Using Wi-Fi Probes to Evaluate the Spatio-Temporal Dynamics of Tourist Preferences in Historic Districts’ Public Spaces
Abstract
:1. Introduction
2. State of the Art
3. Materials and Methods
3.1. Methods for Measuring Tourists’ Spatial Preferences
- Visit time preference
- 2.
- Aggregation preference
- 3.
- Stay preferences
3.2. Study Area
3.3. Data Collection and Preprocessing
3.3.1. Data Collection
3.3.2. Data Preprocessing
4. Results
4.1. Visit Time Preference
4.2. Aggregation Preference
4.2.1. Overall Aggregation Preference
4.2.2. Aggregation Preference by Time Interval
4.2.3. Spatial Classification Based on the Characteristics of Dynamic Changes in Aggregation Preferences
4.3. Stay Preferences
5. Discussion
5.1. Comparison with Related Studies
5.2. Application of Research Findings
5.3. Advantages of Wi-Fi Probe-Based Approach
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Masiero, L.; Qiu, R.T.R.; Zoltan, J. Long-Haul Tourist Preferences for Stopover Destination Visits. J. Travel Res. 2020, 59, 811–827. [Google Scholar] [CrossRef]
- Kovačić, S.; Jovanović, T.; Vujičić, M.D.; Morrison, A.M.; Kennell, J. What Shapes Activity Preferences? The Role of Tourist Personality, Destination Personality and Destination Image: Evidence from Serbia. Sustainability 2022, 14, 1803. [Google Scholar] [CrossRef]
- Jiang, S.; Liu, J. Comparative Study of Cultural Landscape Perception in Historic Districts from the Perspectives of Tourists and Residents. Land 2024, 13, 353. [Google Scholar] [CrossRef]
- Poruțiu, A.; Tirpe, O.P.; Oroian, C.; Mihai, V.C.; Chiciudean, G.O.; Chiciudean, D.I.; Poruțiu, C. Analysis on Tourists’ Preferences for Rural Tourism Destinations in Romania. Societies 2021, 11, 92. [Google Scholar] [CrossRef]
- Long, Y.; Zhang, E. Insights/Opinion: Promoting Urban Studies and Practice with Emerging Technologies: City Laboratory, New City, and Future City Exploration. Int. J. Smart Sustain. Cities 2024, 2371004. [Google Scholar] [CrossRef]
- Li, L.; Pei, Z.; Li, Q.; Hao, F.; Chen, X.; Chen, J. Identifying Tourism Attractiveness Based on Intra-Destination Tourist Behaviour: Evidence from Wi-Fi Data. Curr. Issues Tour. 2023, 1–19. [Google Scholar] [CrossRef]
- Julio Guerrero, Y.I.; Dias, F.T.P. Tourist Tracking Techniques and Their Role in Destination Management: A Bibliometric Study, 2007–2023. Sustainability 2024, 16, 3708. [Google Scholar] [CrossRef]
- Hasnat, M.M.; Hasan, S. Identifying Tourists and Analyzing Spatial Patterns of Their Destinations from Location-Based Social Media Data. Transp. Res. Part C Emerg. Technol. 2018, 96, 38–54. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, A.; Weber, K.; Chan, E.H.W.; Shi, W. Categorisation of Cultural Tourism Attractions by Tourist Preference Using Location-Based Social Network Data: The Case of Central, Hong Kong. Tour. Manag. 2022, 90, 104488. [Google Scholar] [CrossRef]
- Zhang, F.; Zu, J.; Hu, M.; Zhu, D.; Kang, Y.; Gao, S.; Zhang, Y.; Huang, Z. Uncovering Inconspicuous Places Using Social Media Check-Ins and Street View Images. Comput. Environ. Urban Syst. 2020, 81, 101478. [Google Scholar] [CrossRef]
- Fisher, D.M.; Wood, S.A.; Roh, Y.-H.; Kim, C.-K. The Geographic Spread and Preferences of Tourists Revealed by User-Generated Information on Jeju Island, South Korea. Land 2019, 8, 73. [Google Scholar] [CrossRef]
- Reif, J.; Schmücker, D. Exploring New Ways of Visitor Tracking Using Big Data Sources: Opportunities and Limits of Passive Mobile Data for Tourism. J. Destin. Mark. Manag. 2020, 18, 100481. [Google Scholar] [CrossRef]
- Long, Y.; Zhang, E. City Laboratory: Embracing New Data, New Elements, and New Pathways to Invent New Cities. Environ. Plan. B Urban Anal. City Sci. 2024, 51, 1068–1072. [Google Scholar] [CrossRef]
- Zheng, J.; Bai, X.; Na, L.; Wang, H. Tourists’ Spatial–Temporal Behavior Patterns Analysis Based on Multi-Source Data for Smart Scenic Spots: Case Study of Zhongshan Botanical Garden, China. Processes 2022, 10, 181. [Google Scholar] [CrossRef]
- Gea-García, G.M.; Fernández-Vicente, C.; Barón-López, F.J.; Miranda-Páez, J. The Recreational Trail of the El Caminito Del Rey Natural Tourist Attraction, Spain: Determination of Hikers’ Flow. Int. J. Environ. Res. Public. Health 2021, 18, 1809. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Lau, B.P.L.; Koh, Z.; Yuen, C.; Ng, B.K.K. Understanding Crowd Behaviors in a Social Event by Passive WiFi Sensing and Data Mining. IEEE Internet Things J. 2020, 7, 4442–4454. [Google Scholar] [CrossRef]
- Abedi, N.; Bhaskar, A.; Chung, E.; Miska, M. Assessment of Antenna Characteristic Effects on Pedestrian and Cyclists Travel-Time Estimation Based on Bluetooth and WiFi MAC Addresses. Transp. Res. Part C Emerg. Technol. 2015, 60, 124–141. [Google Scholar] [CrossRef]
- Salas, P.; Ramos, V.; Ruiz-Pérez, M.; Alorda-Ladaria, B. Methodological Proposal for the Analysis of Urban Mobility Using Wi-Fi Data and Artificial Intelligence Techniques: The Case of Palma. Electronics 2023, 12, 504. [Google Scholar] [CrossRef]
- Li, L.; Chen, X.; Zhang, L.; Li, Q.; Yang, Y.; Chen, J. Space–Time Tourist Flow Patterns in Community-Based Tourism: An Application of the Empirical Orthogonal Function to Wi-Fi Data. Curr. Issues Tour. 2022, 26, 1–19. [Google Scholar] [CrossRef]
- Hu, X.; Shen, P.; Shi, Y.; Zhang, Z. Using Wi-Fi Probe and Location Data to Analyze the Human Distribution Characteristics of Green Spaces: A Case Study of the Yanfu Greenland Park, China. Urban For. Urban Green. 2020, 54, 126733. [Google Scholar] [CrossRef]
- Ding, X.; Liu, Z.; Xu, H. The Passenger Flow Status Identification Based on Image and WiFi Detection for Urban Rail Transit Stations. J. Vis. Commun. Image Represent. 2019, 58, 119–129. [Google Scholar] [CrossRef]
- Kontokosta, C.E.; Johnson, N. Urban Phenology: Toward a Real-Time Census of the City Using Wi-Fi Data. Comput. Environ. Urban Syst. 2017, 64, 144–153. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, C.; Li, J.; Gao, Z.; Su, T.; Wang, C.; Zhang, H.; Ma, T.; Liu, Y.; Xiong, W.; et al. Understanding Street-Level Urban Vibrancy via Spatial-Temporal Wi-Fi Data Analytics: Case LivingLine Shanghai. Environ. Plan. B Urban Anal. City Sci. 2024, 51, 803–822. [Google Scholar] [CrossRef]
- Traunmueller, M.W.; Johnson, N.; Malik, A.; Kontokosta, C.E. Digital Footprints: Using WiFi Probe and Locational Data to Analyze Human Mobility Trajectories in Cities. Comput. Environ. Urban Syst. 2018, 72, 4–12. [Google Scholar] [CrossRef]
- Li, L.; Chen, X.; Li, Q.; Tan, X.; Chen, J.; Wang, D.; Jia, P. Contextualizing Human Dynamics: Understanding the Semantics of Movement Trajectories with Wi-Fi Data. Travel Behav. Soc. 2021, 25, 183–192. [Google Scholar] [CrossRef]
- Zhou, G.; Kurauchi, F.; Ito, S.; Du, R. Identifying Golden Routes in Tourist Areas Based on AMP Collectors. Asian Transp. Stud. 2022, 8, 100052. [Google Scholar] [CrossRef]
- Gebru, K.; Rapelli, M.; Rusca, R.; Casetti, C.; Chiasserini, C.F.; Giaccone, P. Edge-Based Passive Crowd Monitoring through WiFi Beacons. Comput. Commun. 2022, 192, 163–170. [Google Scholar] [CrossRef]
- Redondi, A.E.C.; Cesana, M. Building up Knowledge through Passive WiFi Probes. Comput. Commun. 2018, 117, 1–12. [Google Scholar] [CrossRef]
- Li, J.; Xu, L.; Tang, L.; Wang, S.; Li, L. Big Data in Tourism Research: A Literature Review. Tour. Manag. 2018, 68, 301–323. [Google Scholar] [CrossRef]
- Soundararaj, B.; Cheshire, J.; Longley, P. Estimating Real-Time High-Street Footfall from Wi-Fi Probe Requests. Int. J. Geogr. Inf. Sci. 2019, 34, 325–343. [Google Scholar] [CrossRef]
- Bonnetain, L.; Furno, A.; El Faouzi, N.-E.; Fiore, M.; Stanica, R.; Smoreda, Z.; Ziemlicki, C. TRANSIT: Fine-Grained Human Mobility Trajectory Inference at Scale with Mobile Network Signaling Data. Transp. Res. Part C Emerg. Technol. 2021, 130, 103257. [Google Scholar] [CrossRef]
- Liu, Y.; Fang, F.; Jing, Y. How Urban Land Use Influences Commuting Flows in Wuhan, Central China: A Mobile Phone Signaling Data Perspective. Sustain. Cities Soc. 2020, 53, 101914. [Google Scholar] [CrossRef]
- Seiya, H.; Hiroyuki, H.; Kosuke, S.; Kazuo, M.; Takaya, Y.; Arai, S.; Masato, S.; Yukihiro, T.; Hiroya, T. RSSI-Based Distance Estimation Enhanced by Interference Signals. IEICE Proc. Ser. 2020, 74, 101–104. [Google Scholar]
- Petre, A.-C.; Chilipirea, C.; Baratchi, M.; Dobre, C.; van Steen, M. WiFi Tracking of Pedestrian Behavior. In Smart Sensors Networks; Academic Press: Cambridge, MA, USA, 2017; pp. 309–337. ISBN 978-0-12-809859-2. [Google Scholar]
Literature | Spatial Granularity | Temporal Granularity | Study Area |
---|---|---|---|
[16] | 100 m | 15 min | Waterfront |
[19] | 25 m | 1 h | Community tourist attraction |
[20] | Not mentioned | 2 h | Park |
[21] | Not mentioned | 5 min | Metro station |
[22] | 75 m | 1 h | Urban block |
[23] | 15 m | 1 h | Street |
[24] | 75 m | 1 h | Urban block |
[25] | 25 m | 1 h | Community tourist attraction |
Cellular Signaling | Wi-Fi Probes | |
---|---|---|
Spatial accuracy | Depends on the coverage range of base stations, typically ranging from tens of meters to several kilometers; smaller radii are usually used for coverage of urban centers | Typically have a maximum measurement radius of about 25–100 m; distance can be calculated based on RSSI to define a smaller range of measurement space |
Temporal accuracy | User-initiated behavioral records variable time intervals; periodic location updates, generally every 1–2 h | Real-time data capture, accurate to the second |
Barriers to use | Needs to be purchased from operators or data service providers, which is expensive; data between operators are not interoperable, making it necessary to purchase from multiple operators to obtain all data | Low-cost equipment and easy to install; received data are not affected by mobile device brands or operators |
Applicable scenario | Research at the urban scale | Research at the human scale |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, Y.; Liu, S.; Wei, B.; Zhu, Z.; Wang, S. Using Wi-Fi Probes to Evaluate the Spatio-Temporal Dynamics of Tourist Preferences in Historic Districts’ Public Spaces. ISPRS Int. J. Geo-Inf. 2024, 13, 244. https://doi.org/10.3390/ijgi13070244
Gao Y, Liu S, Wei B, Zhu Z, Wang S. Using Wi-Fi Probes to Evaluate the Spatio-Temporal Dynamics of Tourist Preferences in Historic Districts’ Public Spaces. ISPRS International Journal of Geo-Information. 2024; 13(7):244. https://doi.org/10.3390/ijgi13070244
Chicago/Turabian StyleGao, Yichen, Sheng Liu, Biao Wei, Zhenni Zhu, and Shanshan Wang. 2024. "Using Wi-Fi Probes to Evaluate the Spatio-Temporal Dynamics of Tourist Preferences in Historic Districts’ Public Spaces" ISPRS International Journal of Geo-Information 13, no. 7: 244. https://doi.org/10.3390/ijgi13070244
APA StyleGao, Y., Liu, S., Wei, B., Zhu, Z., & Wang, S. (2024). Using Wi-Fi Probes to Evaluate the Spatio-Temporal Dynamics of Tourist Preferences in Historic Districts’ Public Spaces. ISPRS International Journal of Geo-Information, 13(7), 244. https://doi.org/10.3390/ijgi13070244