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Abstract: Neural Radiance Fields (NeRFs) are an emerging approach to 3D reconstruction that use
neural networks to reconstruct scenes. However, its applications for multi-view satellite photogram-
metry, which aim to reconstruct the Earth’s surface, struggle to acquire accurate digital surface models
(DSMs). To address this issue, a novel framework, Geometric Constrained Neural Radiance Field
(GC-NeRF) tailored for multi-view satellite photogrammetry, is proposed. GC-NeRF achieves higher
DSM accuracy from multi-view satellite images. The key point of this approach is a geometric loss
term, which constrains the scene geometry by making the scene surface thinner. The geometric loss
term alongside z-axis scene stretching and multi-view DSM fusion strategies greatly improve the
accuracy of generated DSMs. During training, bundle-adjustment-refined satellite camera models
are used to cast rays through the scene. To avoid the additional input of altitude bounds described
in previous works, the sparse point cloud resulting from the bundle adjustment is converted to an
occupancy grid to guide the ray sampling. Experiments on WorldView-3 images indicate GC-NeRF’s
superiority in accurate DSM generation from multi-view satellite images.

Keywords: neural radiance field; multi-view satellite images; geometric constraint; digital surface model

1. Introduction

Orbiting high above the Earth, satellites efficiently gather geospatial information, pro-
viding valuable resources for numerous human activities [1-6]. Utilizing images captured
by satellites, multi-view satellite photogrammetry can generate large-scale 3D models of
urban areas represented as digital surface models (DSMs), which provide an essential data
foundation for urban design, management, and evaluation [7-12] in the context of rapid
worldwide urbanization [13], facilitating the comprehensive analysis of urban areas.

Multi-view satellite photogrammetry pipelines predominantly focus on multi-view
stereo (MVS) methods [14-18], while some recent works integrating Neural Radiance Fields
(NeRFs) [19] have been proven to achieve better results [20,21]. Using neural network
and volume rendering [22] techniques, NeRFs synthesize new photorealistic images from
2D images and are an emerging approach to 3D reconstruction. Due to challenges presented
by satellite camera characteristics, its applications for multi-view satellite photogrammetry
are limited by its difficulty to acquiring accurate digital surface models (DSMs). For satellite
scenes, the closely distributed viewpoints of satellite cameras pose challenges to accurately
reconstruct fine geometry, which is the main cause of poor DSM accuracy. Moreover,
during training and rendering, NeRFs use camera models to cast rays through the scene
and project them onto known image pixels. However, satellites are far from Earth, so
the large distance between the cameras and the scene poses challenges for ray sampling.
Additionally, common inconsistencies in scene appearance, such as shadow movement
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and radiometric variation among satellite images, can easily lead to a lack of convergence
during the network training process. Some works [20,21,23] have explored NeRFs for
multi-view satellite images, but the accuracy of these methods” DSM outputs must be
improved due to a lack of geometric constraint in NeRFs. Moreover, extra input of the
altitude bounds of the scene is required in these methods for ray sampling guidance. This
extra input reduces their feasibility with the goal of obtaining a DSM that represents the
altitude of the scene. Additionally, the network architecture used in these methods for
solving inconsistency issues is too complex.

To address these issues, a novel framework, Geometric Constrained Neural Radi-
ance Fields (GC-NeRFs), specifically designed for multi-view satellite photogrammetry, is
proposed. The key difference between GC-NeRF and traditional NeRF approaches is a geo-
metric loss term, which constrains the scene geometry by making the scene surface thinner,
greatly improving the accuracy of generated DSMs. Moreover, z-axis scene stretching is
conducted for finer reconstruction granularity in the z-direction, which plays a constructive
role in improving DSM accuracy. In addition, a strategy for fusing multi-view DSMs
reduces errors in obstructed areas. During training, bundle-adjustment-refined satellite
camera models [20] are used to cast rays through the scene. An occupancy grid converted
from sparse point clouds generated by bundle adjustment is used to guide ray sampling,
which reduces dependence on altitude bounds. Additionally, GC-NeRF integrates several
advanced techniques in NeRF variants [24,25] for a concise network architecture. Experi-
ments with WorldView-3 images indicate that GC-NeRF achieves higher DSM accuracy
while minimizing additional input requirements.

2. Related Work

To achieve accurate 3D reconstructions, multi-view satellite photogrammetry faces
several challenges, including limited and closely distributed viewpoints leading to ambigu-
ous elevation estimates and inconsistent illumination conditions affecting scene appearance.
In this section, relevant research on multi-view stereo and NeRF-based methods is compre-
hensively reviewed, focusing on approaches aimed at improving reconstruction accuracy
and addressing challenges specific to multi-view satellite photogrammetry.

2.1. Multi-View Stereo for Satellite Images

Multi-View Stereo (MVS) was first approached as an extension of stereo pair algorithms
by aggregating information from multiple stereo pairs. As a result, true MVS algorithms
were mainly developed to reconstruct objects from images photographed at a close distance
while considering all the images in the scene [26].

MVS approaches are widely employed for scene reconstruction from aerial and satellite
images. However, satellite images characteristic of an extremely small ratio between the
depth range and distance from the camera to the scene and inconsistent illumination
discourage the use of true MVS methods for satellite images [14]. In the case of satellite
images, MVS has traditionally employed pairwise approaches, treating multiple views in
pairs using traditional two-view stereo methods and subsequently combining pairwise
reconstructions to obtain the final results [15,27]. These methods typically involve pair
selection, stereo rectifying, dense stereo matching, triangulation, and depth fusion [28].
Semi-Global Matching (SGM) [29] is a popular choice for the stereo matching step, and
its variants such as MGM [30], tSGM [31], and semi-global block matching [32] have been
used to enhance efficiency and accuracy. However, these methods usually rely on manually
selected stereo pairs and manually designed matching strategies, which may not ensure
optimality [33]. Recently, deep learning methods such as GA-Net [34], PSM [35], and
HSM [36] have been progressively applied to satellite stereo pipelines [14,37] with some
progress. Unlike classical algorithms, deep learning methods are prone to failure or reduced
accuracy when encountering unseen scenarios [21]. Moreover, learning-based methods
often involve extensive training periods, lasting days or even weeks. Though popular, deep
learning methods are still not the preferred option in satellite stereo pipelines, but rather
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a step in classic MVS methods [14]. In general, MVS methods mainly focus on pairwise
matching and do not fully exploit the benefits of multi-view data, leading to challenges in
addressing seasonal and dynamic variations in satellite images [28].

2.2. Neural Radiance Field

Neural Radiance Fields (NeRFs) [19] represent static scenes through a continuous
volumetric function F, learned as a fully-connected neural network. This function predicts
the emitted RGB color cx = (r,g,b) and a non-negative scalar volume density ox at a
3D point X = (x,y,z) from a given viewing direction dy;e,, = (0, ¢):

F: (erview) — (Cx,Ux) (1)

Using a collection of input images and their camera poses, rays passing through the
scene are projected onto the known pixels. Each ray r is defined by a point of origin 0 and
the viewing direction; o is located at the camera’s photography center, in general. To render
the ray’s color, r is discretized into N 3D points X;, i.e., ray samples with X; = 0 + dyjerti,
where t; is the distance between o and X;. The color ¢(r) of a ray r is computed using
volume rendering [22] as:

N
c(r) = ZTi“iCi 2)

The rendered color ¢(r) results from integrating the colors c; predicted by F at different
points of the ray r. The weight w; of each point X; in r to the rendered color depends on the
opacity «; and the transmittance T;:

aj =1 —exp(—d;0;) 3)
i—1

Ti=]10-w) (4)
=1

w; = Titxi (5)

where §; is the distance between consecutive points along the ray. Additionally, the depth
along a ray is rendered using a similar weighted integration approach:

N
depth(r) =) wit; (6)
i=1

NeRFs are trained by minimizing the image loss Loss., which is computed as the mean
squared error (MSE) between the rendered color and the observed color of input images
along the rays’ projections:

Loss. = ZHC(T’) — cgt(r)Hg (7)

reR

where cg(r) is the observed color, and R is the set of rays in each input batch. During
training, F is gradually optimized and predicts accurate colors and densities at different 3D
points in the scene.

Using the method introduced above, NeRFs have garnered significant attention for
their ability to generate high-quality 3D reconstructions from 2D images. NeRFs’ success
inspires numerous extensions and adaptations to address various challenges and applica-
tion domains [38-42]. Many works have improved NeRF rendering effects, such as optical
effects [25,43-46], dynamic scenes [47-51], and realistic rendering [52,53]. Other studies
focus on its application in multi-view satellite photogrammetry, described in detail in the
next subsection.
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2.3. NeRF Variants for Multi-View Satellite Photogrammetry

Recent efforts have explored NeRFs’ potential for satellite imaging. S-NeRFs [23] pio-
neer NeRFs’ application in multi-view satellite photogrammetry, leveraging sun direction
dsun for precise geometry and building shadow rendering. A complex remote sensing
irradiance model is adopted in S-NeRF:

F: (ersun) - (ﬂX, UX/SXISkyX) (8)

Physically, ax represents albedo color, and sx represents the ratio of incoming solar
light with respect to the diffuse sky light sky . The color of X is computed as:

cx = axsx +ax(1 —sx)skyy 9)

Subsequent works typically follow the irradiance model of S-NeRF [20,21], though it is
very complex. Building on S-NeRFs, Sat-NeRFs [20] incorporates transient object modeling
similar to NeRF-W [54] and satellite-adapted camera representations, enhancing accuracy
by integrating RPC camera models and applying bundle adjustment. EO-NeRFs [21] focus
on shadow modeling to align building shadows with scene geometry, resulting in highly
accurate and detailed DSM reconstruction. In addition, SatelliteNeRFs [55] directly apply
NeRFs to satellite images and can extract mesh, but does not modify special features of
satellite images.

Despite progress in simplifying satellite sensors’” imaging process, the irradiance model
is not entirely accurate. Moreover, these methods require additional input from altitude
bounds for sampling guidance, reducing their feasibility. Their training speed is also very
low. Various strategies have been adopted to accelerate NeRFs since their proposal in 2020,
including optimizing sampling [56,57], scene decomposition [58,59], and combining explicit
models [60,61]. Instant-NGP [24] adopts a different approach with a network architecture
that uses a multi-resolution hash grid for position encoding and combines it with an
occupancy grid to guide sampling, accelerated 3000 times while significantly reducing
memory usage. Integrating these methods into multi-view satellite photogrammetry greatly
improves efficiency. Table 1 shows the disadvantages of previous NeRF-based methods for
multi-view satellite photogrammetry, which are solved with GC-NeRFs.

Table 1. Comparison of NeRF-based multi-view satellite photogrammetry approaches.

Training Time Appearance Complex Irradiance Bounds of
Embedding Module Model Altitude
S-NeRFs [23] 8h no need yes need
Sat-NeRFs [20] 10h need yes need
EO-NeRFs [21] 15h need yes need
GC-NeRFs 6 min no need no no need

The advantages of these approaches are shown in bold. An NVIDIA GPU with 12 GB RAM was used for the
training times.

Overall, NeRFs present a promising solution to address these challenges in multi-view
satellite photogrammetry. However, NeRFs are still immature at processing satellite images.
Adapting NeRFs to multi-view satellite photogrammetry poses unique challenges posed
by satellite camera characteristics. This paper aims to bridge these issues by proposing a
novel approach, GC-NeRFs, specifically designed for multi-view satellite photogrammetry
to improve reconstruction accuracy.

3. Methods

GC-NeRFs aim to enhance geometric reconstruction accuracy for satellite scenes
and generate accurate DSMs. The overview of GC-NeRFs is shown in Figure 1. Its key
contributions include z-axis scene stretching, an occupancy grid converted from sparse
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point clouds, DSM fusion, and a geometric loss term for network training, which are shown
in bold. After applying a bundle adjustment to the satellite images, refined camera models
and a point cloud are obtained (Figure 1a,b). Then, the scene is stretched in the z-axis to
enlarge the scale in the vertical direction (Figure 1c). Afterward, satellite camera models
are used to cast rays through the scene, and an occupancy grid converted from the sparse
point cloud generated by the bundle adjustment is used to guide sampling along the rays
(Figure 1d). These sample points are input into the GC-NeRF network to query colors and
densities. GC-NeRF is trained with the image loss and geometric loss terms proposed in
Section 3.3 (Figure 1e). After optimization, GC-NeRF renders multi-view DSMs (Figure 1g)
using volume rendering (Figure 1f). Additionally, the fusion of multi-view DSMs also
contributes to accuracy improvement (Figure 1h).

Rays and Samples

. \ i .
NG Geometrc
Models LOSS
=
.
Sparse Image
Cioud _ Loss
(a) (b) (©) (d) (e)
Multiview | == Bundle == | Z-axis Scene |==| Occupancy |==| Network
Images Adjustment Stretching Grid Training
L. R e Ve ﬂ
() (2 (®
DSM — Multiview = Volume
Fusion DSMs Rendering

Figure 1. Overview of GC-NeRFs. GC-NeRFs use satellite images and corresponding satellite camera
models to reconstruct scenes and generate accurate DSMs. Their key contributions include z-axis
scene stretching, an occupancy grid converted from sparse point clouds, DSM fusion, and a geometric
loss term for network training, which are shown in bold.

3.1. Z-axis Stretched Radiance Model

GC-NeRF represents the scene as a static surface. However, minimizing Loss. in
Formula (7) can lead to a lack of convergence due to inconsistent appearances between
satellite images. Therefore, the sun direction ds,, was used for appearance encoding,
turning Formula (1) into:

F: (X, dyiew, dsun) — (cx,0x) (10)

For appearance encoding, ds,, efficiently handles different weather conditions or
seasonal variations in satellite images, whereas without d,,,, the experiments would fail.
Compared to previous works [20], which used an extra appearance module, GC-NeRF’s
network architecture is very concise. Furthermore, GC-NeRF avoids using the complex
remote sensing optical model of Formulas (8) and (9) proposed by S-NeRF [23] to ensure
network simplicity.

Fast convergence is achieved by integrating multi-resolution hash encoding (MH)
proposed in Instant-NGP [24]. MH divides the scene into multi-resolution voxel grids and
uses hash tables to store optimizable space features at each grid cell vertex (Figure 2a).
Each input 3D coordinate X is encoded into a 32-length vector.

Unlike typical scenes, satellite scenes are usually flat, with a significant difference
in horizontal and vertical scales as their horizontal range is large and vertical range is
small (Figure 2a).
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(a) Original scene (b) Suitable stretched scene (c) Over stretched scene

Figure 2. Z-axis scene stretching. (a) The original satellite scene is flat. (b) The suitably stretched scene
makes full use of multi-resolution hash encodings. (c) The over-stretched scene presents excessive
hash conflicts.

This study aimed to improve the accuracy of output DSMs in the z-direction. To make
the reconstruction granularity in the z-direction finer, z-axis scene stretching was conducted

so that X = (x, v, Zsretched):

1

Zsretched = S_Z (11)
z

where s; denotes a stretching scale factor between 0 and 1. Stretching only on the z-
axis makes the scene scale more coordinated and increases the sampling density in the
z-direction, thus improving the utilization rate of the hash grid and DSM accuracy. How-
ever, over-stretching (Figure 2c) leads to excessive hash conflicts in the multi-resolution
hash encodings, reducing model performance. Therefore, s, should not be too small. Set-
ting s, to 0.80 optimizes model performance, as discussed in Section 5. Stretching the
z-axis of the scene will deform the 3D model, resulting in corresponding squeezing when
outputting DSMs.

The architecture of the GC-NeRF network is shown in Figure 3. The network receives
3D spatial coordinate X, sun direction ds,;;, and viewing direction d,;.,, as inputs to predict
the volume density ox and color cx at X. F, and F. are small fully-connected networks.
The former has only one hidden layer, whereas the latter has two hidden layers, with each
hidden layer containing 64 neurons and activated by the ReLU function. Furthermore,
the output oy is activated by an exponential function and the output cx is activated by
a sigmoid function. Spherical harmonic encodings [61] were used to encode the viewing
direction and sun direction to a 16-length vector, respectively.

F
I .
i |

Fy +

Cx

Multi-resolution hash encoding of X' . Spherical harmonic encoding of d

. Fully-connected layer with 7 neurons € Concatenate

Figure 3. The architecture of the GC-NeRF network. The model receives 3D spatial coordinate X, sun
direction ds;,, and viewing direction d,;.,, as inputs to predict the volume density ox and color cx at X.
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3.2. Occupancy Grid Converted from Sparse Point Cloud

In this paper, satellite camera models are parameterized with rational polynomial
coefficients. GC-NeRF is trained by casting rays from bundle-adjustment-refined satellite
camera models [20,62] into known image pixels. To render a ray’s color, NeRFs typically
require multiple samples, which can be challenging for satellite images due to their vast
distance from Earth. Using the same 128-point sampling approach as NeRFs would yield
poor results. Previous methods (such as Sat-NeRFs [20], EO-NeRFs [21], S-NeRFs [23],
and RS-NeRFs [63]) addressed this problem by sampling only within the scene’s altitude
bounds, which are difficult to acquire. In fact, obtaining the altitude of the scene is the goal
of multi-view satellite photogrammetry.

When applying bundle adjustment, an extra point cloud indicates scene geometry
generation. Therefore, this paper proposes a method of converting the sparse point cloud
to an occupancy grid (Figure 4a,b) for ray sampling guidance, eliminating the need to input
altitude bounds.

i O O
i T O 00O
H O 000
: O 000
i O 0O
i a>001 S
: /-:‘I,'?’&:;);{;_ L T - update
(a) Point Cloud (b) Bit Grid (¢) Float Grid (d) predicted ar value

Figure 4. The converting and updating of the occupancy grid. (a) The point cloud is freely obtained
from the bundle adjustment. (a,b) The point cloud is converted into a bit occupancy grid. (b,c) The
bit grid cells are classified by the float grid cells. (c,d) The float grid cells are updated by the « value
predicted from the network.

The occupancy grid divides the entire scene into 128 cells, with each cell storing a bit
to indicate whether an object occupies the area (Figure 4b). Empty areas are skipped during
ray sampling, reducing the number of samples to increase training and rendering efficiency.
When converting point clouds to occupancy grids, the occupancy tensor is set to positive
if a point falls within its cell (Figure 4a,b). However, due to sparsity and errors in the
point cloud, training cannot solely depend on the initial occupancy grid. To mitigate this,
volume density is re-evaluated every 16 training iterations to update the occupancy grid
following previous works [24,64]. Cells in the occupancy grid are classified based on their
counterparts, float grid cells, which store cell density as float values (Figure 4b,c). During
updates, float grids decay old density by 0.95 and sample an alternative density value from
a random point in the cell. In this way, the maximum of old and alternative densities is
retained (Figure 4c,d). A classification threshold, opacity «, derived from density and step
size using Formula (3), determines non-empty cells (« > 0.01).

3.3. Geometric Loss Term

A geometric loss term is designed to constrain scene geometry. Multi-view satellite
photogrammetry mainly focuses on geometric accuracy, while original NeRFs only con-
strain the appearance without explicitly constraining the geometry. Geometric consistency
is implicitly constrained by the intersection of rays. However, camera parameters produce
inevitable errors, creating inconsistent depths of different rays intersecting at the same
point. Satellite cameras observe the scene from closely distributed viewpoints with the
same camera parameter errors, i.e., at angle 0, the geometric error is greater in the satellite
scene (Figure 5a).

The large geometric error leads to a wide range of depths and sample weights along
rays dispersed around the true depth (left graph in Figure 5b). Obtaining true depth from a
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large depth range is difficult and decreases DSM accuracy. To reduce depth estimation error,
a geometric loss term is introduced for GC-NeRFs to constrain scene geometry as follows:

Lossg = ) ) (ti— depth(r))*w; (12)

reRier

Ordinary scene Satellite scene Without Lossg With Loss,

. g DA

(Z
error, Y ¥

€ITOr;

t t

(a) The error of elevation caused by camera errors (b) The distribution of weights along a ray

Figure 5. (a) At the same camera parameter error angle 6, the geometric error is greater in the satellite
scene. (b) Without Loss,, the sample weight distribution is scattered around the true depth, resulting
in significant errors in depth estimation. By contrast, the weight distribution is compactly around the
true depth.

Minimizing Loss, impacts sample weights far away from depth on a ray r by making
them smaller, creating compact weight distribution (right graph in Figure 5b) and a thinner
surface. These changes result in increased geometric precision, surface position, and
DSM output accuracy. Meanwhile, Loss, is applied to a batch of rays, R, reducing depth
inconsistency between different rays. using Loss, directly makes the density ¢ of the entire
scene tend toward zero as training progresses, indicating that the reconstructed scene is
empty, and the reconstruction has failed. To avoid this, Lossg is rewritten as:

reR \ier icr

Lossg = ) (Z (t; — depth(r))*w; + exp (—Zm)) (13)

The additional item for the geometric loss term in Formula (13) ensures that the scene
does not become empty during training. The main term of the GC-NeRF loss function is the
Loss. defined in Formula (7), which is complemented by Loss,. The complete loss function
can be expressed as:

Loss = Loss. + AgLossg (14)

where A is a weight given to Lossg and is empirically set to 0.02. The model is trained
following the ray casting strategy for NeRFs, and Loss, significantly contributes to the
improved accuracy of output DSMs.

3.4. Multi-View DSMs Fusion

To generate a DSM, a depth map was rendered according to Formula (6). Subsequently,
the corresponding camera parameters were used to convert the depth map into a 3D point
cloud, which was flattened into a DSM [20]. Due to the obstruction caused by tall buildings
and trees, the surface depth in some areas was inconsistent with the rendered depth. In
other words, the generated point cloud did not cover this area, resulting in inaccurate DSM
information at the edges of these tall objects.

Therefore, a multi-view DSM fusion strategy was proposed to improve accuracy.
Multi-view DSMs were generated using all viewpoints in each dataset. DSMs from a
single viewpoint may be hindered by tall objects, but DSMs from multiple viewpoints can
complete each other. A simple approach is to merge point clouds from multiple viewpoints.
However, flattening the merged point cloud does not improve DSM accuracy significantly.
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By analyzing DSMs from multiple viewpoints, we found large root mean square error
(RMSE) values for the elevation between different viewpoints in occluded areas (Figure 6b).
Therefore, merging these point clouds directly cannot distinguish noisy points. Further-
more, errors in these areas were mostly positive (Figure 6a), indicating that the predicted
elevation was greater than the actual elevation in most areas with a large RMSE value.

— I 30m S—" Ilzm

i) =9

—18m Om

(a) DSM errors in merged point clouds (b) The RMSE of multi-view DSMs

Figure 6. The relativity between positive DSM errors in merged point clouds and the root mean
square error (RMSE) of multi-view DSMs. The predicted elevation is greater than the actual elevation
in most areas with a large elevation standard deviation.

Therefore, RMSE can be used to improve DSM accuracy:

avg, RMSE < Thresgpse

: (15)
min, RMSE > Thresgmse

elevation = {

In this formula, elevation denotes an elevation value in a DSM pixel and RMSE
denotes the standard deviation of elevations at one certain pixel under different viewpoints.
avg denotes areas where the RMSE is small and outliers are removed using the 3-sigma
rule. The remaining average the elevation values are considered the final elevation at the
corresponding pixel. min denotes areas with a large RMSE, where the minimum elevation
is taken. Thresgymsk is set to 0.1 times the maximum RMSE in the entire scene as a threshold
for determining whether the RMSE is large or small. After multi-view DSM fusion, the
elevation accuracy of some obstructed areas improved.

4. Experiments and Results

GC-NeRFs were assessed in four areas of interest (AOI), each spanning 256 x 256 m,
using approximately 10-20 crops from the World View-3 optical sensor with a pixel resolu-
tion of 0.3 m. The four AOI are the same as those of S-NeRFs and Sat-NeRFs for comparison
purposes. The four AOI are from different locations, with one from rural areas and three
from urban areas. The images were sourced from publicly available data from the 2019
IEEE GRSS Data Fusion Contest (DFC2019) [65,66]. Detailed information for each AOI is
shown in Table 2.

Table 2. Detailed information for each AOI

Area Index 004 068 214 260
# train images 9 17 22 15
# test images 2 2 2 2
Altitude Bounds [m] [—24, 0] [—27, 30] [—29, 73] [—30, 13]

Type Rural areas Urban Areas Urban Areas Urban Areas
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4.1. Implementation Details

GC-NeRFs were trained with an Adam optimizer starting with a learning rate of
0.01, which was decreased every 4k iterations by a factor 0.33 according to a step scheduler.
A size of 2!8 samples in each batch of rays was used, and the convergence required about
15 k iterations and 6 min to converge on a NVIDIA GeForce RTX 3080 GPU with 12 GB
RAM. DSMs were accessed using lidar DSMs (from DFC2019 datasets) with a resolution
of 0.5 m per pixel. The peak signal-to-noise ratio (PSNR) [67] of the image renderings

and elevation mean absolute error (MAE) [68], with respect to lidar data, were used as
evaluation metrics.

4.2. Result Analysis

The experimental results indicated that GC-NeRF is superior to previous methods
including S-NeRFs, Sat-NeRFs, and SatelliteRFs [69], both qualitatively and quantitatively.
Table 3 displays detailed experimental data. The 3D models in Figure 7 show that GC-
NeRFs are can acquire fine geometry of the scene.

Table 3. Numerical results of reconstruction.

Area Index 004 068 214 260 Mean
PSNR MAE PSNR MAE PSNR MAE PSNR MAE PSNR MAE
S-NeRFs 26.1 442 m 242 3.64 m 249 4.83 m 21.5 771m 242 515m
Sat-NeRFs 26.6 1.37m 25.0 1.28 m 25.7 1.68 m 21.7 1.64m 24.7 149 m
SatelliteRFs 26.6 - 25.3 - 255 - 22.0 - 249 -
GC-NeRFs 26.8 133 m 27.3 1.15m 26.9 147 m 23.6 1.63 m 26.2 1.40 m

The best PSNR and MAE values are shown in bold. Overall, GC-NeRFs provide the best image quality measured
by PSNR and DSM accuracy measured by MAE.

Area 004 Area 068

Area 214

Figure 7. Visualization of 3D models derived by superimposing DSMs onto images. The DSMs and
images are generated by GC-NeRFs.

NeRFs were originally used for novel view synthesis, and reconstruction quality is
mainly measured by the quality of the synthesized views. Therefore, PSNR was first used to
evaluate GC-NeRF reconstruction quality. Figure 8 compares the quality of rendered images
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between S-NeRFs, Sat-NeRFs, and GC-NeRFs. Table 3 shows that GC-NeRFs produce
statistically superior image quality scores in appearance, as measured by PSNR. However,
Sat-NeRFs remove transient objects such as cars (Figure 8a,b), which may decrease PSNR. In
fact, quantitative appearance comparisons are not meaningful because satellite images have
inconsistent lighting conditions. Qualitative comparison found that GC-NeRF rendered
images were clearer, as shown in Figure 8c,d.

Ground Truth

004

068

214

260

Figure 8. Images rendered by S-NeRFs, Sat-NeRFs, and GC-NeRFs. (a,b) Sat-NeRFs are robust to
transient phenomenon such as cars. (¢,d) GC-NeRFs render clearer images.
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Figure 9 shows the visualization of DSMs generated by lidar, S-NeRFs, Sat-NeRFs, and
GC-NeRFs. Compared to lidar DSM, GC-NeRFs generate unexpectedly uneven surfaces,
such as road areas (Figure 9a,b). Sharper building edges were obtained by the multi-
view DSM fusion strategy (Figure 9¢,d). Thanks to the geometric loss term proposed in
Section 3.3, the quality of DSMs generated by GC-NeRFs is superior to that of S-NeRFs
(Figure 9e,f). Table 3 shows that GC-NeRFs produce statistically superior DSM quality
scores, as measured by the MAE.

Lidar - Sat-NeRF

004

068

214

260

Figure 9. Visualization of lidar, S-NeRFs, Sat-NeRFs, and GC-NeRF DSMs. Areas marked by water
and building changes are masked. (a,b) The DSM rendered by a GC-NeRF shows that the road is
uneven compared to lidar DSM. (c¢,d) The GC-NeRF DSM displays sharper building edges than the
Sat-NeRF DSM. (e,f) The DSM quality rendered by the GC-NeRF is superior to that of the S-NeRF.
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4.3. Ablation Analysis

To verify the effectiveness of the proposed method, ablation experiments were con-
ducted. This paper focuses on geometric accuracy; therefore, the ablation experiment
mainly analyzes the impact of the proposed method on DSM accuracy.

GC-NeRFs with all or without one of three measures, namely scene stretching, ge-
ometric constraint, and DSM fusion, were evaluated. The results are shown in Table 4.
Without geometric constraint, the accuracy of DSMs generated by GC-NeRFs was almost
the same as without adding any improvement strategies, emphasizing the importance of
geometric constraint. Additionally, scene stretching and DSM fusion can also improve accu-
racy. Comparing different scenes, the accuracy improvement of scene stretching and DSM
fusion for area 004 was minimal. In rural areas, the small altitude range and low terrain
complexity may result in better reconstruction. Overall, the various methods proposed by
the GC-NeRF framework contributed to accuracy improvement in the final DSM.

Table 4. The MAE of DSMs rendered by GC-NeRFs with all or without one of three measures, namely
scene stretching, geometric constraint, and DSM fusion.

Area Index 004 068 214 260
GC-NeRFs without scene stretching 1.59 m 211m 3.70m 2.65m
GC-NeRFs without geometric constraint 9.03 m 10.31 m 14.19 m 8.14m
GC-NeRFs without DSM fusion 1.72m 2.01m 3.16m 249 m
GC-NeRFs without all the above 10.21 m 13.44 m 16.88 m 9.47 m
GC-NeRFs 1.33 m 1.15m 147 m 1.63 m

The geometric constraint contributes most to improving DSM accuracy.

5. Discussion

Despite improvements in DSM accuracy, some limitations to the proposed method
must be acknowledged. Firstly, the hyperparameter s, must be adjusted manually. Ap-
propriate values of s, were obtained through extensive experiments so that GC-NeRF
universality could be reduced. Figure 10 shows the MAE of DSMs under different s,. The
best s, value was around 0.80.

4.00

MAE/m
3.50
3.00

2.50

0.70 0.75 0.80 0.85 0.90 0.95 1.00
—e—Area 004 Area 068 Area 214 Area 260

Figure 10. The MAE of DSMs under different s,. Low MAE indicates high DSM accuracy, and the
best s, value is around 0.8.

Secondly, using the sun direction as appearance encoding, GC-NeRF implicitly ad-
dresses shadow issues in a concise manner. However, the limited number of input images
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may result in some areas always being shadowed. The reconstruction accuracy of these
areas is low, so more effort is needed to eliminate the influence of shadows on geometry.

Thirdly, GC-NeRF is only applicable to high-resolution satellite images, and the results
are poor when using low-resolution satellite images as input. Moreover, in areas with exces-
sive terrain undulations, some hyperparameters must be adjusted. Overall, the robustness
of GC NeRFs to different types of satellite images and terrain still needs improvement.

Additionally, a common phenomenon with GC-NeRFs and other NeRF-based multi-
view satellite photogrammetry approaches is that they produce uneven road and building
surfaces, which is far from expected. Other geometric constraints could be designed to
overcome this weakness. RegNeRFs [70] and CL-NeRFs [71] add geometric constraints of
local plane or slanted plane regularization to make the surface more uniform. However,
there are some areas that should not be regular planes in the real world, such as vegetation.
Satellite images encompass multiple bands beyond RGB, which can be used to calculate
vegetation indices; therefore, subsequent work involves applying plane regularization to
areas with low vegetation index values, which may help generate a more uniform surface
and improve DSM accuracy.

6. Conclusions

The main contribution of this paper is the proposal of a GC-NeRF framework for
multi-view satellite photogrammetry, which generates highly accurate DSMs without extra
input. Through a combination of geometric constraint, scene stretching, and multi-view
DSM fusion techniques, GC-NeRFs achieve notable improvements in output DSM accuracy.
Occupancy grids converted from sparse point clouds avoid the extra input of altitude
bounds for training. Additionally, the integration of advanced techniques in NeRF variants
greatly enhances efficiency and conciseness in processing satellite images. Experimental
results demonstrated the effectiveness of GC-NeRFs. Overall, GC-NeRFs offer a promising
solution for reconstructing accurate 3D scenes from multi-view satellite images. Scaling
GC-NeRFs to larger datasets and addressing computational efficiency issues may greatly
benefit from their practical deployment. Future research can focus on handling building
changes. GC-NeRFs treat the scene as static, but the construction and demolition of
buildings can lead to significant geometric changes within the scene, which is difficult to
manage. Currently, there are some NeRF extensions for dynamic scenes, but these methods
deal with continuously changing scenes, where the input data is continuous video. Satellite
images are shot very far apart, and handling the modeling problems of such discrete
dynamic scenes is challenging. However, it is still very beneficial for change detection.
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