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Abstract: This paper proposes a one-to-one trajectory synthetization method with stable long-term
individual mobility behavior based on a generalizable area embedding. Previous methods concentrate
on producing highly detailed data on short-term and restricted areas for, e.g., autonomous driving
scenarios. Another possibility consists of city-wide and beyond scales that can be used to predict
general traffic flows. The now-presented approach takes the tracked mobility behavior of individuals
and creates coherent synthetic mobility data. These generated data reflect the person’s long-term
mobility behavior, guaranteeing location persistency and sound embedding within the point-of-
interest structure of the observed area. After an analysis and clustering step of the original data, the
area is distributed into a geospatial grid structure (H3 is used here). The neighborhood relationships
between the grids are interpreted as a graph. A feed-forward autoencoder and a graph encoding–
decoding network generate a latent space representation of the area. The original clustered data are
associated with their respective H3 grids. With a greedy algorithm approach and concerning privacy
strategies, new combinations of grids are generated as top-level patterns for individual mobility
behavior. Based on the original data, concrete locations within the new grids are found and connected
to ways. The goal is to generate a dataset that shows equivalence in aggregated characteristics and
distances in comparison with the original data. The described method is applied to a sample of
120 from a study with 1000 participants whose mobility data were generated in the city of Munich in
Germany. The results show the applicability of the approach in generating synthetic data, enabling
further research on individual mobility behavior and patterns. The result comprises a sharable dataset
on the same abstraction level as the input data, which can be beneficial for different applications,
particularly for machine learning.

Keywords: mobility data; synthetic data generation; mobility data analytics

1. Introduction

Individual trajectory data play an increasing role in different application fields. The
field reaches from local trajectories with a short duration period used for planning al-
gorithms for autonomous driving applications [1] to large-scale city scales. The first
application deals with short-term trajectories, lasting from seconds to a few minutes, and
involves local geospatial dimensions measured in meters. The second type of application,
e.g., city planning activities or location-based-services, requires data covering days to years
and distances from kilometers to entire metropolitan areas and regions.

The need to create artificial datasets arises from two main arguments: First is the
generalizability. This is required due to different local restrictions and limited resources
since generating original data is time- and resource-consuming. The ability to generalize
already collected data and reapply them to the same area is useful in leveraging small
data samples. This holds true, especially with added noise to enrich the dataset or use it
for a completely new area while keeping the semantic and geographical distribution [2].
Second is the need for privacy. Highly accurate personal tracking data have become
more accessible with smartphones and other GPS tracking solutions. Precise information

ISPRS Int. J. Geo-Inf. 2024, 13, 245. https://doi.org/10.3390/ijgi13070245 https://www.mdpi.com/journal/ijgi

https://doi.org/10.3390/ijgi13070245
https://doi.org/10.3390/ijgi13070245
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijgi
https://www.mdpi.com
https://doi.org/10.3390/ijgi13070245
https://www.mdpi.com/journal/ijgi
https://www.mdpi.com/article/10.3390/ijgi13070245?type=check_update&version=2


ISPRS Int. J. Geo-Inf. 2024, 13, 245 2 of 22

about a person’s position and activities is tracked for an extended period. These data
are applied for model training for various services, e.g., for destination prediction [3] or
contact tracing during COVID-19 [4]. In these applications, critical personal information
about the user, such as home or work locations, can be exposed. Subsequently, several
methods have recently been developed to generate artificial and personalized trajectory
data, with distinctions regarding the domain (local/short-term and area/long-term) and
method (data-driven versus knowledge-driven) [5].

The data-driven methods found an enabling factor especially within the geospatial
data processing and geospatial embedding techniques. These techniques leverage informa-
tion about POIs and transportation structures into state vectors that can be used to enrich
machine learning models. Many methods in this category [2,6–9] excel in predicting large-
scale person movement, e.g., to assess city planning regarding transportation capabilities.
Others concentrate on individual POI-check-in synthetization.

Both categories need two significant requirements. First is the possibility of having
a one-to-one matching between a real and an artificially generated person’s mobility
behavior. Therefore, the exact activity order needs to be respected and location stability is
required. This means, for example, that the tracked person has the exact location as “home”
over the whole dataset. The second is the explicit characterization of the neighborhood of
POIs. Not just a point-of-interest (POI) category or a general statement like a city center
is taken into account. Instead, a more explicit embedding, adaptable to the significant
characteristics of the individual use case, is generated.

While the second requirement is covered by some of the existing methods, e.g., by
Choi et al. [8], the topic of long-term consistency is barely addressed. This holds true
especially in combination with the correct POI-check-in synthetization and correct regional
embedding into a city structure.

This paper proposes a one-to-one trajectory synthetization method with stable long-
term individual mobility behavior based on a generalizable area embedding. In contrast to
the state-of-the-art, the focus lies on long-term origin location consistency while guarantee-
ing a meaningful neighborhood selection for the POI choice of each way.

The underlying data flow and principal components for the proposed method are
illustrated in Figure 1. The flowchart emphasizes the three stages that are discussed in
this paper: pre-processing, data generation, and post-processing. During pre-processing,
the tracking data are divided into tracking data for a single user and for a whole study.
Participants are analyzed individually, and the results are used for the data generator
in the second phase. In contrast metrics, for example, travel distances generated in the
study are used to validate the results of the synthetization process. For each participant,
new synthetical data are generated based on a similarity function that compares possible
tracking data candidates with the original data and a privacy-ensuring mechanism that
excludes possible artificial data points that endanger the participant’s privacy. The metrics
from the artificial tracking data are calculated and aggregated among all participants. They
are compared to the original metrics in the post-processing phase to produce a quality
measure of the synthetization method.

This paper is structured as follows: Section 2 discusses the state-of-the-art geospatial
embedding and synthetic trajectory generation methods. Afterwards, Section 3 introduces
the proposed method of autoencoder-based neighborhood respective trajectory generation.
Finally, Section 4 shows the result of the proposed method with its application to a dataset
from the Mobilitaet.Leben study from Munich.
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Figure 1. The underlying data flowchart for the proposed method.

2. Related Works

The proposed method for synthetic trajectory generation is based on geospatial feature
embedding. The following chapter starts with the state-of-the-art of this topic before
discussing the main techniques of synthetic data generation.

2.1. Geospatial Embedding

Typical methods for generating synthetic trajectories use point-of-interest embedding
to generalize and represent the geographical region and the underlying use of the tra-
jectories. Embedding is a form of representation learning that aims to learn a mapping
function from a generic object (e.g., sequential data like a sentence) to a vector representa-
tion. Many of these methods stem from the advancements in Natural Language Processing,
as seen in [10]. Table 1 indicates the general stages for geoembedding and the current
state-of-the-art for the different areas.

Table 1. Structure to distinguish different geoembedding methods. The methods in the state-of-the-art
can be divided by the data they use, how the embedded regions are defined, by which algorithm the
embedding is realized, and for what purpose.

Data

OpenStreetMap [7,11–14]
OpenStreetMap—Network [13,15]
Trajectories [7,12,16,17]
Aerial Images [12,18]

Regions

H3 [11,13,14,18]
Semantic Regions [12,15,16]
Administrative Boundaries [12,17]
Pixel based [7,17,18]

Algorithms

Skip-Gram [11]
Autoencoder [12–14]
Graph-based [12,15,17]
CNN-LSTM-Architecture [7]
Stochastic [16,18]

Purpose

Transportation Network Embedding [13,15]
General POI Embedding [11,12,14,16,18]
Mobility Pattern Recognition [7]
Specialized Urban Features [12,17,18]

In geospatial data analysis, the embedded objects primarily consist of regions, often
defined semantically [16] to capture human interactions within the region or based on
strict geographical features, such as feature aggregation over H3 Grids [11]. Du et al. [16]
implemented a method that utilizes recorded trajectories to create zones and generates
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an embedding based on the zone properties, effectively establishing connections between
these zones.

The method Tile2Vec, proposed by Jean et al. [18], uses the distributional hypothesis
from natural language processing to learn semantically meaningful embedding from aerial
imagery data. Empirically, it is shown that visual analogies can be obtained with simple
operations within the calculated latent space. Jenkins et al. [12] introduced multimodal data
as a basis for advanced embedding, leveraging aerial images, human mobility traces, and
point-of-interest data. The developed end-to-end framework achieved semantic embedding
over discrete regions and was discussed mainly for urban areas. The author describes
this approach as Learning an Embedding Space for Regions (LESR). The linkage between
human mobility and each trip’s semantic meaning is again evaluated in [7], in combination
with the use case of transferring mobility knowledge from one city to another. Jiang et al. [7]
combines a word-like embedding using POI categories to create a POI-based image-like
data structure while using Convolutional Neural Networks and Long Short-Term Memory
(LSTM) architectures taken from the field of image recognition. The first approach towards
representation learning over OpenStreetMap data within microgrids concerning urban
functions and land use is proposed in [11].

Uber’s H3 index is used to define microgrids, and the “hex2vec” method employs
a SkipGram Model to calculate vector representations of each H3 grid, displaying semantic
properties of the map. This method allows for simple arithmetic functions to compare areas
and find those with selected features, particularly focusing on the road-based representation
introduced in [13]. Leveraging OpenStreetMap as the underlying data source, a vector
representation is learned, enabling clustering and arithmetic operations over the latent
space. The outcome is a high-level, scalable typology related to the underlying road
network in the observed area.

In their work, Zhang [15] and Shin et al. [17] introduced the concept of graph neu-
ral networks. Zhang et al. [15] also addressed the challenge of road embedding, termed
“road network representation learning (RNRL)”. Their method emphasizes the high-order
relationships between roads, focusing on deriving regions and identifying the central
connecting roads between them. The key aspects of their approach include constructing
a hypergraph over the road network and implementing an information propagation mech-
anism within this hypergraph. Shin et al. [17] pursued the goal of obtaining an urban
representational embedding, which was used for predicting house prices and employee
rates. The input data comprised taxi trips and subway rides, and their architecture was
built on a Graph Attention Network. Their study also delved into embedding dimensions
and utilizing the urban mobility network for various tasks.

An alternative method and advancement rooted in H3 grids and OpenStreetMap
information is GeoVeX, introduced by Donghi et al. in 2023 [14]. This approach utilizes
autoencoders to manage geographic count data by amalgamating neighboring hexagon
attributes into a task-agnostic latent space.

2.2. Synthetic Trajectory Generation

The generation of synthetic trajectories can be categorized based on the used methods
(data- or knowledge-driven) and the specific scope. The distinction lies in whether the focus
is on generating overall trajectories within a specific area or finding realistic trajectories
for individuals with their respective attributes. These scopes are crucial for different
applications. While the former is useful for city planning tasks, the latter can be applied
in privacy-preserving methods or to create synthetic data for various machine learning
applications. Table 2 shows the main methods used for synthetic data generation and the
primary corresponding sources, as discussed in the subsequent part.

Many data-driven approaches are developed, especially for generating general trajec-
tories, without including personal information or biases between groups. These approaches
are scalable, from generating pedestrian trajectories [19] to city-wide traffic counts [8].
These approaches to generate pedestrian trajectories consider both temporal and spatial
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relations and a social aspect, like the interaction between different pedestrians, bicycles,
and traffic members in the local area [20]. The focus of this work is on generating individual
vehicle-based trajectories; therefore, this factor needs to be further discussed.

The task can be distinguished between short-term trajectories, for example, by
Park et al. [21] or Messaoud et al. [22] with a prediction horizon under 10 s, and large-
scale trajectories over a whole geographical region and a time horizon around hours to
days. The short-term solutions use LSTM architectures, mainly used to prevent collisions.
Long-term trajectory generation, associated with privacy-preserving data publishing, is
addressed by Rao et al. in 2020 [23].

The proposed LSTM-TrajGAN is a deep learning framework using a generative ad-
versarial network to create synthetic trajectories on a city scale. Cao et al. [24] developed
the TrajGen method that generates one-to-one real-to-artificial trajectories while preserving
some characteristics, like aggregated POI and distance statistics. The method was tested
on a taxi dataset, demonstrating its capabilities. With a focus on ϵ-differential privacy,
Alatrista-Salas et al. [25] conducted a study showing the applicability of Differential Privacy
Generative Adversarial Networks on mobility data on a GPS level, but also that the risk
of re-identification persists. If such methods are used for sharing, the original data must
not be merged and shared with the synthetic data. This requires that all significant data
characteristics are contained within the artificial data.

Wu et al. [26] gave a deeper insight into guaranteeing POI sequences. While using
hierarchical POI categories, the method based on pairwise location reorganization persists
in the exact POI categories within a trajectory sequence. The experiments conducted
are only in a limited area due to the complexity of the solution space, and the POIs are
also characterized as scalable and precise; the neighborhood where those trajectories are
embedded is widely ignored.

While those methods generate plausible results on the aggregated micro- and macro-
scopic dimensions, they lack some attributes that may be needed for higher-tier data
analytics. They are part of mobility studies like the Mobilität in Deutschland [27] or Mobil-
itätspanel [28]. Especially when handling personal tracking data, a plausible and stable
location association is needed. If a location remains the same in the original data, it has to
be guaranteed that this is the same for the synthetic dataset. A plausible set of locations
and interactions for every participant is set even for long-term (months to years) studies.

A survey can be found in [5], giving an extended overview of additional approaches,
such as knowledge-driven methods using simulation software such as SUMO or MATSIM
and mobility demand generators for them like SUMOPY [29], MiTo [30], or ABIT [31].
These methods are more applicable to creating general demand data from a statistical
population average and not reproducing exact studies with strong behavioral biases. This
differs from the scope of this work and will not be further evaluated.

Table 2. Key methods used for synthetic trajectory generation divided by possible application scopes.

Knowledge-Driven Data-Driven
Potential City-Wide Local Potential City-Wide

Socio-Demographic Travel Demand Generation [32–34] LSTM [22–25] LSTM [26]
GAN [12,26–28]
Pairwise Reorganization [29]

2.3. Scope of This Work

The scope of this work is to create a synthetic dataset from long-time mobility behavior
studies synthesizing the personal tracking data of the participants, e.g., Mobilitaet.Leben [32].
The generated artificial data should ensure that the data can be shared afterward without
violating privacy requirements.

Reviewing the state-of-the-art for synthetic trajectory generation shows recent achieve-
ment in three categories, as illustrated in Table 2. First, knowledge-based methods that
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create synthetic populations. These consist of single agents with consistent mobility behav-
ior over the whole observation period. As these methods are based on population statistics,
they cannot represent highly biased data of single individuals and therefore cannot be
applied to this kind of study.

Second and third are data-driven approaches described above, but only the at-least-
city-wide approaches are applicable since the focused tracking studies require an extended
region.

The applicability of those remaining methods [12,26–29] on the problem is further
evaluated on a qualitative basis by different dimensions in Table 3. The dimensions are:

1. Routes: How strong the characteristics of the taken routes resembled are in the synthetic
dataset. Exemplary characteristics are: distance, speed profile, and traversed regions.

2. POIs: Respective points of interest at the origin and destination of ways are aligned
between original and synthetic data.

3. Time: The duration of ways and stay times during activities between ways are consid-
ered.

4. Regions: Not only the exact point of origin and destination of a way has influence on
the way generation, but also the region around those points, defined by characteristics,
like nearby points of interest.

5. Consistency: Especially for long-term studies, the same locations, e.g., home, are
visited multiple times. If the synthetic data of individuals keeps the characteristic, it
is necessary to ensure that this visit frequency to the same location is the same in the
original and the synthetic data.

Table 3. Overview over capability of data-driven and city-wide synthetic way generation methods.

Literature Routes POIs Time Regions

Choi et al. (2021) [8]

Rao et al. (2020) [23]

Cao et al. (2021) [24]

Alastrista-Salas et al. (2022) [25]

Wu et al. (2022) [26]

Proposed Method

Table 3 shows the missing capabilities of current methods when dealing with the time
and location consistency of activities, if applied to long-term studies. The proposed method
focuses on the topic of way consistency for synthetization. Comparable to diary-based
studies like Mobilität in Deutschland [27] or Mobilitätspanel [28], the POI information,
but also the surrounding region information, needs to be conserved too.

Based on the reviewed literature, the proposed method fulfills three main hypotheses:

1. The mobility behavior of each participant is reflected accurately.
2. There is no personal information within the artificial dataset that allows a reidentification.
3. The main characteristics of the data remain preserved within the single participant’s

data, but especially when aggregating the data of all participants.

3. Method

This section illustrates the proposed method. The implementation can be found on
GitHub (https://github.com/TUMFTM/way_chain_generator—accessed on 5 July 2024).

https://github.com/TUMFTM/way_chain_generator
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3.1. Requirements towards the Approach

The approach differs in its requirement from previous work by focusing on the in-
dividual long-term mobility behavior of people. For this, the geographic area is at least
city-wide or, optionally, a whole metropolitan area, and the period expands over sev-
eral days to months. The goal is to achieve consistency regarding the POIs and the area
surrounding those. The observed region includes the inner city, suburbs, and industrial
districts. Regarding recurrent visited locations, the mobility behavior must also be reflected
as precisely as possible so that the place of work and home is the same throughout the
synthetic trajectories of a person. The mobility behavior should be as close as possible to the
original dataset without revealing personal location data, which enables a reidentification.
Only location-based reidentification attacks are to be prevented by the proposed method;
frequencies of visits per user are explicitly not masked [34].

3.2. Approach Overview

Four core challenges arise from the requirements and are reflected in some design
decisions regarding the method.

1. Challenge: Reflect each participant’s specialties in the respective mobility behavior.
Solution: Conduct a one-to-one synthesis, meaning every person’s results in exactly
one artificial way chain. This reflects the characteristics of this person and is not
learned from a group of people.

2. Challenge: If the person returns to a previous location within the data, the respective
dependencies need to be found within the individual dataset.
Solution: Include a pre-processing step analyzing the complete location-to-location
dependencies of each participant.

3. Challenge: The geographical space is large-scale, with over a million potential start-
stop points.
Solution: Implement a region-based pre-selection. As a regionalizer algorithm, Uber’s
H3 grid system is used.

4. Challenge: Complexity of the solution space with OSM having over 300 usable
features just for buildings, and the need to include the surroundings and neighbor-
hood for the characteristics of potential target points.
Solution: Create a latent space embedding for the regions derived from Challenge 3.
The regions are embedded using a low-dimensional feature vector, combining the
features of the specific region with its neighbors.

Resulting from the identified challenges, the architecture shown in Figure 2 was
derived. As a starting point, the original tracking data are analyzed and the start and end
points of each track of the user are clustered with a DBSCAN algorithm. These clusters and
their connection, given through the user’s trajectories, are analyzed, and the most central
cluster, further called the gravitational center, is identified. The clusters are associated with
their H3 grids; the details are described in Section 3.3.

Next, all H3 grids within the overall study area are embedded into a latent space,
combining their own and the features of their surrounding grids into a low-dimensional
representation. The used methods are further described in Section 3.4. New combinations of
H3 grids are found within this latent space, according to the “loss” value of an application-
specific cost function with a greedy approach. This value combines the difference between
the features of the original grids and potential candidate grids’ features and the distances
within the way chain. More details can be found in Section 3.5.

The precise cluster positions are located within the selected grids by identifying
applicable buildings. The input data structure, georeferenced linestrings, is imitated by
routing over the street network within the new-found clusters in the same order as the
original trajectory. Possible privacy-ensuring mechanisms are described in Section 3.6.
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Figure 2. Schematic representation of the methodology, showing the sequence to generate synthetic
way chains from tracked mobility behavior.

3.3. Data Analysis and Filtering

The trajectory data of each user are loaded and given as a linestring with WGS84
coordinates. From this collection of ways, only the start- and endpoints and their connec-
tions are considered, as shown in the first picture of Figure 3. It is assumed that the data
collection frequency and the level of noise within the position data allow for a guaranteed
correct POI identification from those points. After conversion to a metric coordinate sys-
tem, a DBSCAN algorithm is used to identify clusters of start- and endpoints. The result
indicates which ways are aimed at the same place; for example, all the tracks that can be
associated with the user’s home.

Figure 3. Symbolic representation of the main analyzing steps. The left image shows the exemplary
start- and endpoints. The middle illustrates the generated mobility graph. The visited clusters are
nodes and the recorded ways between give the edges. The centrality value of each cluster (value “b”)
is associated with the nodes and the edge weights are derived from the frequency of ways between
the nodes. The right one shows the association of clusters with H3 grids and information about the
building nearest to each cluster centroid.

After the clustering, the centroid of the shape made from points related to one cluster
is used. Following this first analyzing step, the tracking data consist of buildings connected
with each other that correlate with the user’s movement. The data are interpreted as a graph
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for the next part of the process, with the clusters as nodes and the ways between them as
edges. This graph is enriched by finding the node with the highest betweenness value [33].
This node is marked as the “gravitation center” of the user’s mobility behavior. The edge
weight is given by the number of connections between two nodes of the mobility graph,
and used to calculate the betweenness value, shown in the middle image of Figure 3.

OpenStreetMap (OSM) is now used to select the next building together with its
properties to each origin or respective destination of a track. Every cluster is associated
with the corresponding H3 grid. For the mobility behavior of a person, it is essential to
characterize not only the concrete building in the specific way it leads to, e.g., a grocery
store, but also the surrounding area. The end result of the analyzing stage can be seen in
the figure’s right image. The data model at this stage is depicted in Figure 4. The three data
sources are represented in cursive: a database containing buildings from OpenStreetMap,
the H3-grids of the region, and the raw trajectory data. The steps shown in Section 3.3
demonstrate the impact on the data model.

Clusters are generated from the input trajectories. The connections between clusters
are tallied and utilized as weights for the edges in the mobility graph. These data enable
the calculation of the betweenness value, thus completing the “Output Data”.

Figure 4. The data model during the data analysis stage. In cursive are the input data.
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3.4. Latent Space Creation

The area where the trajectories are generated is discretized by the UBER H3 grids
system [35]. Every grid is associated with several OSM tags and the count of how those
are present in the grid. The tags can be chosen according to the attributes the synthetic
trajectories should consider. The parameter used for this paper can be found in Section 4.1.

A latent space for the grids is constructed to reduce the complexity of the feature space
and balance features. To gain a characterization of not only the single H3 grid, but also its
connection to the surrounding area structure, a graph-based encoding–decoding network is
used to create a latent space representation of the areas. The latent space representation of
a grid is divided into two parts. The first component of the latent space is an encoding of its
own OpenStreetMap features; the second reflects its connection to the surrounding grids.

The OpenStreetMap properties are used as a database and reflect the attributes that
shall stay consistent from the original to the synthetically generated tracks. The number of
feature occurrences is counted for each grid. By concatenating these counters, the feature
vector for each grid is constructed. This implementation used the SRAI framework [36].
For the varying number of features, an autoencoding network is used to create a low-
dimension representation for the counted properties of each grid. A graph encoding–
decoding network is used for the latent space representation of the structure around the
grid. Figure 5 shows the underlying basic principle behind the architecture.

Figure 5. Creation of the latent space representation of the H3 grids. Every node gets an embedding
vector used for link prediction to its neighboring nodes. It acts as area characterization for the
node. In addition, an embedding vector from the encoding of its own OpenStreetMap tag counts
is calculated.

This graph consists of the nodes as the H3 grids within the area and the edges con-
necting each grid to its neighbors. The edge weight is given as 1, and the attributes of each
node are the counted OSM features. The encoder consists of two Convolutional Layers
from [37], which can process graph-structured data. The encoding is the cross-product
between two latent spaces of nodes, resulting in the probability that these two nodes are
connected with an edge. The entire latent space of a node is then given by concatenating
the two encoding vectors. The complete layout of the neural network with the parameters
used in Section 4.2 is illustrated in Figure 6.

The architecture used for this paper considers nine OpenStreetMap tags (“shop”, “res-
idential”, “office”, “building”, “leisure”, “restaurant”, “medical”, “train_station”, “school”)
and constructs a 3-dimensional embedding space for the feature encoding space and
a 2-dimensional space for the link prediction autoencoder.
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Figure 6. Neural Network Layer architecture for the latent space creation. The included values reflect
the parameters as implemented in Section 4.2.

3.5. Trajectory Generation

The synthetic way chain is built using a greedy approach. The basic principle is shown
in Listing 1. The algorithm starts by selecting the best-fitting H3 grid within the latent space;
compared to the H3 grid, the user begins its first way with. Afterwards, the according
endpoint of the trajectory is found. This happens based on the cost function:

∀ node in LatentSpace (1)

Cnode = ClatentSpaceEuklideanDistance ∗ ∆distance ∗ ∆gravitation + Cdistance + Cgravitation (2)

Cdistance = ∆distance ∗ ClatentSpaceEuklideanDistance[Q0.1] (3)

Cgravitation = ∆gravitation ∗ ClatentSpaceEuklideanDistance[Q0.1] (4)

This function is applied in the “sort_loss” call in Listing 1. It takes the H3 grid from the
original trajectory and the whole latent space as parameters. The method uses differences
in the latent space. It multiplies these differences by factors that are based on the difference
in the distance of the route and the distance from the trajectory’s gravitational center.
Formulas (2) and (3) add error terms based on the distance error and the distance error
from the gravitational center of the entire route. This is carried out by multiplying the
corresponding delta+1 with the 10th percentile of the latent space distances across all
grids. These additional terms are essential for selecting a nearly perfect matching grid
in the latent space, regardless of the distance that needs to be covered, in order to avoid
unrealistic behavior.
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Among the identified grids, the buildings most similar to those in the original trajectory
are identified based on their OSM properties. These coordinates are associated with the
clusters identified in the analysis step. Every subsequent trajectory is treated in the same
way, but each starting or ending point is checked to see if the corresponding cluster
has already been defined. This approach ensures that the characteristics of individual
trajectories remain plausible. If a user visits a point once, it refers to the same point if seen
later, and the trajectory can return to the most central point without implausible distances
in between. Once the trajectory is identified as a sequence of start- and endpoints, these are
routed to the next element on the street graph. The routing algorithm is a simple free-flow
routing. It assumes that no congested roads, traffic jams, or any other conditions influence
the route choice. To match a more realistic routing, additionally, the traffic conditions that
were recorded in the original data need to be implemented.

Listing 1. Code for trajectory generation.

Input :
o r i g i n a l _ t r a c k s − pre f i l t e r e d per user :

< s t a r t _ p o i n t , end_point , s t a r t _ g r i d ,
end_grid , s t a r t _ c l u s t e r , end_cluster > ,

g r i d s _ l a t e n t _ s p a c e : <h3_grid_id , [5 dimensional l a t e n t space ] >
Result :

synth_t racks : < s t a r t _ p o i n t , end_point >

g r a v _ c e n t e r _ c l u s t e r = get_grav_center ( o r i g i n a l _ t r a c k s )
For t r a c k in o r i g i n a l _ t r a c k s :

if t r a c k [ " s t a r t _ c l u s t e r ] in c l u s t e r s :
s y n _ t r a c k _ s t a r t = c l u s t e r s [ t r a c k _ s t a r t ]

else :
g r ids = s o r t _ l o s s ( g r i d s _ l a t e n t _ s p a c e , t r a c k [ " s t a r t _ g r i d ] )
s t a r t = best_grid_anonymized ( gr ids )
s y n _ t r a c k _ s t a r t = g e t _ b e s t _ f i t t i n g _ b u i l d i n g ( s t a r t )
c l u s t e r s . add ( t r a c k [ " s t a r t _ c l u s t e r ] , s y n _ t r a c k _ s t a r t )

if t r a c k [ " end_c lus ter ] in c l u s t e r s :
syn_track_end = c l u s t e r s [ t r a c k [ " end_c lus ter ] ]

else :
g r ids = s o r t _ l o s s ( g r i d s _ l a t e n t _ s p a c e , t r a c k [ " end_grid ] )
gr ids = a d d _ g r a v i t a t i o n a l _ l o s s ( grav_center_d is tance )
end = best_grid_anonymized ( gr ids )
syn_track_end = g e t _ b u i l d i n g s _ i n _ g r i d ( end )
c l u s t e r s . add ( t r a c k [ " end_c lus ter ] , syn_track_end )

synth_t racks . append ( ( s y n _ t r a c k _ s t a r t , syn_track_end ) )
synth_t racks = do_routing ( synth_t racks )

3.6. Possible Privacy-Ensuring Mechanism

The proposed method will generate waypoints that refer to the original grids and even
the same buildings as the input trajectory. This behavior must be prohibited to preserve
the study participants’ privacy. The privacy requirements are implemented on the grid
selection level to guarantee no overlaps in the location–activity tuple.

The discussed approaches should ensure a protection against simple location matching
attacks [34]. Complex context linking or frequency-based attacks are not further elaborated
and are the subject of future research.

The naive method to ensure that the synthetic trajectories are correct is to leave
out the original grid while synthesizing a single way. It can be forced by taking a grid
with a latent space error more significant than 0. This step is taken when selecting start-
and endpoints.
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The approach can be extended by defining an epsilon that describes the minimal latent
space distance from the original grid to the equivalent grid within the synthetic trajectory.
This results in a trade-off between similarities in area characteristics and accuracy in
reproducing the actual behavior. It is important, that the latent space or all the information
to create it in a deterministic way must not be shared with the dataset. This represents
a major weakness in this naive approach.

ϵ > 0 (5)

ClatentSpaceEuklideanDistance > ϵ (6)

Another possibility is the introduction of noise to the trajectories’ latent space repre-
sentation. This also allows the sharing of data on a more generalized level. A comparable
concept is introduced in [38]. Here, the first part of the algorithm is executed, and the
input trajectories are brought into the form sequence (cluster, building information, grid
latent space).

W(start_grid, end_grid, start_building, end_building) = Way Chain (7)

nodes = H3 − Grids with f eature counts (8)

LatentSpace = N(nodes) (9)

LatentSpace′ = LatentSpace + Noise(W[start_grid], W[end_grid]) f or ∀W (10)

The cluster information is used to guarantee the long-term spatial consistency of the
behavior, and the building information is for finding semantically suitable buildings within
a grid. The grid latent space is used for identifying the suitable search space for the building
and defining the general area for the cluster point. It is important to note: if the data are
shared on this abstraction level, it has to be ensured that the building information is selected
so that an appropriate k-anonymity over the entirety of buildings in the observed area
is guaranteed, especially when used in combination with the information from the grid
latent space. For example, the precise number of floors and area of a building can lead to
a simple reidentification, other than an activity-focused description like an OSM tag, such
as: shop–groceries. Then, a noise value can be applied to the latent space representation,
masking its original values.

The most computationally expensive approach would be adding the privacy require-
ment to the latent space in which the grids are searched. The encoding–decoding network
is trained over the original features. When a trajectory must be generated, the network is
again used on the H3 grid graph, but the grids’ features within the trajectory are inverted.
With this, not only do the original grids move within the latent space, but also, due to the
convolutions in the graph neural network, the neighboring nodes change their latent space
representation, making it less probable for those to be selected during the trajectory genera-
tion step. The encoding–decoding network needs retraining but must be reapplied over the
area for every user. This approach may lead to the most indeterministic results, protecting
the synthetic trajectories against attacks. Especially for long-term studies, where users are
visiting the entirety of the observed area, the results may lead to unplausible behavior.

N = Neural Network f or Latent Space Creation (11)

During Training : N = f (nodes) (12)

nodes′ = Nodes ∪ FeatureInverted(nodesOriginalWayChain) (13)

During Trajectory Construction : LatentSpace = f (nodes′) (14)

4. Results and Discussion
4.1. Data and Parameters

To assess the proposed method, we use an app-based tracking dataset comprising
1096 participants tracked over 12 months (May 2022 to May 2023), within the scope of the
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Mobilität.Leben study [32]. The tracking data are limited to trips within the Munich area
and tracks are covered by individual, motorized vehicles. A random sample of 120 people
is drawn. The key facts are shown in Table 4.

Table 4. Key data attributes from the MobilitaetLeben study, random draw, as used for the results.

Attribute Total Number Average per Person Median per Person

People 120 – –
Area 310.7 km2 – –

Number of Tracks 3151 25.2 10
Distance of Tracks 628.3 km 5235.8 m 3990.5 m

The data are not representative for the average population sample from Munich but
are biased toward university-related people. The data are exported with the following
properties: [user id, linestring (WGS84 coordinates), timestamp start, timestamp end].

The H3-grids were enriched with the counts over several OSM tags. These OSM
tags were: “shop”, “residential”, “office”, “building”, “leisure”, “restaurant”, “medical”,
“train_station”, and “school”. The H3 indexing provides grids in various sizes, dependent
on a zoom level; an H3-resolution of 9 was chosen, leading to 511 grids in the observed area
with an average area of 0.711 square kilometers per grid. The dataset consists of a distinct
user id and multiple trajectories per person. Each trajectory is given a timestamp and a WGS
84 linestring. The clustering for the grid generation is conducted with a DBSCAN algorithm.
Because every endpoint of a trajectory can be treated as its cluster if no other point is near,
the minimal samples per cluster are set to one. In contrast, the epsilon parameter for the
distance of two core points is set to 15 m. The coordinate system for metric comparisons is
EPSG:31468 (Grauss–Kruger Zone 3). The latent space is a five-dimensional vector with
two values for the encoded features of the specific grid and three values from the graph-link
autoencoder. The hidden layer of each network uses 12 channels each.

4.2. Result on Example Track

The results on a subset of tracks of an exemplary user are shown first. Figure 7
shows a subset of the trajectories on the left side and the corresponding clusters and their
connection on the right side. The color of the cluster center indicates the betweenness value
with the gravitational center; the node with the highest value is visible.

Figure 7. The original tracked data for car usage and the resulting clustering. The node that is selected
as gravitational center is colored yellow.

Figure 8 shows the nodes in their latent space. A t-SNE [39] algorithm is used for
the two-dimensional visualization over the described five-dimensional encoding vector.
The coloring shows the distance from the grid in the city center by the number of grids in
between. The figure shows several clustered grids on the left side, which are, on average,
closer to the city center than on the right. More distinction is visible there. This indicates that
a more complex distinction is needed in comparison to a naive approach. Such an approach
could consist of dividing the city into a low number of city districts or just using terms like
“city center” or “suburbs” as characterizing categories for neighborhoods. In this latent
space, the selection of the areas to begin and end ways, is taken. The naive approach is
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chosen for privacy measurement. This means a difference in the latent space between
an original and a chosen node for the synthetic trajectories is required. The two sets of
nodes in the original ways and those used for the synthesized mobility are not always
direct neighbors. This results from the distance-based loss terms in Equations (2) and (3).

Figure 8. t-SNE projection of the grid latent space from the 5-dimensional encoding. The colors
indicate the distance in H3 grids from the city center.

Figure 9 shows the result after applying the synthetic trajectory generation. The syn-
thetically generated tracking data are shown on the right side, and the cluster view is
on the left. Like in Figure 7, the betweenness of the clusters is color-coded, allowing for
an easier reidentification and comparison between the figures. The node, marked in yellow,
symbolizes the gravitational center, which is part of the distance loss function of every
found cluster.

Figure 9. The synthetic data and the resulting clustering. Again, the center node is colored yellow.

The boxplot in Figure 10 shows the distribution of track distances between the original
and the synthetic data and the distance error distribution from cluster to cluster. The plot
giving the distance between the original and synthetic data shows the distance of an end or
starting point of an original way compared to the same way in the artificial dataset. The al-
gorithm only compares a point to its counterpart. Thus, it is still possible that the trajectories
are nearer without breaking the privacy requirements, for example, if the working place
in the synthetic dataset is near the home area in the original data. The minimum distance
between the two points is 0.86 km, and the maximum is 12.1 km; in comparison, the area
where the data were recorded has a total length from west to east of 26 km. The generated
way chain has no simple shift as if only the neighboring grids to the original way chain
were used.
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The second set of plots shows the difference in the length of the routed linestrings in
the newly generated ways against the length of the original tracked ways. Naturally, there
is no way in the tracked dataset with a length of 0 m; the minimum is 0.3 km. Artificial
generation identifies clusters and has every step start and end at one. For example, if the
tracked movement of a person includes somebody going around a building and ending
adjacent to the start, both start and end are associated with the same cluster. If this trajectory
is synthesized, it will include the cluster as start- and endpoint and a length of 0.

The median error lies at −1.6 km. Negative error means the synthetic way is shorter
than the original, and positive means that the artificial way is more prolonged. If the
absolute error is taken, the median lies at 2.2 km. The median non-absolute distance error
is positive, meaning the synthetic generator is biased, so longer ways are more probable to
be generated. Additionally, the original data contain some measurement errors. For some
trajectories, only the start- and endpoints exist. This leads to a linear distance between
these two points in the original data but a routed way in the synthetized dataset.

Figure 10. Distance from the original ways to the artificial ones and differences in the track lengths
for the example ways.

4.3. Difference in Lengths over the Whole Dataset

The following results are generated using all data described in Table 4. Figure 11
shows the differences over all 3151 ways of the 120 people in the same format as Figure 10.

Figure 11. Distance from the original ways to the artificial ones and differences in the track lengths
aggregated over the whole dataset.

The overall median of all track lengths in the tracked data is 3990 m and within the
synthetic data 5496 m leading to a median error of 1473 m. When not considering positive
and negative errors, the median absolute error is 1617 m. Like the single person’s data,
the artificial ways are biased to be longer than the original ones.

There are several outliers, especially with distances over 30 km. With a maximum
west–east axis of 26 km and a north–south axis, long drives are abnormal within this area.
These single tracks are ways that have no detected stops over a long period of over 8 h and
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start and end at the exact same location. During this period no stops longer than 5 min
were detected, leading to the assumption that the person is driving for professional reasons
and not to a single destination. The algorithm does not yet cover this case.

4.4. Difference in Activity per Grid over the Whole Dataset

The plausibility of the semantics of the generated ways is more complex. A main
concern is connecting buildings with similar attributes and their geographical location
and surroundings. One hypothesis is that the synthetic dataset should have comparable
characteristics to the original. A possible plausibility check is the aggregated activity value
per region. Figure 12 shows the activity in the original data aggregated over an H3 grid
of resolution 7. The resolution is two steps coarser than the one used within the way
generation algorithm. The activity value is calculated as the sum of all start- and endpoints
within the area of each H3 grid.

Figure 12. Start- and endpoints of the original ways aggregated over H3 grids with resolution 7.

Figure 13 shows the same metric generated from the synthetic ways. To some extent,
the concentration within the inner city is still visible, as well as the extended activity to the
northern and southern parts of the region.

Figure 13. Start- and endpoints of the artificial ways aggregated over H3 grids with resolution 7.

To give some numerical context to the metric of area activity matching, Table 5 sum-
marizes the critical values for the experiment. The value Intersection over Union (IoU), also
known as the Jaccard Index [40], is comparable with its application in image processing.
However, the exact calculation is refined for this use case. Every start- and endpoint of
a way per grid is meant as one activity point. The union of these points between the
original and synthetic ways is the maximum of those counts per grid. The intersection is
the minimum value per grid.
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Table 5. Area-dependent metrics from the synthetic tracks.

Intersection Union IoU in Percent

Participant from the example 23 217 10.6
Single participant with peak IoU 50 118 42.5

All ways 3945 8656 45.6

Compared to image recognition tasks, where in most cases, the number of classes is
limited, and for each class, each pixel can only have a value of zero or one; due to the
calculation of the value, non-binary results are typical. For example, a particular grid
may have in the original dataset 50 points, but in the synthetic datasets, only 40 start- and
endpoints are within the grid border. This would result in a union value of 50, an intersection
value of 40, and an IoU of only 80 percent. This leads to lower values than typically achieved
in image recognition tasks because instead of the Boolean fact, that there is an intersection,
there is an additional quality measure of this intersection.

Figure 14 indicates the value development over the experiment. The single values for
each participant are in red, while the blue plot shows the aggregated metric. The dotted
red line shows the maximum IoU of a single person’s way syncretization, and the blue line
is the maximum of the aggregated analysis. Every artificial way chain has a worse value
than the experiment-wide aggregated evaluation.

Table 5 displays the IoU and connected values for the entire dataset, the individual
with the highest single IoU resulting from the specific synthesis method, and the person
referenced in Section 4.2.

Figure 14. Intersection over union of start- and endpoints between the original and the artificial
dataset aggregated over H3 grids with resolution 7.

4.5. Privacy

The proposed method aims to share data on the original abstraction level without
revealing personal details such as home or work locations. While the previous chapter
explained how original characteristics are derived, the specific original locations need to
be concealed. To achieve this, the start- and endpoints of an artificial path must not fall
within the same H3 grid as the original data, ensuring that the exact locations are not
disclosed. Figure 11 displays the distances from the original to the artificial dataset for each
start-/endpoint of every track. The histogram highlights another important aspect—with
a minimum distance of 17 m, no original point was exposed. Although an original and
a synthetic waypoint cannot overlap, the distance can be as close as neighboring buildings
if the algorithm selects adjacent grids. However, the generator’s average behavior must
not involve simply biasing or adding noise within a small radius to waypoints. This is not
the case in this study, as the median distance is 7025 m, with the deviation between the q1
and q3 markers being 5353 meters.
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The shown metrics prevent simple location-based attacks, where an attacker knows
a single location of a person, e.g., the workplace or home. The attacker then tries to
reidentify a person based on a single- or multipoint matching. The frequency of visits
at specific locations remains unchanged even if those are not at the same spot as in the
original dataset. This may expose the artificial datasets if mixed with the original data. This
reidentification is the scope of most traditional privacy penetration, e.g., shown in [26,41].

In order to carry out these types of attacks, some information about the person being
tracked is still necessary, such as how often they come to work. This information could
potentially be gathered from other data sources. For instance, even if the specific visited
locations are different from those in the original dataset, the visit frequency remains
consistent. This could potentially allow a reidentification of individuals in the synthetic
dataset when combined with context from the original data. This type of reidentification is
the focus of most traditional privacy breaches, as discussed in previous works [26,41].

5. Summary, Limitations, and Further Applicability

In this paper, the possibility of sharing personal data obtained by a mobility tracking
solution by creating an artificial dataset is discussed. It reflects some of the main characteristics
but masks the critical information about where the single participant was during the study.
This approach focuses on typical applications from the term of mobility research. The main
goal is to keep the abstraction level of the data. This allows models that are developed and pre-
trained on such sharable data to be applied to the original data without further adjustments.

Another unique attribute of the method is that the mobility behavior per person is
guaranteed to be stable regarding reoccurring locations within a single person’s way chain.
This means that if the person visits a specific workplace several times, it remains the same
place within the artificial data. This is achieved by clustering the target and start points,
creating a graph, representing the mobility behavior by taking the clusters as nodes and
the ways between them as edges. The node with the highest betweenness value is taken as
the “middle point” or “gravitational center” of the whole mobility behavior of the person.

A latent space of the H3 grids within the region is created by combining the results of
a feature autoencoder and a link prediction autoencoder. Then, every grid has values repre-
senting its features and a vector representing the connection within the area. Within this
latent space are new grids, representing the original H3 grids, where the ways started and
ended are searched. This happens by sorting all grids based on the similarity within the
latent space in relation to the grid where the original data are set. Additionally, the distance
in the geographical space from the grid in the way chain before and the geographical
distance from the mobility gravitational center is considered. Enforcing rules over the
grid selection guarantees privacy criteria, and the concrete locations are found within the
selected grids.

As an exemplary use-case, this method is applied to a dataset from the study of
Moblitaet.Leben. The results show that the method is functional. Some current limitations
include that only location-based attacks are prohibited. A reidentification is still possible
when using frequency-based attacks, meaning the original data must not be shared. Another
limitation of the current implementation is that all points of the participant’s way chain are
relocated, even those that are not compromising. If a mobility tracking study with company
employees was used as input data, the location of such a company might be allowed to be
in the synthetic result. In this case, a significant k-anonymity over all participants is still
guaranteed in company-related locations.

The global availability of OpenStreetMap makes this method useful worldwide.
The scalability of H3 grids over different zoom levels allows for further customization of
the underlying geographic information structure and covered region. However, the require-
ments for the dataset limit the number of useful applications. These requirements include:

1. Long-term user tracking.
2. Unique user ID for extended periods.
3. Possible trip-to-POI matching, including exact origin and destination points.
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These requirements should be valid for privacy-sensitive tracking data, which are
typically not publicly available.

Another future research focus lies within the embedding and route selection; at the
moment only driveways are usable. Future applications need to be multimodal mobility-
ready. Thus, the embedding and routing need to incorporate more transportation networks
like bikes and public transport and use non-point-of-interest data like demographic factors
over residential areas. Moreover, the state of the traffic during the original recording needs
to be taken into account to improve the routing. Once this is carried out, the data can
be further enhanced by generating GPS data along the route to match the recorded data
structure better. Then, the recording noise and data collection frequency can be included.

6. Conclusions

In conclusion, this paper presents an innovative approach to data anonymization
in long-term mobility tracking studies. An artificial dataset is generated that maintains
the core characteristics of the original data, while the privacy of participants is kept.
By this method, key challenges in sharing personal mobility data for research purposes
are addressed.

The integrity of mobility patterns are preserved by the technique of creating a latent space
through the combination of feature and link prediction autoencoders. Afterward, the intelligent
selection of grids based on similarity and geographical criteria is executed. This leads to synthe-
sized way chains without compromising personal privacy. The proposed method concentrates
on the recorded long-term mobility behavior. It extends previous methods by providing
a possibility to keep the consistency of individual mobility over long recording periods.

In addition, the main characteristics of the single participants are preserved, and basic
personal information is hidden. However, while effective against location-based attacks,
the potential vulnerability to frequency-based reidentification attacks highlights the need
for further refinement.

Additionally, the current limitations regarding non-compromising locations and the
reliance on driveway information suggest areas for future development. Ensuring that
the methodology is adaptable to multimodal mobility patterns and incorporates a broader
range of data types will significantly enhance its applicability and utility in advancing
mobility research while safeguarding participant anonymity. Another future research field
is the incomprehension of trajectory attributes, like street types. Following the construction
of not only start-/endpoints but the artificial generation of complete trajectories. This
means the construction of not only start-/endpoint tuples but the creation of a complete
artificial trajectory with GPS waypoints every 3 s, leading to a closer data density like real
data recordings.
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OSM OpenStreetMap
LSTM Long Short-Term-Memory
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