impacts, there are secondary effects
on local climates, including alterations in wind patterns, increased smog, changes in cloud
development, disruptions in precipitation patterns, and occurrences of flash floods [12,13].
Temperature studies in urban areas are vital for assessing thermal comfort, energy consumption,
and emissions of greenhouse gases and pollutants, which contribute to global warming [1,14].
Comprehending these historical patterns is essential for evaluating landscape conditions and
understanding ecosystem changes [15].

Exploring the key factors that impact the well-being of ecosystem health is currently
a pressing issue [16]. Climate hazards in urban environments present significant risks to
public health [17]. Technological advancements and rapid urbanization have precipitated a
substantial transformation of climatic conditions. These climate changes have significantly
influenced the health and well-being of individuals as well as the overall resilience and
sustainability of the ecosystem [18,19]. Identified as a major global health hazard for
humanity in the twenty-first century, global climate change poses a significant challenge,
and it is expected to exert a long-lasting influence, persistently affecting not only the present
but extending into the remainder of this century and beyond. The enduring consequences
of ongoing climate change encompass an increased frequency and severity of droughts,
heat waves, wildfires, intensified storms, changes in precipitation patterns, intense solar
radioactivity, and extended frost-free spells. For instance, based on observations spanning
from 1951 to 2010, there has been a decline in cold days and nights coupled with a notable
increase in hot days and nights [20].

Relying solely on conventional maps is inadequate for making accurate decisions
regarding land use planning or land management activities [21]. In order to track and
comprehend the patterns and processes of land development, remote sensing (RS) is an
effective and useful instrument that may offer a rich data that include multi-spectral,
multi-temporal, and real-time information [22,23]. The current work makes use of satellite
remote sensing data, which is a common solution with a relatively high accuracy [10,24],
which offers a singular opportunity to track changes in both LULC and LST at high spatial
and temporal resolution [25–27]. Since 1972, a number of Landsat satellites have been
launched [28,29], providing a nonstop time sequence of remote sensing data that is easily
accessible for many uses in research on the social, economic, and environmental traits of
metropolitan regions [30,31]. This extensive time series can help with future policy creation
for urban sustainability by improving the understanding of the historical and contemporary
processes in LULC transitions [32,33].

Pakistan has the highest rate of urbanization in South Asia [1]. In Pakistan, urban-
ization has mainly affected the growth of the population in major cities due to a lack of
planning and policy. An expansion in urban population necessitates the construction of
living facilities [34], such as new residential and business and economic zones, public
utilities, and transportation networks, which ultimately leaves footprints on the environ-
ment [6,35,36]. The LULC has undergone significant transformation over the past few
years [37]; barren land and farmland has been lost as a result of urban growth, which has
also affected socioeconomic change [38,39]. Farmland has gradually become urban areas,
while forest land has been transformed to cropland [40,41]. These changes have exerted
a notable influence on the surrounding ecological landscape and frequently endanger
sustainable urban growth [6,42,43].

In recent years, quick urbanization has given rise to numerous environmental chal-
lenges, such as water and air pollution, and increased concentrations of greenhouse gases,
which impact the local and regional climate through both biogeochemical and biochemical
mechanisms [44]. Pakistan has witnessed rapid industrial expansion, contributing to a
positive enhancement in the community’s living standards, as evident from the increasing
vehicular traffic on roads [45]. Assessing air and water resources in terms of quality in
Pakistan is important, and the existing acknowledgment of this issue is considered ur-
gent [46,47]. According to the World Air Quality Report (2019), Pakistan is ranked second
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globally, following India, as the country with the highest levels of pollution worldwide in
terms of hazardous airborne PM 2.5 particles [45,48].

To address the escalating issue of global warming, 195 nations signed the Paris Agree-
ment in 2015 within the United Nations Framework Convention on Climate Change
(UNFCCC), seeking to reduce global warming to well below 2 ◦C above pre-industrial
levels and determining an aspirational level of 1.5 ◦C [49]. Furthermore, to tackle the global
warming challenges, afforestation projects have been initialized by numerous nations, such
as the Great Green Wall (Africa) project [50], China’s Three-North Shelterbelt Project [51],
and the Bonn Challenge (Global) [52], and many of these initiatives have shown success in
regaining barren lands. Subsequently, Pakistan globally ranks fifth in term of population
size, with approximately 241 million citizens [53], and it ranks eighth among countries
which are more vulnerable to the climate change impacts [54]. The population of Pakistan
is increasing exponentially, accompanied by a rapid increase in the proposed study area of
the Peshawar Valley [55,56]. Insufficient planning and policy measures and urbanization
in Pakistan have mostly impacted the population expansion in major capitals [57]. The
Peshawar Valley holds significance as a vital geographic area situated in the upper reaches
of the Indus River basin. The continuous pollution of the Indus River basin through the
Kabul River raises significant concerns about water quality in this region [58]. In recent
years, the migration of individuals from Afghanistan has also caused abrupt shifts in
population growth in the Peshawar Valley [59] in the Khyber Pakhtunkhwa Province (KPK,
see Figure 1). The population within the study area surged from 5.3 million from 1990
to 12.6 million by the year 2020 (https://www.pbs.gov.pk/content/population-census,
accessed on 2 October 2023). Furthermore, according to statistics from 2017, the lush
Peshawar valley is home to 31% of the province’s total population [60]. Peshawar and
Mardan, the two most populous districts in the province, are situated in the Peshawar
Valley [61]. As the province’s capital, Peshawar attracts people from all of the province’s
districts [62]. The rapid growth in the population and inflow of residents to the subject of
the research area are attributed to land use patterns [63].

In the existing literature, numerous studies have examined the relationship between
LULC and LST using remote sensing, highlighting their significance in global climate
research and land management [1,6,25–27,64–67]. LST variations influenced by LULC
changes provide critical insights into heat distribution patterns and human-induced en-
vironmental impacts. However, the existing research predominantly focuses on direct
LULC–LST relationships without fully integrating additional socio-economic and climatic
factors. This study takes a broader perspective, considering the combined impact of popu-
lation growth, LULC changes, urban expansion, and increased vehicular and industrial
activity on air quality and climate indicators such as the LST and heat index (HI). This
research aims to bridge these gaps by providing a comprehensive understanding of how
these factors collectively influence air quality and contribute to climate change, particularly
in terms of LST and HI variations. This multifaceted approach aims to clarify the complex
interactions between human activities, environmental conditions, and thermal dynam-
ics, contributing to a comprehensive understanding of urban heat islands and informing
effective urban planning and climate adaptation strategies. By examining the interplay
between urbanization processes, air quality, and climate dynamics, this study seeks to
inform evidence-based policy interventions and adaptive strategies aimed at mitigating
the adverse impacts of urbanization on environmental sustainability and public health.

In term of climate change, the Peshawar Valley is currently experiencing a multi-
faceted interplay involving rapid urbanization, population expansion, and shifts in weather
patterns. This complexity has the potential to exert impacts on the environment, infras-
tructure, and public health [55,68,69]. This study aims to comprehend and evaluate the
involving dynamics within the Peshawar Valley, with a particular focus on the implications
of increasing urbanization and demographics shifts as well as the consequences of rising
temperature, including the land surface temperature and heat index. The central issue at
hand is the task of identifying and addressing the challenges linked with these multifaceted
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changes. The main goal is to formulate sustainable strategies that effectively manage urban
growth, ensuring the protection of the region’s environmental balance and simultaneously
enhancing the quality of life for its residents.
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The main objectives of this research are as follows:

(1) To analyze the spatiotemporal dynamics of land use and land cover (LULC) in the
Peshawar Valley from 1990 to 2020, with a specific emphasis on alterations in built-up
areas and their driving forces.

(2) To evaluate the correlation between urbanization, population growth, and the expan-
sion of built-up areas in the Peshawar Valley, aiming to comprehend the interconnec-
tion among these factors.

(3) To examine the fluctuations in the land surface temperature (LST) over the three-
decade period within the region and analyze the consequences of increasing tempera-
ture on the environment and human activities.

(4) To investigate the influences of changing weather patterns, including temperature
and humidity, on the heat index (HI) and to evaluate the potential health and environ-
mental hazards associated with these variations in the Peshawar Valley.

2. Materials and Methods
2.1. Study Area

The valley of Peshawar is situated in the Khyber Pakhtunkhwa (KPK) Province of
Pakistan. The name of valley is derived from the ancient town of Peshawar, which lies at
the western end of the valley. The Peshawar Valley holds strategic geographic significance
within the province of KPK. The study region, the Peshawar Valley, is the commercial and
industrial center of the province. As per the 2023 census, the population of the Peshawar
Valley is home to a total population of 13.28 million people [70]. The central part of the
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valley is characterized by being predominantly flat, with occasional variations such as
hills and rocky formations. The Peshawar Valley is surrounded on all sides by mountains,
with the exception of the southeast, which form a natural boundary. To the south of it are
the Attock and Cherat Mountains, to the west are the Khyber Ranges, and to the north
and northeast is the Swat Valley. The hydrography of the Peshawar Valley is abundant,
encompassing numerous rivers, streams, and wetlands. The Kabul River serves as the
valley’s primary water supply. The Peshawar Valley is constituted by five districts and
one tehsil within the region: Peshawar, Mardan, Charsadda, Nowshera, Swabi, and tehsil
Sam Ranizi of the Malakand District. The Peshawar Valley is located between latitudes
33–45◦ and 34–30◦ north. The study area’s longitude ranges from 71–22◦ to 72–45◦ east
longitudes, located at an elevation of approximately 345 m. The Peshawar Valley has a total
area of 7705 square kilometers (Figure 1). The Peshawar Valley, however, occupies 14.1% of
the province’s total area. The Peshawar Valley is often referred to as the “Heart Valley”,
owing to its fertile and productive nature. Infrastructure is being built on this productive
terrain quickly.

The Peshawar Valley is currently experiencing a complex interaction of factors, in-
cluding climate change, swift urbanization, population expansion, and shifting weather
patterns. These elements have the potential to impact various aspects of the environment,
such as air and water quality, infrastructure, and public health. This study comprehends
and evaluates the changing dynamics in the region, specifically focusing on the conse-
quences of escalating urbanization and demographic transformations, increasing land
surface temperatures, and the heat index. The primary challenge is to recognize and tackle
the issues associated with these diverse changes, working towards the development of
sustainable strategies for managing urban development while safeguarding the ecological
equilibrium of the area and enhancing the well-being of its inhabitants.

2.2. Data Collection

In the data collection phase, this study utilized Landsat satellite imagery, weather
data (temperature, relative humidity, and rainfall), population data, number of registered
vehicles, running number of industries, and air quality data for the period 1990–2020.

2.2.1. Landsat Data

Multispectral cloud-free satellite images from Landsat-based imagery, including Land-
sat 5, Landsat 7 Thematic Mapper (TM and ETM+), and Landsat 8 Operational Land Imager
(OLI), were collected in the different scenes, i.e., 150/36, 151/36, and 150/37, as the study
area was covered in three scenes of Landsat imagery for the years 1990, 2000, 2010, and 2020
(Table 1). The images possessed a temporal resolution of 16 days and a spatial resolution of
30 m. All the images were obtained freely from the United States Geological Survey (USGS)
Earth explorer website [71]. This platform is recognized for providing a reliable quality of
data and is extensively accepted for environmental monitoring and land use studies. The
data presented in Table 1 were exclusively utilized for analyzing the LULC and built-up
area dynamics.

Table 1. Satellite imagery utilized in this study.

Study Region Row/Path Year 1990 2000 2010 2020

Peshawar
150/36
151/36
150/37

Date 2 and 27 June 21 May and 13 June 1 and 24 May 20 and 29 June

Sensor TM and ETM+ TM and ETM+ TM and ETM+ OLI

2.2.2. Weather Data

Climate data, encompassing temperature metrics such as minimum, maximum, and
mean values, in addition to relative humidity and rainfall (precipitation), were system-
atically gathered. The sources for this comprehensive dataset included the Regional Me-
teorological Center (RMC) in Peshawar, along with the National Aeronautics and Space
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Administration (NASA) [72]. This dataset covers the period from 1991 to 2020 and provided
detailed information for each month throughout this duration.

2.2.3. Population Data, Vehicle Data, and Industry Data

Population data were obtained from the Pakistan Bureau of statistics, Government of
Pakistan official site for the 2017 and 2023 censuses [73], while some population data were
collected from Government of Khyber Pakhtunkhwa site from the population censuses of
1981 and 1998 [74]. Data for the number of registered vehicles, including both government
and private vehicles, were collected from the Excise and Taxation Department Khyber
Pakhtunkhwa from 1990–2020, while data for the number of running units classified by
industry (manufacturing, construction, mining and quarrying, and electricity generation
and distribution, including gas distribution (EGD and GD)) from the year 1990 until 2020
were collected from the Directorate of Industries and Commerce, Khyber Pakhtunkhwa,
Peshawar, as shown in Table 2.

Table 2. Population, vehicle, and industry data.

Population
Census

Total Population
(million) Year No. of Registered

Vehicles No. of Industries

1981 3.90 1990 170,637 327
1998 6.59 2000 208,959 394
2017 11.76 2010 469,459 907
2023 13.45 2020 1,364,718 1155

2.2.4. Air Quality Data

Air quality data were obtained from the Peshawar Clean Air Alliance site [75] to
analyze different air quality parameters and their relationship with the industrial and
vehicular emissions. The air quality parameters used in this research were based on
secondary data and were obtained from the recent study report “Status of Air Pollution in
Peshawar”, which was presented by the Peshawar Clean Air Alliance using CAMS data
(Copernicus Atmosphere Monitoring Service) [76].

2.3. Preprocessing, Classification, and Accuracy Assessment

In this study, multispectral cloud-free satellite images from Landsat-based imagery,
including Landsat 5, 7, and 8 satellite images, were used frequently, which consisted of
7, 8, and 11 spectral bands, respectively [77–80]; since urbanization is a gradual process
that unfolds over time, the images were captured over a period consistent with prior
research [1,6]. To commence the analysis, the QGIS software (version 3.16.15) was used
for importing, processing, and analyzing the satellite images captured at various points
in time [81]. The initial steps involved image analysis and processing by applying an
image mosaicking technique, as the study area was covered by three scenes of Landsat
imagery, in order to combine the three scenes/tiles of the Landsat data [82]. Then, the
administrative boundary of the study area was defined using a vector layer extracted
from satellite images, and a mask derived from the boundary of the Peshawar Valley was
employed to create a subset of the images as shown in Figure 2, effectively clipping the
area of interest (AOI) by uploading the shape file of study region from a Tagged Image
File Format (TIFF). Correction for atmospheric effects and rectification were carried using
the QGIS software. Subsequently, the Landsat images were preprocessed. This involved
stacking different bands to create multi-band images, where mosaicking was employed to
merge two stacked images, and subsetting was performed to extract the designated area
of interest (AOI) within the images. An in-depth examination of the satellite data was
conducted by assigning unique signatures to each pixel. These signatures were fundamental
for the LULC mapping using the Maximum Likelihood Classification (MLC) technique [64].
Careful collection of training samples was undertaken for each LULC class across the
years 1990, 2000, 2010, and 2020, and spectral signature files were prepared for various
LULC classes, such as vegetation, built-up areas, bare soil, and bodies of water. To validate
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the accuracy of the classifications, the classified images were cross-referenced with the
ground-truth data through visual inspection using Google Earth [6]. For each predefined
LULC type, polygons were created around the representative areas to collect the training
samples. Based on the pixels contained within these polygons, the spectral signatures
for the corresponding land cover types were derived using the satellite imagery. For the
accuracy assessment, the QGIS software was used to compare the pixels in the supervised
images with reference pixels representing specific LULC classes. To assess the classification
results against the reference data, an error matrix was used (user accuracy, producer
accuracy, overall accuracy, and kappa coefficient), which is a common and standard tool
for accuracy evaluation [83]. Finally, statistical analysis was carried out to ascertain the
accuracy of the required classification results. The following formulas were applied to
measure the accuracy of each classified image.
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2.4. Land Surface Temperature (LST) Retrieval

The Landsat data employed in this study were sourced from the United States Geo-
logical Survey (USGS), encompassing datasets from Landsat 5 and Landsat 8 Collection
2 Tier 1 Top of the Atmosphere (TOA) Reflectance [84]. These datasets were effectively
employed through the Google Earth Engine (GEE) platform for the computation of the
land surface temperature (LST) [85]. This study encompassed a substantial temporal range,
spanning from 1990 to 2020, with images acquired annually for each year from the same
collection [86,87]. The inclusion of the Landsat 5 and Landsat 8 datasets underscores the
comprehensiveness and robustness of this research, offering a holistic perspective across a
significant timeframe. To ensure the accuracy of the LST estimates, atmospheric correction
procedures were thoroughly applied to mitigate the impact of atmospheric effects on the
thermal measurements.



ISPRS Int. J. Geo-Inf. 2024, 13, 239 8 of 32

2.4.1. Google Earth Engine Description

Google Earth Engine (GEE), a robust geospatial cloud-computing platform [88], was
utilized to process and analyze the data via its JavaScript coding interface. GEE enables
researchers to access and analyze land surface temperature (LST) data derived from satel-
lite imagery, providing valuable insights into the thermal characteristics of the Earth’s
surface [89]. GEE’s capabilities allow for the retrieval and processing of large volumes
of LST data, facilitating the monitoring and analysis of thermal patterns across extensive
regions and time periods. GEE facilitated the retrieval of significant amounts of satellite
data, enabling large-scale environmental feature monitoring and analysis [90]. This is
particularly useful for studying land surface dynamics, LST, climate change impacts, and
ecological processes. The platform offers tools for LST data preprocessing and a range of
analytical capabilities, including statistical analysis, time series analysis, and the develop-
ment of modified algorithms. Using GEE’s JavaScript coding interface, researchers can
integrate LST data analysis into their broader research workflows, fostering collaboration
and reproducibility within the scientific community [91–94].

2.4.2. Atmospheric Correction and Retrieval of LST

The process of calculating the LST from the Landsat imagery involved several steps,
commencing with the calculation of the land surface temperature and the subsequent
application of thermal conversion constants to compute the brightness temperature [95,96].
For the Landsat data, which provide top-of-atmosphere (TOA) reflectance data, atmospheric
correction was necessary to ensure that the retrieved LST values accurately represented
the surface temperature and were unaffected by atmospheric distortion. Therefore, the
importance of atmospheric correction was acknowledged, and it was integrated it into
our analysis by integrating the dark object subtraction method (DOS) [83,97–99]. This
method (DOS) is likely the most straightforward and consistent procedure among the
majority of the widely used image-based atmospheric correction procedures. The darkest
pixels (assumed to have zero or minimal reflectance) in the image were identified. The
minimum pixel values (dark object values) were subtracted from all the pixels to correct for
atmospheric scattering. These atmospheric correction procedures ensured that the retrieval
of the LST values precisely represented the surface temperature and that these values were
unaffected by atmospheric distortion.

The raw Landsat data, downloaded as digital numbers, required a conversion process
to obtain the spectral radiance values (Lλ), utilizing information contained in the Landsat
meta header file [64,65,83].

At first, the spectral radiance of Landsat 5 TM band 6 was calculated by using Equation (1):

Lλ = (
LMAXλ − LMINλ

QCALMAX−QCALMIN
) ∗ (QCALMAX−QCALMIN) + LMINλ (1)

The formula was used to linearly rescale the DN values to radiance values. By
conducting this, it was possible to convert the raw digital values obtained from the Landsat
sensor into radiometrically accurate radiance values for each pixel in the image. This
conversion was essential for the quantitative analysis and interpretation of the images, as
it provided physically meaningful radiometric information regarding the Earth’s surface
within the specific spectral band. Lλ represents the spectral radiance (W m−2 sr−1 µm−1),
LMAXλ is the spectral radiance scaled to QCalmax (W m−2 sr−1 µm−1), and LMINλ denotes
the spectral radiance scaled to QCalmin (W m−2 sr−1 µm−1). QCalmax corresponds to the
maximum quantized calibrated pixel value (DN = 255) associated with LMAXλ, while the
minimum quantized calibrated pixel value (DN = 0) corresponds to LMINλ. QCal refers to
the quantized calibrated pixel value (DN) [100].
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Similarly, in the case of Landsat 8, the digital numbers (DNs) of band 10 in Landsat 8
OLI were transformed into the spectral radiance using Equation (2):

Lλ = (ML ∗QCal) + AL (2)

In the context of this process, Lλ represents the top-of-atmosphere (TOA) spec-
tral radiance measured in watts (W/(m2 sr µm)), ML represents the band-specific mul-
tiplicative rescaling feature, which was derived from the metadata, denoted as Radi-
ance_Mult_Band_x, where ‘x’ corresponds to the band number, AL represents the band-
specific additive rescaling feature from the metadata, indicated as Radiance_Add_Band_x,
with ‘x’ representing the band number, and the variable QCal is associated with band 10,
and it denotes the quantized and calibrated standard product pixel values (DN). TOA was
determined by the equation TOA = 0.0003342 multiplied by “Band10” plus 0.1. AL is the
radiance additive scaling factor for the specific band (rescaling factor from metadata).

The algorithm utilized information related to the land surface emissivity, atmospheric
transmissivity, brightness temperature, and average atmospheric temperature to compute
the LST as follows [101–103]:

BT =
K2

ln
(

k1
Lλ + 1

) − 273.5 (3)

In the context of this formulation, BT denotes the actual sensor brightness temper-
ature measured in Kelvin, where ‘K1’ represents a band-specific thermal conversion
constant, which was derived from the metadata and is more specifically denoted as
K1_CONSTANT_BAND_x, where x corresponds to the thermal band number expressed in
units of W/(m2 sr µm). Similarly, ‘K2’ stands for another band-specific thermal conversion
constant from the metadata, designated as K2_CONSTANT_BAND_x, with x represent-
ing the thermal band number expressed in units of Kelvin. Additionally, Lλ signifies
the spectral radiance at the sensor’s aperture, quantified in units of W/(m2 sr µm), and
it is equivalently represented as TOA. To obtain the temperature results in Celsius, an
adjustment was made to the radiant temperature by incorporating absolute zero, which is
approximately 273.15 ◦C. BT = (1321.0789/Ln ((774.8853/“%TOA%”) + 1)) − 273.15.

So, finally, this formula allowed for the conversion of the calibrated radiance values
from the thermal band into brightness temperatures in degrees Celsius, which could then
be further processed to estimate the land surface temperature by accounting for surface
emissivity effects as follows [103]:

LST =
BT

1 + λ (BT/ρ) + ln ε
− 273.5 (4)

In this equation, LST represents the land surface temperature in degrees Celsius, while
‘BT’ represents the brightness surface temperature in Kelvin, obtained directly from the
thermal infrared band of the satellite imagery. The symbol λ signifies the wavelength of
the emitted radiance (thermal infrared band), i.e., 10.8 µm for Landsat 8 TIRs band 10.
Moreover, ρ is equal to h × c/σ (1.438 × 10−2 mK), where ‘h’ represents Planck’s constant
(6.26 × 10−34 Js), c represents the speed of light (2.998 × 108 m/s), and σ is the Boltzmann
constant (1.38 × 10−23 J/K). Lastly, ‘ε’ represents the land surface emissivity (ranging
from 0 to 1), which accounts for the efficiency of the surface in emitting thermal radiation.
In the last part of the equation, the value of −273.15 converts the LST from Kelvin to
degrees Celsius.

To sum up, this formula utilizes the satellite’s brightness temperature, adjusts it
according to the surface emissivity and wavelength characteristics, and then converts the
outcome from Kelvin to degrees Celsius, obtaining the land surface temperature.
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2.4.3. Pseudo-Code or Algorithm for LST Retrieval

Algorithm 1 provides detailed steps with numbered sequences, and each step is
associated with specific actions.

Algorithm 1 Land Surface Temperature Using GEE

Require Input: Landsat images set: I
Ensure Output: Land Surface Temperature: T
Start
Initialization:
1. GEE← Initialize Google Earth Engine
2. S← Export shape files to GEE
3. R← Run GEE Catalog of I (Surface Reflectance Collection)
4. ROI← Specify region of interest (ROI) based on S
5. LST ← Set LST file export parameters
Preprocessing LST:
6. SR← Select I from R
7. ER← Extract the ROI from I
8. M← Create mask layer function to mask clouds, shadows, and saturated pixels
9. Apply filter on ER for additional quality assessment (optional)
10. Trange←Mention the period or date range for the analysis
11. Apply filter and DOS method for Quality Assessment and atmospheric correction
Processing LST:
12. for each image I in ER do
13. Apply filter on I for quality assessment
14. T ∞← Temperature value from image I
15. Tl← Calculate Land Surface Temperature
Post-processing and Visualization of LST:
16. MT ← Generate mean temperature for the whole year//Time series Analysis
17. Display MT in a chart along with Spatial Map with LST Temperature in CSV file
18. Export the results to Google Drive
END

The input data in this study were Landsat images, and the required output was to
retrieve the land surface temperature. First, Google Earth Engine was loaded, the shape
file was exported to Google Earth Engine by running the Google Earth Engine Catalog
of Landsat Images (Surface Reflectance Collection) into Google Earth Engine, mentioning
the region of interest based on the shape file along with the setting the LST file export
parameters. These steps were all carried out in the initialization phase. The next step,
preprocessing, involved selecting the surface reflectance data, extracting the ROI, creating
a mask layer function to eliminate clouds, shadows, and saturated pixels, and optionally
applying additional quality assessment filters. Atmospheric correction was performed
using the DOS method within a specified date range. Processing the LST data involved
iterating through each image, applying quality assessment filters, and calculating the LST.
Post-processing involved generating the mean temperature for the entire year, displaying it
in a chart along with a spatial map showing the annual mean temperature, and exporting
the results to Google Drive.

2.5. Analyzing Climatic Data to Determine Heat Index Patterns

To calculate the heat index, weather data were collected from the regional centers of
the Regional Meteorological Center (RMC) in Peshawar and the National Aeronautics and
Space Administration (NASA) for all points in each year on the basis of their latitudes
and longitudes. The heat index, an alternative temperature indicator, was employed to
assess the impact of heat-related illnesses. Originally developed in 1978 and subsequently
adopted by the U.S. National Weather Service (NWS) [104,105], the heat index is a valuable
tool for evaluating climatic conditions, taking into account the combined influence of air
temperature and relative humidity on human health [106]. Given that humidity plays a
significant role in the body’s cooling mechanisms through evaporation and perspiration,
it is crucial to consider the interplay between temperature and humidity, particularly
during extreme heat events [85]. The heat index was computed using the maximum
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air temperature and relative humidity (as per Equation (5)) and the heat index formula
established by the U.S. NWS. This calculation was implemented using the Python package
“meteocalc” (version 1.10) [104].

HI = −42.379 + (2.04901523 ∗ T) + (10.14333127 ∗ R)− (0.22475541 ∗ T ∗ R)− (6.83783 ∗ 10− 3 ∗ T2)
−(5.481717 ∗ 10− 2 ∗ R2) + (1.22874 ∗ 10− 3 ∗ T2 ∗ R) + (8.5282 ∗ 10− 4 ∗ T ∗ R2)
−(1.99 ∗ 10− 6 ∗ T2 ∗ R2)

(5)

In the above equation, ‘T’ stands for the air temperature in Fahrenheit, and ‘R’ stands
for the relative humidity as a percentage (%). It is worth mentioning that the heat index (HI)
values computed using this equation have a margin of error of approximately ±0.08 ◦C.
These values were categorized into five levels, as illustrated in Table 3. However, it is
important to emphasize that these classification criteria serve as broad guidelines for
assessing potential health risks rather than precise indicators of specific heat-related effects
or illnesses.

Table 3. The spectrum of heat index values and the corresponding levels of concern [107,108].

HI (◦C) Level Description

<27 Normal Fatigue from extended exposure.

27 to <32 Caution Prolonged exposure or physical activity may result in fatigue.

32 to <41 Extreme Caution Extended exposure and/or physical activity can result in conditions like
heat stroke, heat cramps, or heat exhaustion.

41 to <54 Danger
Prolonged exposure to high temperatures or engaging in physical

activities in such conditions can lead to heat cramps or heat exhaustion,
and there is a potential risk of heat stroke

>54 Extreme Danger The likelihood of experiencing a heat stroke is substantial.

Gray: Normal; Light Yellow: Caution; Yellow: Extreme Caution; Orange: Danger; Red: Extreme Danger.

Figure 3, the National Weather Service heat index chart, illustrates the relationship
between temperature and humidity, providing a visual representation of perceived tem-
perature or heat index. The color-coded heat index chart is a standard tool used by
meteorological and health organizations to assess heat-related risks. It ranges from gray
(normal) to red (extreme danger), providing a quick visual reference to prevent heat-related
illnesses by indicating the severity of heat exposure.
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3. Results

This section presents the key findings of this study and is organized into the
following subsections:

• 3.1. Land Use and Land Cover (LULC) Dynamics: This section analyzes the changes
in land use and land cover over time, including the dynamics of built-up areas.

• 3.2. Land Surface Temperature (LST) Variations: This section examines the variations
in land surface temperature using Landsat imagery from 1990 to 2020.

• 3.3. Air Quality and Industrial/Vehicular Emissions: This section analyzes the air
quality data and their relationship with industrial and vehicular emissions.

• 3.4. Weather Data and Heat Index: This section investigates the variations in weather
data and their effect on the heat index from 1990 to 2020. It further explores the
impact of air quality and emission factors on the heat index dynamics and analyzes the
correlation between the heat index and population, built-up areas, vehicles, industrial
activity, and climatic data.

This comprehensive analysis provides valuable insights into the complex interplay
between land use (built-up area), climate, air quality, and human activity, offering crucial
information for informed decision-making and sustainable urban planning.

3.1. Land Use and Land Cover (LULC) Dynamics

This study involved the acquisition of land use and land cover (LULC) maps for the
Peshawar Valley on selected days in 1990, 2000, 2010, and 2020, as shown in Figure 4,
following thorough preprocessing and supervised classification. To assess the accuracy of
this LULC classification, ground-truth data from Google Earth were employed, and the
corresponding results are documented in Table 4. Impressively, Table 4 highlights that the
classification of all LULC classes exhibited an exceptional accuracy level of nearly 90%. The
classified images showcased in Figure 4 effectively capture the spatiotemporal dynamics
of the LULC changes over the specified years. Furthermore, Table 5 neatly summarizes
the LULC distribution for each type across the different years. A notable trend emerged in
the city of Peshawar, where there was a discernible increase in built-up areas alongside a
reduction in barren land from 1990 to 2020. This transformation underscores the evolving
landscape of the city of Peshawar over the years, emphasizing the importance of monitoring
and managing land use in urban areas.
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Table 4. Assessing the accuracy of land use classification in Peshawar Valley (%).

Land Cover Type
1990 2000 2010 2020

PA (%) UA (%) PA (%) UA (%) PA (%) UA (%) PA (%) UA (%)

Water bodies 90.9 100 94.1 96 85.5 94 95.9 94
Vegetation 100 90 95.9 94 93.3 84 94.1 96

Built-up areas 81.6 80 91.8 90 88.9 80 83.7 82
Bare land 80.3 82 90.2 92 81.8 90 82.4 84

Overall accuracy 89 93 87 89

Kappa coefficient 0.85 0.91 0.83 0.85

Table 5. LULC assessment of Peshawar Valley.

LULC
1990 2000 2010 2020

Sq.km % Sq.km % Sq.km % Sq.km %

Water bodies 142.22 1.85 155.62 2.01 101.93 1.32 164.20 2.13
Vegetation area 1435.36 18.63 1545.27 20.05 1974.38 25.62 1839.49 23.87

Built-up area 489.51 6.35 625.32 8.11 758.44 9.84 1088.58 14.13
Bare soil 5637.91 73.17 5378.79 69.81 4870.25 63.20 4612.73 59.87

Total 7705 100 7705 100 7705 100 7705 100

Table 5 provides a comprehensive overview of the land use and land cover (LULC)
changes over a span of three decades, from 1990 to 2020, within a specific geographic area
measured in square kilometers (Sq.km) and as a percentage (%). The LULC categories
studied were water bodies, vegetation area, built-up area, and bare soil. In 1990, water
bodies covered 142.22 Sq.km, constituting 1.85% of the total area, and this expanded to
164.20 Sq.km (2.13%) in 2020. The vegetation area increased from 1435.36 Sq.km (18.63%)
in 1990 to 1839.49 Sq.km (23.87%) in 2020. In contrast, built-up areas exhibited significant
growth, rising from 489.51 Sq.km (6.35%) in 1990 to 1088.58 Sq.km (14.13%) in 2020, indicat-
ing urbanization and infrastructure development. Meanwhile, bare soil showed a gradual
decline, decreasing from 5637.91 Sq.km (73.17%) in 1990 to 4612.73 Sq.km (59.87%) in 2020,
possibly due to land transformation. These findings highlight the dynamic nature of the
LULC changes over time, with notable shifts in urbanization, natural resource management,
and environmental impacts.

These findings highlight the dynamic nature of the LULC changes over time, with
notable shifts in urbanization as shown in Figure 5, natural resource management, and
environmental impacts. These findings also highlight the complex interplay of human
activities, environmental shifts, and land management strategies over the three-decade
period, offering valuable insights for sustainable development and resource management.
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Dynamics in Built-Up Areas

In the context of urban development and land use dynamics, the provided tabular
data describe a compelling description of the transformation in built-up areas over the
three critical decades. Commencing in 1990 with a total area of 489.51 square kilometers,
urban development occupied a relatively modest 6.35% of the region. Fast-forward to
the year 2000, and an undeniable change towards urbanization became apparent, as the
built-up area expanded to 625.32 square kilometers, accounting for 8.11% of the total
land. Over the subsequent decade, urban sprawl sustained its march, with 758.44 square
kilometers now being classified as built-up areas, comprising 9.84% of the landscape by
2010. However, the data from 2020 stand as evidence for the dynamic nature of the urban
growth in this study, with an expansive 1088.58 square kilometers now being observed as
built-up areas, representing a considerable 14.13% of the region’s land. Notably, this period
saw a surprising increase in built-up space, an expanse of 599.07 square kilometers from
1990 to 2020, marking a remarkable 7.78% change. These findings highlight the noteworthy
development and increased urbanization that the region has experienced, highlighting
the demanding need for maintainable urban planning and management to address the
challenges and opportunities associated with such rapid development. In the context of the
dynamic transformation of built-up areas in the Peshawar Valley, this research demonstrates
the significant changes over the past three decades. The data analysis revealed a notable
increase in built-up areas from 1990 to 2020, with a considerable growth of 599.07 square
kilometers, translating to a remarkable 7.78% expansion. These data indicate an extensive
shift towards urbanization and development within the region. To provide a further
perspective, this expansion signifies an annual growth rate of approximately 19.969 square
kilometers per year, proving the rapid pace at which the built-up environment has expanded
in the Peshawar Valley, as shown in Figure 6. These findings highlight the need for
comprehensive studies and sustainable urban planning to accommodate the increasing
urban demand while maintaining the environmental and socio-economic dynamics of
the region.
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Table 6 provides information on the dynamics of the built-up areas in the Peshawar
Valley from 1990 to 2020. Over this period, the built-up area significantly increased with a
growth of 599.07 square kilometers, representing a 7.78% change. In 1990, it covered 6.35%
of the total area, which grew to 14.13% by 2020, indicating significant urban expansion
and development.

Table 6. Dynamics of built-up areas in Peshawar Valley from 1990–2020.

Land Use and Land Cover Built-Up Area Percentage Share (%)

Area in Sq.km in 1990 489.51 6.35
Area in Sq.km in 2000 625.32 8.11
Area in Sq.km in 2010 758.44 9.84
Area in Sq.km in 2020 1088.58 14.13

Change in area 599.07 7.78

The dynamics of the built-up areas in the Peshawar Valley, as shown in Table 7, as
revealed by the data from 1990 to 2020, are interestingly interconnected with the region’s
population growth. In 1990, the built-up area covered 489.51 square kilometers, while
the population stood at 5.3 million. Over the successive three decades, a notable change
occurred. By 2020, the built-up area expanded to 1088.58 square kilometers, indicating a
substantial 7.78% increase. Simultaneously, the population grew rapidly from 5.3 million
in 1990 to a surprising 12.6 million in 2020, representing an unpredictable growth of
7.04 million individuals. This extensive change is associated with an annual increase of
approximately 234,874 people. The association between the population and built-up area
dynamics underscores the deep influence of urbanization and demographic shifts within
the Peshawar Valley as shown in the Figure 7.

Table 7. Population from 1990–2020 in Peshawar Valley based on population census.

Census Total Population
(million) Year Population (million)

1981 3.90 1990 5.33
1998 6.59 2000 7.13
2017 11.76 2010 9.86
2023 13.45 2020 12.61

Change from 1981–2023 9.54 Change from 1990–2020 7.04ISPRS Int. J. Geo-Inf. 2024, 13, x FOR PEER REVIEW 16 of 33 
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This synchronous growth in population and urban footprint suggests a close corre-
lation between demographic dynamics and urban expansion in the Peshawar Valley. It
is important to recognize this interaction for effective urban planning and developing
sustainable development strategies moving forward. This study underscores the need for
practical measures to manage urban growth in a manner that ensures the well-being and
quality of life for the growing population in the Peshawar Valley.

The population projection and the inter-censual growth rates (1981–2023) were applied
to the district projections using Equation (6):

P1 = Po (1 + r)n/100 (6)

where Po represents the population from the initial census, P1 represents the population
from the latest census, r represents the growth rate, and n is the time interval (in years)
between the two censuses.

Figure 8 represents the data for the years 1990, 2000, 2010, and 2020, showing the
population and built-up area percentages. These percentages were measured in terms of the
change from 1990 to 2020, providing insights into the growth and development over this
three-decade period. In 1990, the population was 17.09%, and the built-up area was 15.24%.
By 2000, the population increased to 21.85%, and the built-up area expanded to 20.46%. In
2010, the population continued to grow to 26.52%, while the built-up area also increased
to 28.26%. By the year 2020, the built-up area expanded to 36.18%, while the population
reached 37.95%. Over the span of 30 years, as indicated by these results, it is very clear that
there has been substantial growth in both the population and built-up area. Over the span
of three decades, the population effectively almost doubled, with a remarkable growth of
20.86%. Likewise, the built-up area demonstrated considerable expansion, registering a
growth of 20.94% during the same period. These results clearly show a significant trend
of the urbanization sprawl and population growth over the years, consequently leading
to a notable expansion in the built-up area. Considering the implications of this growth
is crucial in terms of various aspects, such as infrastructure, land use management, and
environmental sustainability, as these transformations carry substantial consequences for
the region.
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3.2. Land Surface Temperature (LST) Variations Using Landsat Imagery from 1990–2020

The computation of the land surface temperature (LST) variation for the Peshawar
Valley for the years in the 1990s, 2000s, 2010s, and 2020s was examined following the proce-
dure detailed in Section 2.4 of the methodology, as shown in Figure 2. The comprehensive
examination of the LST variations in the Peshawar Valley over three decades (1990–2020)
unveiled a notable temperature fluctuation, as brightly shown in Figure 9. In the 1990s, the
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maximum recorded LST was 26.28 ◦C, which actually indicates the maximum mean LST
for the whole year. Similarly, in the 2000s, the LST values showed a gradual rise in tem-
perature, reaching a maximum of 27.09 ◦C. Subsequently, in the 2010s, and the maximum
LST reached 29.49 ◦C. Significantly, in the 2020s, the trend continued, and the maximum
LST finally reached 30.30 ◦C. These findings show a consistent rising trend in the LST
over the years, signaling an apparent increase in temperature within the Peshawar Valley.
These findings also highlight the overall warming pattern in the region. These fluctuations
in temperature serve as a critical indicator of climate change and could have substantial
consequences for the environment and human activities within the Peshawar Valley.
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3.3. Analysis of Air Quality and Relationship with Industrial and Vehicular Emissions

Over the observed years, the number of registered vehicles demonstrated a significant
increase from 1990 to 2020, showcasing a substantial growth in vehicular activity. Fur-
thermore, the population and urbanization also witnessed notable expansion during this
period. Additionally, the number of running industries demonstrated a steady rise, further
indicating an upward trend in industrial activity. These trends collectively underscore
the substantial influence of transportation, industry, population, and urbanization on the
region’s air quality.

Table 8 demonstrates that over the observed years, the number of registered vehicles
increased significantly from 0.171 million to 1.364 million in 2020, indicating substantial
vehicular growth. Similarly, the number of running industries also steadily rose, increasing
from 327 in 1990 to 1155 in 2020, showing an upward trend in industrial activity. These
trends highlight the growing impact of transportation and industry on the region, as shown
in Figure 10.

Table 8. Number of registered vehicles and running industries (1990s–2020).

Years 1990 1995 2000 2005 2010 2015 2020

No. Reg. Vehicles 170,637 189,798 208,959 222,763 469,459 877,547 1,364,718
No. Running Industries 327 327 359 551 832 1007 1155
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Particulate matter with a diameter of 2.5 micrometers or even smaller, commonly
known as PM 2.5, can arise as a byproduct of emissions originating from vehicles and
various industrial sources. PM 2.5 comprises microscopic solid particles or liquid droplets
floating in the air, and it encompasses different elements such as dust, soot, organic materi-
als, and metals. PM 2.5 is released into the atmosphere through vehicles as they burn fossil
fuels, particularly in engines that lack advanced pollution-mitigation technologies. This
involves the emission of particles from exhaust pipes as well as wear from brakes and tires.
Similarly, industries also discharge PM 2.5 through activities like manufacturing, construc-
tion, and the functioning of power plants. Operations of industries can also generate dust
and smoke that can contribute to heightened levels of PM 2.5 in the atmosphere. Hence,
both vehicles and industries emerge as notable sources of PM 2.5 pollution. The data shown
in Figure 11, representing the annual PM 2.5 levels from 2005 to 2020, indicate variations in
the air quality in the studied area. The increase in both the number of registered vehicles
and the number of running industries in this context is crucial because it can contribute
to elevating the levels of air pollution, including PM 2.5. These trends suggest a potential
connection between the levels of air pollution, particularly PM 2.5, and the expansion of
running industries and vehicles within the Peshawar Valley. Therefore, it is very important
to regulate and control the measurement of these emissions to mitigate their influence on
air quality and public health.
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The different colors in the Table 9 represent the air quality categories for PM 2.5 concen-
tration, which help to quickly and visually identify the air quality level. This categorization
is necessary for easy and immediate comprehension of the air quality status, facilitating
informed decision-making and prompt action when necessary.

Table 9. Categories for the 24 h moving average concentrations of PM 2.5 in the European Air Quality
Index (EAQI) [109].

Category PM 2.5 Concentration (µg/m3)

Very Good 0–10

Good 10–20

Moderate 20–25

Poor 25–50

Very Poor 50–75

Extremely Poor >75
Green: Very Good; Light Green: Good; Yellow: Moderate; Orange: Poor; Dark Orange: Very Poor;
Red: Extremely Poor.

Figure 12 shows the mean aerosol optical depth (AOD), which provides a general
assessment of the proportion of various aerosols. The AOD (aerosol optical depth) values
and the proportions of various aerosols provide insights into the composition of particulate
matter in the atmosphere. In the context of urbanization, transportation, and industrial data,
organic aerosols (45.95%) could be related to emissions from various sources, including
vehicles and industries. Organic aerosols often contain carbon compounds and can originate
from the incomplete combustion of fossil fuels, which is common in urban areas with
high vehicular traffic and industrial activity. Black carbon (3.09%) is a component of fine
particulate matter that is primarily emitted from the combustion of fossil fuels, especially
diesel engines. This aerosol component can be linked to vehicular emissions, particularly in
urban areas with heavy traffic. Sulfate aerosols (32.38%) are often associated with industrial
processes and power generation. Urban and industrial areas with significant sulfur dioxide
(SO2) emissions can contribute to the formation of sulfate aerosols. Dust (17.68%) may be
influenced by land use changes associated with urbanization, such as construction and
road development. Additionally, dust aerosols can be generated in arid regions or areas
with minimal vegetation. Other aerosols (0.94%) may include various aerosols of different
origins. Depending on the specific composition, these aerosols can be associated with
diverse urban, transportation, or industrial activities.

ISPRS Int. J. Geo-Inf. 2024, 13, x FOR PEER REVIEW 21 of 33 
 

 

 
Figure 12. Breakdown of aerosols observed at 550 through CAMS. 

Understanding the proportions of these aerosols in the AOD values is essential for 
assessing air quality and identifying potential sources of pollution in urban and industrial 
regions. The data suggest that multiple factors, including urbanization, transportation, 
and industrial emissions, can contribute to the composition of aerosols in the atmosphere, 
ultimately affecting air quality and public health. 

The source apportionment data for air pollution shown in Figure 13 can be explained 
in the context of various factors, including vehicles, industries, population, and urbaniza-
tion. The highest contributor to air pollution in these data was transportation, with a value 
of 58.46%. This indicates that a significant portion of the air pollution was linked to vehicle 
emissions. The increase in the number of vehicles, especially in urban areas, as a result of 
population growth and urbanization can lead to higher emissions of pollutants. Industrial 
activities, which accounted for 6.58%, contribute to air pollution, but their share was rela-
tively small compared to transportation emissions. However, industries were still a note-
worthy source of pollutants in the study area, and their impact may be more pronounced 
in industrial zones within urban areas. Waste burning (4.10%) contributes to air pollution, 
and this source can be associated with both domestic and commercial activities within 
urban regions. As urbanization occurs, the generation of waste can increase, leading to 
more burning activities. Domestic (11.66%) sources include household activities like cook-
ing and heating, which can produce pollutants. As urban populations grow, the number 
of households and domestic activities also increases, potentially elevating emissions from 
these sources. Commercial (1.49%) emissions, including those in business districts, con-
tributed to air pollution to a lesser extent within the study area. However, with urbaniza-
tion, there is often an expansion of commercial areas and businesses, which may lead to a 
proportionate increase in emissions. Dust (17.67%) emissions are strongly linked to ur-
banization and construction activities. As urban areas expand and undergo development, 
there is more construction, road building, and land disturbance, all of which can result in 
the release of dust into the air. In short, source apportionment data underscore the com-
plex interplay of various factors in urban areas. Increases in population, urbanization, and 
industrialization lead to more vehicles, industrial emissions, domestic and commercial 
activities, and construction, all of which can collectively contribute to air pollution. Un-
derstanding the sources of pollution is crucial for implementing effective strategies for 
mitigating air quality issues and improving public health. 

Figure 12. Breakdown of aerosols observed at 550 through CAMS.

Understanding the proportions of these aerosols in the AOD values is essential for
assessing air quality and identifying potential sources of pollution in urban and industrial
regions. The data suggest that multiple factors, including urbanization, transportation,
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and industrial emissions, can contribute to the composition of aerosols in the atmosphere,
ultimately affecting air quality and public health.

The source apportionment data for air pollution shown in Figure 13 can be explained in
the context of various factors, including vehicles, industries, population, and urbanization.
The highest contributor to air pollution in these data was transportation, with a value
of 58.46%. This indicates that a significant portion of the air pollution was linked to
vehicle emissions. The increase in the number of vehicles, especially in urban areas, as a
result of population growth and urbanization can lead to higher emissions of pollutants.
Industrial activities, which accounted for 6.58%, contribute to air pollution, but their share
was relatively small compared to transportation emissions. However, industries were
still a noteworthy source of pollutants in the study area, and their impact may be more
pronounced in industrial zones within urban areas. Waste burning (4.10%) contributes
to air pollution, and this source can be associated with both domestic and commercial
activities within urban regions. As urbanization occurs, the generation of waste can
increase, leading to more burning activities. Domestic (11.66%) sources include household
activities like cooking and heating, which can produce pollutants. As urban populations
grow, the number of households and domestic activities also increases, potentially elevating
emissions from these sources. Commercial (1.49%) emissions, including those in business
districts, contributed to air pollution to a lesser extent within the study area. However,
with urbanization, there is often an expansion of commercial areas and businesses, which
may lead to a proportionate increase in emissions. Dust (17.67%) emissions are strongly
linked to urbanization and construction activities. As urban areas expand and undergo
development, there is more construction, road building, and land disturbance, all of
which can result in the release of dust into the air. In short, source apportionment data
underscore the complex interplay of various factors in urban areas. Increases in population,
urbanization, and industrialization lead to more vehicles, industrial emissions, domestic
and commercial activities, and construction, all of which can collectively contribute to air
pollution. Understanding the sources of pollution is crucial for implementing effective
strategies for mitigating air quality issues and improving public health.
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3.4. Variations in Weather Data and Effect on Heat Index from 1990–2020

The data provided in Table 10 cover three decades, showing the monthly variations in
climate parameters from 1991 to 2020 in the Peshawar Valley, including the maximum tem-
perature (◦C), minimum temperature (◦C), mean relative humidity (%), mean rainfall (mm),
and calculated heat index (HI) values. The dataset compilation involved the collection and
analysis of monthly values for each parameter for all the points from the month of May to
September. Calculating the mean temperature involved the process of averaging the daily
temperature recorded throughout each month, and a similar approach was used to compute
the mean relative humidity, which was obtained from the monthly humidity values. The
mean rainfall was determined by taking the average of the monthly precipitation values.
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The extensive dataset provides detailed insight into the climatic conditions in the Peshawar
Valley throughout the years, which can enable researchers and meteorologists to monitor
the weather, including trends, changing patterns, and potential implications for both the
local environment and the well-being of the community. Remarkably, the data revealed
a substantial variation in the temperature, humidity, and heat index values throughout
the years.

Table 10. Climatic data and heat index (HI) values for three decades (1990–2020).

Year Max Temp (◦C) Min Temp (◦C) RH (%) RF (mm) Max HI (◦C) Min HI (◦C)

1991–2000 42.94 19.009 31.789 27.366 50.54 17.81
2001–2010 42.01 19.431 39.308 39.597 53.19 18.48
2011–2020 40.86 19.189 47.397 69.71 55.48 18.35

Table 10 provides a detailed summary of the climatic data and heat index (HI) values
spanning the three decades (1990–2000, 2001–2010, and 2011–2020), presenting insights
into the fundamental meteorological parameters. The presented dataset incorporates the
maximum temperature, minimum temperature, relative humidity (RH) as a percentage,
rainfall (RF) measured in millimeters, and the corresponding calculated values of the heat
index (HI).

The information presented in Table 10 encapsulates the fascinating trends in the
climatic conditions across the three decades. The chronological progression highlights a
notable pattern in the maximum and minimum temperature, relative humidity, rainfall,
and the substantial heat index.

Notably, during the specified decades, a discernible decrease was observed in both
the maximum as well as the minimum temperature over the years. For the initial decade
1991–2000, the maximum temperature was recorded as 42.94 ◦C, with a corresponding
minimum temperature of 19.009 ◦C. In the subsequent decade (2001–2010), the maximum
temperature slightly decreased to 42.01 ◦C, while the minimum temperature showed a
small increase, reaching 19.431 ◦C. Eventually, during the last decade (2011–2020), the
maximum temperature continued to decrease, reaching 40.86 ◦C, while the minimum
temperature experienced a decline, reaching 19.19 ◦C.

However, a noticeable aspect of the data is the escalating trend observed in the heat
index values. Contrastingly, despite the decreasing trend in the maximum temperature,
the HI values consistently continued to rise. In the 1991–2000 decade, the maximum HI
value reached at 50.54 ◦C, subsequently progressing to 53.19 ◦C in the following decade of
2001–2010, and in the most recent decade of 2001–2020, it further intensified to 55.48 ◦C.
The HI over the last three decades is of huge concern, as the HI escalated 5 ◦C, surging
from 50.54 ◦C to 55.48 ◦C. This observation can be correlated with the escalating levels of
the relative humidity (RH). In the 1990s, the RH stood at 31.789%, after which there was a
clear rise, with the RH increasing to 39.308% from 2001 to 2010, and there was a similar
subsequent increase to 47.40% from 2011–2020. Correspondingly, the RF recorded a value
of 27.366 mm from 1991–2000, subsequently showing an upward trend in the RF pattern,
where it stood at 39.597 mm from 2001–2010; similarly, in the last decade of 2011–2020, the
RF was recorded as 69.71 mm. The variations and increases in the RF patterns serve as the
contributing factors to the increased RH level. Increases in humidity levels exert a crucial
influence on the heat index, highlighting the significance of taking not only increasing
temperatures but also humidity into account when assessing the real-world consequences
of climate change on day-to-day living conditions.

The upward trend in the heat index values indicates a trend towards more uncomfort-
able climatic conditions, raising significant concerns for both the environment and potential
health risks to human well-being. Extreme heat can strain the human body’s ability to cool
itself, leading to heat stress, heat exhaustion, and potentially life-threatening conditions like
heat stroke. The likelihood of experiencing heat stroke is substantial if the HI is above 54 ◦C,
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as stated in Table 3. The increase in the HI value reflects an intensification of heat-related
challenges, emphasizing the urgency of adaptive measures, public health interventions,
and sustainable practices to mitigate the adverse impacts of climate change on both the
human societies and the natural environment.

3.4.1. Heat Index Dynamics: Exploring the Impact of Air Quality and Emission Factors

The heat index (HI) is influenced by critical factors, and the preceding sections pre-
sented crucial insights into these influences through the provided data. Highlighting the
increasing influence of transportation and industrial emissions on the region’s environmen-
tal dynamics, the substantial surge in transportation and the consistent growth in industrial
operations from 1990 to 2020 stand out prominently. These emissions, including an array
of both heat-trapping gases and PM 2.5, play a crucial role in contributing to the escalation
in the heat index. Moreover, the existence of PM 2.5 produced by both transportation and
industrial operations has a fundamental role in shaping the heat index. The absorption
and re-radiation of heat affects temperature levels and are affected by microscopic airborne
particles present in the air, particularly those found in PM 2.5. The variations in the yearly
PM 2.5 levels are correlated with vehicular and industrial emissions, which also indicates a
possible influence on the heat index. Moreover, the composition of different aerosols, as
shown in Figure 14, is reflected by the involved interaction of urbanization, transportation,
and in various industrial activities. Organic aerosols such as black carbon and sulfate
aerosols are components that are capable of interacting with solar radiation, modifying
heat levels within the urban environment, and they consequently play a crucial role in
influencing the heat index. Lastly, the distribution of the source data unveils the involved
relationship between emission sources and urbanization. The crucial role of transporta-
tion in air pollution, propelled by population growth and urbanization, underscores its
influence on the local temperature and heat index. On the other hand, industrial activities,
along with other contributing sources, also play a distinctive role that contributes to jointly
influencing the thermal dynamics of the region.
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Figure 14. Graphical visualization of climatic data and heat index (HI) (1990s–2020).

In a nutshell, the data regarding the air quality, emission sources, and their intercon-
nections highlight the complex factors that influence the heat index. Understanding these
factors is crucial for effective urban planning and for creating strategies to adapt to climate
change. The goal is to minimize the influence of life-threatening heat and to improve the
overall quality of life in urban areas. To be successful in this goal, metropolitan regions
can adopt strategies like expanding green spaces to improve the urban environment and
improving infrastructure designed for greater resilience to heat-related challenges, and
strategic planning for sustainable urban development is essential for fostering long-term
environmental and community well-being. Additionally, public awareness campaigns and
promoting community engagement can empower residents to adopt practices that can
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contribute to minimizing the impact of extreme heat and contribute to a more sustainable
urban environment.

3.4.2. Correlation between HI and Population, Built-Up Area, Vehicle, Industrial, and
Climatic Data

The HI was strongly positively correlated with built-up area (0.98), population (0.99),
vehicles, and running industries (0.97), as presented in Figure 15. This implies that as these
factors increase, the heat index significantly increases. Urbanization, population density,
and vehicular activity contribute to higher heat index values. The heat index (HI) increases
primarily due to a combination of several key factors, including urbanization, population
growth, and the rising number of registered vehicles. Here is an in-depth discussion of
how these elements affect the rise in the HI.
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Population Growth: As the population of a region grows, urban areas see a rise in
population density, and a higher population density frequently results in greater human
activity, consumption of energy, and heat production. As a result, local temperatures rise,
and the heat index is elevated.

Urbanization and Built-Up Areas: Built-up areas featuring heat-retaining surfaces like
concrete and asphalt grow in number as areas undergo substantial growth and become
more urbanized. Urbanization contributes to the formation of “urban heat islands”, marked
by notably elevated temperatures and heat index (HI) values in contrast to the surrounding
rural areas, and excessive HI values are the consequence of these heat islands.

Number of Registered Vehicles and Industries: The rise in the number of registered
vehicles on the road and the number of running industries is linked to higher heat and
emissions produced by traffic and industries. Heat-trapping gases are emitted by trans-
portation and industrial operations, which raise the temperature in urban areas and, in
turn, the heat index.

In a nutshell, the combined effects of population expansion, urbanization, and in-
creasing numbers of vehicles and industrial activities cause the heat index to rise. These
factors contribute to the formation of localized heat pockets in urban regions, raising the
heat index levels. In order to mitigate the adverse consequences of excessive heat while
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improving urban living conditions, it is essential to take these aspects into consideration
when developing urban planning and climate adaptation methods.

Furthermore, from 1990 to 2020, the heat index surged despite trends indicating a
drop in air temperature, an upward trend in relative humidity, and a concurrent increase in
rainfall. This indicates that the higher heat index values during this period were mostly
caused by humidity, which is influenced by rainfall patterns. The substantial rise in the
relative humidity brought on by more rainfall can be partially attributed to the observed
increase in the HI. Moreover, there was an obvious impact of urbanization expansion,
which is defined as the spread of impermeable surfaces like cement and asphalt. After the
occurrence of rainfall, these surfaces delay the natural drainage process, causing water to
remain there for prolonged periods following rainfall storms. The local relative humidity
rises as a result of this water retention effect, which raises the heat index even more in
urban areas. When evaluating the heat index and its related consequences in the context of
urban environments, it is important to take into consideration a variety of factors due to
the complex connections between these climatic and urbanization aspects.

4. Discussion

Urbanization is a global phenomenon with well-documented environmental conse-
quences [44]. This study investigated the interconnected impacts of population expansion,
land use and land cover (built-up areas) dynamics, air quality variations, and climatic
conditions on the heat index (HI) within the Peshawar Valley over a three-decade period
(1990–2020). Our findings corroborate existing knowledge regarding the influence of ur-
banization on LULC changes and rising temperatures [6]. However, this study extends
this knowledge base by analyzing the combined effect of these factors on the HI, a crucial
indicator of thermal comfort and potential health risks. The findings of this study presented
an in-depth understanding of how population, urbanization, anthropogenic activities, and
climatic variations have different consequences that influence the environment.

Prior research has established a connection between urban sprawl and increased
built-up areas and altered LULC patterns [63]. This study aligns with these findings,
demonstrating a statistically significant expansion of built-up areas in the Peshawar Valley
coinciding with population growth. Analyzing the changes in population and the transfor-
mation in LULC highlights the significant infrastructure developments and urbanization in
the Peshawar Valley. Notably, from 1990 to 2020, there was a significant increase in popu-
lation, from 5.3 million to 12.6 million, while the built-up area increased from 489.51 km2

to 1088.58 km2, as shown in Figures 4 and 6. The substantial increase in the built-up area
was necessitated due to the large of number of the people who migrated to the Khyber
Pakhtunkhwa Province during the US–Afghan war and due to severe instability in the
region between 2000–2005 [59,110]. This surge is closely linked to the significant increase in
population, highlighting the mutual connection between the population and the expansion
in the built-up region during the same period, as shown in Figure 7.

Variations in the LST are caused by changes in LULC, and our results are consistent
with the established understanding that variations in LULC cause variations in the LST
because different LULC patterns possess their own unique characteristics of reflectance
and transpiration of water [111]. The LST results shown in Figure 9 indicate that there was
a consistent increase in the temperature over the 30 years studied, presenting a warming
trend in the Peshawar Valley. The temperature showed a consistent increase and recorded
a higher increase in 2020 compared to the 1990s. The increase in temperature could have
been caused by the increasing demand for artificial materials, such as asphalt and concrete,
for the expansion of the built-up regions [6]. The results shown in Figure 6 indicate that
built-up region expanded over the three decades, thus effectively influencing the LST.

Furthermore, this study builds upon existing knowledge concerning the negative
environmental consequences of rapid urbanization, particularly air quality deterioration
due to various anthropogenic activities, including biogeochemical and biochemical pro-
cesses [44]. Pakistan has witnessed a rapid increase in vehicular traffic on its roads and
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industrial expansion [45], and our findings reveal a clear correlation between population
growth and increased vehicular traffic and industrial activity within the Peshawar Valley,
aligning with observations from other studies on rapid urbanization in developing coun-
tries. Similarly, Figure 10 highlights a significant increase in vehicular traffic on the roads
and also a gradual increase in industrialization in the Peshawar Valley, indicating that
different biochemical mechanisms and the emission of various gases into the atmosphere
have serious consequences for the environment, especially air quality. This aligns with
established knowledge that these anthropogenic activities are major contributors to air
pollution, particularly fine particulate matter (PM 2.5) emissions, significantly impacting air
quality [45,48]. The observed “Very Poor” and “Extremely Poor” air quality categories in
the Peshawar Valley, as measured by the European Air Quality Index (EAQI) [109] shown
in Table 9, highlight the critical need to address air pollution in the region, as evidenced
by the various aerosol compositions depicted in Figure 12 and the variations in the PM
2.5 levels shown in Figure 11, indicating the complex interplay between urbanization,
transportation, and industrial activities influencing the region’s air quality and contributing
to climate change.

Temperature studies in urban areas are vital for assessing thermal comfort, energy
consumption, and emissions of greenhouse gases and pollutants, which contribute to
global warming alongside secondary effects on the local climate [12–14]. The climatic data
provided in Table 10 offer a comprehensive overview of the temperature trends, rainfall
patterns, relative humidity, and heat index data spanning the three decades in the Peshawar
Valley. The analysis depicted in Figure 14 reveals substantial disruptions in rainfall patterns
over the last decade, resulting in higher relative humidity (RH) levels, contributing to
elevated heat index (HI) values. These trends indicate a shift towards increasingly un-
comfortable climatic conditions, posing potential health risks for residents in the region,
particularly as HI values exceeding 54 degrees’ Celsius fall into the category of “Extreme
Danger”, presenting a substantial risk of heat stroke [85,106]. Additionally, rapid increases
in urbanization generate enormous challenges, influencing local and regional climatic
conditions [44]. Furthermore, the expansion of built-up areas over the past three decades
has exacerbated the HI levels, potentially driven by an increased demand for artificial
materials like asphalt and concrete, which alter land use and land cover (LULC) patterns
and contribute to higher temperatures in urban areas due to their unique reflectance and
transpiration characteristics [6,111]. Our study highlights the significant role of urbaniza-
tion, air quality deterioration, and anthropogenic activities such as increased traffic and
industrial emissions in shaping the HI within the region. We observed a strong correla-
tion between the HI and various factors, including changes in climatic data, population
growth, expansion of built-up areas, and intensification of traffic and industrial activity.
This correlation underscores the intricate relationship among these factors, influencing the
heat index of the Peshawar Valley. These findings corroborate recent research emphasizing
the complex interplay between urbanization, altered LULC patterns, and local climatic
conditions, ultimately impacting thermal comfort and potentially elevating health risks
associated with heat-related illnesses [85,106].

This study also offers a unique contribution to the existing body of research as follows:
Measuring the interconnected effects of population expansion, LULC dynamics, air

quality variations, and climatic conditions on the HI within a specific urban setting (the
Peshawar Valley).

• Highlighting the importance of the HI as a metric for understanding the combined
effects of urbanization and climate change on human health and thermal comfort.

• Providing valuable data for urban planners and policymakers in developing sustain-
able strategies to mitigate the negative environmental consequences of urbanization
in the Peshawar Valley.

These insights can inform the development of targeted interventions such as promoting
green infrastructure projects, creating walkable and cyclable urban environments to reduce
reliance on private vehicles, and implementing stricter regulations on industrial emissions.
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5. Conclusions

In conclusion, the in-depth analysis presented in “Urbanization, Climate Change, and
Demographic Shifts: A Comprehensive Investigation of the Peshawar Valley” revealed
a wide range of interlinked findings. Collectively, these findings indicate the significant
consequences of rapid urbanization, a shift in demographics, and climate change in the
region as a whole. Over the three-decade study period, rapid urbanization was witnessed
within the Peshawar Valley. The population increased significantly from 5.3 million in
1990 to a surprising 12.6 million in 2020. The built-up areas also recorded a considerable
increase, rising from 489.51 square kilometers to 1088.58 square kilometers. The increase
in the population within the region, driven by a number of factors, has contributed to
a large number of anthropogenic activities, including the propagation of transportation
and the establishment of industries. These developments have left a noticeable effect on
the environment, affecting air quality standards. The rising values of the heat index (HI)
indicate the presence of an urban heat island effect within the region. This phenomenon
not only has consequences on the environment but also affects the public and psychological
health of the residents.

Furthermore, the shifting climate of the Peshawar Valley, as evidenced by the steady
rise in the land surface temperature (LST) and heat index (HI) readings, provides greater
clarity as to the complex relationship between urbanization and climate change. In par-
ticular, over the studied decades, the land surface temperature (LST) has progressively
risen. The most extreme temperature ever recorded rose from 28.11 ◦C in 1990 to 30.30 ◦C
in 2020, reflecting the consequences of these changes on the natural environment. The heat
index, which has a strong correlation with population, built-up areas, and the number of
vehicles and industries, witnessed a substantial rise. In the final ten years of the study, the
HI reached a maximum mean heat index value of 54.48 ◦C. This rise brings attention to the
area’s increasing heat stress and highlights the combined effects of increasing urbanization,
increasing population, and the urban heat island effect. The region’s rising degree of heat
stress is highlighted by the escalating surge, which is a sign of the combined effects of
increasing urbanization, population growth, and the urban heat island effect. Together,
these results emphasize the intertwined challenges and opportunities brought about by
the complicated dynamics of urbanization, climate change, and demographic shifts in the
Peshawar Valley. To address these complex issues comprehensively, integrated strategies
aimed at preserving the environment, enhancing public health, and ensuring the resilience
of the community in the face of evolving urban and climatic forces are imperative.

The anticipated future scenarios suggest that the Peshawar Valley is likely to encounter
significant environmental challenges. However, the outcomes of this study unveil encour-
aging trajectories for the region, signaling a pathway to enhancing living conditions amid
urban expansion. The examination of the LULC dynamics underscores the substantial
urbanization and infrastructure development, exemplified by a noteworthy expansion
in the built-up area in the region. This highlights the immediate need for sustainable
urban planning and adept land use management to meet the escalating urban demands
while upholding the delicate equilibrium of environmental and socio-economic dynamics.
Concurrently, the land surface temperature (LST) analysis discloses a consistent warming
trend, indicating the broader implications of climate change. The observed increase in both
the LST and heat index (HI) over the years underscores the pressing significance of consid-
ering not only temperature but also humidity when evaluating the implications of climate
change on daily life. The intricate relationships between air quality, industrial and vehicular
emissions, climatic conditions, and their collective influence on the HI serve as pivotal con-
siderations for policymakers and environmentalists. This research provides indispensable
information for formulating targeted greening strategies tailored to the unique dynamics
of the Peshawar Valley, aiming to proactively mitigate potential eco-environmental threats
and foster sustainable urban ecosystems for its residents.

Overall, this study’s findings contribute to the existing literature by elucidating the
interconnected impacts of population growth, urbanization, industrialization, and climatic



ISPRS Int. J. Geo-Inf. 2024, 13, 239 27 of 32

variations on the environmental dynamics within the Peshawar Valley. By linking the em-
pirical results to broader theoretical frameworks, this research underscores the importance
of holistic approaches in understanding and addressing the complex challenges posed by
urbanization and climate change.

It is important to acknowledge that this study has limitations. This study acknowl-
edges the limitations in terms of data availability for assessing chronic health impacts
associated with environmental factors in the Peshawar Valley. While we aimed to analyze
the connection between environmental changes and human health, obtaining reliable data
proved challenging.

In future, research can address these limitations and expand upon the current knowl-
edge, investigating the long-term health impacts associated with chronic exposure to
elevated HI levels in the Peshawar Valley. This could involve collaborating with pub-
lic health researchers to conduct epidemiological studies, potentially analyzing existing
hospital data on heatstroke and other environment-related illnesses.

The solutions to climate change require a multi-faceted approach, including transition-
ing to renewable energy sources by shifting away from fossil fuels and towards renewable
energy sources like solar and wind power, increasing energy efficiency by improving
the energy efficiency of buildings, transportation, and industry, electrifying transporta-
tion through switching to electric vehicles and public transportation, developing carbon
capture and storage technologies that can capture and store carbon dioxide emissions,
implementing sustainable land use practices such as sustainable agriculture, reforestation,
and conservation efforts, and collaborating globally through international cooperation to
address the causes and effects of climate change. Additionally, developing and evaluating
adaptation strategies to improve thermal comfort in urban environments, such as incorpo-
rating cool roof materials and urban greening initiatives, can be an effective approach. Field
experiments or simulations can be employed to assess the effectiveness of these strategies
in mitigating the impacts of climate change and urban heat islands.
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109. Varga-Balogh, A.; Leelőssy, Á.; Lagzi, I.; Mészáros, R. Time-dependent downscaling of PM2.5 predictions from CAMS air quality
models to urban monitoring sites in Budapest. Atmosphere 2020, 11, 669. [CrossRef]

110. Raziq, A.; Xu, A.; Li, Y.; Zhao, Q. Monitoring of land use/land cover changes and urban sprawl in Peshawar City in Khyber
Pakhtunkhwa: An application of geo-information techniques using of multi-temporal satellite data. J. Remote Sens. GIS 2016,
5, 174. [CrossRef]

111. Nasar-u-Minallah, M. Retrieval of land surface temperature of Lahore through Landsat-8 TIRS data. Int. J. Econ. Environ. Geol.
2019, 10, 70–77.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/atmos11060669
https://doi.org/10.4172/2469-4134.1000174

	Introduction 
	Materials and Methods 
	Study Area 
	Data Collection 
	Landsat Data 
	Weather Data 
	Population Data, Vehicle Data, and Industry Data 
	Air Quality Data 

	Preprocessing, Classification, and Accuracy Assessment 
	Land Surface Temperature (LST) Retrieval 
	Google Earth Engine Description 
	Atmospheric Correction and Retrieval of LST 
	Pseudo-Code or Algorithm for LST Retrieval 

	Analyzing Climatic Data to Determine Heat Index Patterns 

	Results 
	Land Use and Land Cover (LULC) Dynamics 
	Land Surface Temperature (LST) Variations Using Landsat Imagery from 1990–2020 
	Analysis of Air Quality and Relationship with Industrial and Vehicular Emissions 
	Variations in Weather Data and Effect on Heat Index from 1990–2020 
	Heat Index Dynamics: Exploring the Impact of Air Quality and Emission Factors 
	Correlation between HI and Population, Built-Up Area, Vehicle, Industrial, and Climatic Data 


	Discussion 
	Conclusions 
	References

