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Abstract: Spatial community detection is a method that divides geographic spaces into several sub-
regions based on spatial interactions, reflecting the regional spatial structure against the background
of human mobility. In recent years, spatial community detection has attracted extensive research in
the field of geographic information science. However, mining the community structures and their
evolutionary patterns from spatial interaction data remains challenging. Most existing methods for
spatial community detection rely on representing spatial interaction networks in Euclidean space,
which results in significant distortion when modeling spatial interaction networks; since spatial
community detection has no ground truth, this results in the detection and evaluation of communities
being difficult. Furthermore, most methods usually ignore the dynamics of these spatial interaction
networks, resulting in the dynamic evolution of spatial communities not being discussed in depth.
Therefore, this study proposes a framework for community detection and evolutionary analysis
for spatial interaction networks. Specifically, we construct a spatial interaction network based on
network science theory, where geographic units serve as nodes and interaction relationships serve as
edges. In order to fully learn the structural features of the spatial interaction network, we introduce a
hyperbolic graph convolution module in the community detection phase to learn the spatial and non-
spatial attributes of the spatial interaction network, obtain vector representations of the nodes, and
optimize them based on a graph generation model to achieve the final community detection results.
Considering the dynamics of spatial interactions, we analyze the evolution of the spatial community
over time. Finally, using taxi trajectory data as an example, we conduct relevant experiments within
the fifth ring road of Beijing. The empirical results validate the community detection capabilities of
the proposed method, which can effectively describe the dynamic spatial structure of cities based on
human mobility and provide an effective analytical method for urban spatial planning.

Keywords: spatial community detection; hyperbolic GCN; graph generation; human mobility;
dynamic evolution

1. Introduction

The accelerated development of urbanization has led to an expansion in the scale of
cities, accompanied by increases in population and traffic flows. As the primary location
for human mobility, the incongruity between the sharply rising demand for travel and
lagging urban planning and construction is prone to result in a series of urban problems [1].
The study of urban spatial structures assists planners and policy makers in determining
the spatial scale of cities and improving the rationality of urban spatial layouts. It is also a
key means of solving the ever-increasing urban problems.

The theory of urban spatial structure arose from the early Industrial Revolution, and
early studies on urban spatial structure mainly focused on the first-order geographical
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phenomenon of the static distribution of urban spatial structure. The metrics of urban
spatial structure are usually based on static measurement indicators, which are mainly
based on traditional data sources such as population censuses, land surveys, or statistical
data [2], to directly describe and classify the morphological, organizational, and distribu-
tional characteristics of urban space. The description of spatial structure is usually a static,
global spatial feature. However, urban geographic regions are not isolated, and regions
are connected to each other through spatial interaction [3–5]. Therefore, the study of urban
spatial structure is not only limited to a static view of the spatial layout, but also needs to
explore new dynamic perspectives.

With the rapid development of mobile terminals and sensor technology, a vast amount
of high-precision geospatial big data with temporal and spatial labels have been gen-
erated, providing new data sources and technical means for the study of urban spatial
structures [6–8]. In the context of the big data era, the application of big data technology
has significantly improved the precision and depth of urban spatial structure research.
Spatiotemporal flow data recording human mobility are widely used in the study of urban
geographical spatial structure divisions. Some researchers believe that the structure of
urban space can be reflected through spatial interactions, such as population movement
and traffic flow [9,10]. Therefore, the research on urban spatial structure has begun to
shift from the traditional “place space” to “flow space”. The research paradigm of urban
dynamic spatial structure proposed from the perspective of spatial interaction has become
one of the important research directions. Many scholars have studied urban spatial struc-
ture by detecting spatial communities and have developed a series of spatial community
detection methods.

However, most existing research on spatial community detection simply extends
methods from the field of network science, leading to a lack of applicability when detecting
spatial communities. Specifically, the detection of spatial communities is different from the
detection of communities in social networks. Firstly, when developing community detection
methods, it is necessary to combine the real-world scenarios of spatial interaction networks
and fully exploit the characteristics of the network. Relevant theoretical research has shown
that hyperbolic space provides a more suitable geometric framework for modeling and
analyzing complex networks in the real world [11,12]. From the perspective of actual data,
we visualized the spatial interaction network constructed from Monday’s taxi data (see
Section 4.1 for data introduction) on the Poincaré disk (Figure 1a) and statistically analyzed
the distribution of network node degrees (Figure 1b). It can be observed that mapping
the spatial interaction network into hyperbolic space by the means of the Poincaré disk
model clearly distinguishes the hierarchical structure of the network and exhibits scale-free
phenomena, which are characteristics that traditional Euclidean geometric frameworks
struggle to fully describe [13,14]. Secondly, it has been shown that graph generation
models can help to complete community detection tasks by defining and optimizing the
community affiliation of network nodes [15]. The development of deep learning technology
has occurred in recent years, in which the unsupervised deep learning model approach with
the idea of a graph generation model as the optimization goal shows advantages [16,17].
In addition, spatial interaction networks are a class of dynamic network [18]. We also
trace the evolution of interactions between urban areas by exploring spatial communities
over successive time periods as a way of gaining a deeper understanding of the dynamic
organization of urban areas.

Based on the above analysis, a framework that couples hyperbolic graph convolu-
tion and graph generation for spatial community detection and its dynamic evolution
identification is proposed. The method contains two main parts: the detection of spatial
communities and the identification of their evolution. In the first phase, we extend the
traditional complex network approach for first-order urban cognition to second-order
cognition by learning spatial interactions and computing unique vector representations
through a hyperbolic graph convolution module, projecting the urban information into
mathematical space. We utilize a graph generation model to provide optimization targets,
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thereby obtaining spatial community detection results. In the second phase, we adopt a
method for discovering the community evolution in social networks, which uses a com-
parative strategy based on the importance of node quantity and similarity to identify and
differentiate types of community evolution. Finally, we provide a theoretical foundation
for optimizing the dynamic spatial structure of a city by conducting experimental studies
and analyses within the Beijing fifth ring road, including the central urban area.
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Figure 1. Visualization of network structure and node degree statistics. (a) Visualization of the
network structure on the Poincaré disk. The red, green, and blue nodes represent network nodes
with degrees ranging from high to low, respectively, and the black lines represent the network edges.
(b) Visualization of network node degree statistics.

The main contributions of this study are as follows:

(1) We construct a framework based on hyperbolic graph convolution and graph genera-
tion for spatial community detection and its dynamic evolution identification. It is
suitable for spatial interaction networks.

(2) For spatial community detection, we use the hyperbolic graph convolution module
to learn the structural features of spatial interaction networks, and optimize the
node representation vectors output from the hyperbolic graph convolution module
in an unsupervised way through the idea of graph generation, so as to obtain the
community affiliation of nodes to complete the task of spatial community detection.

(3) Since most methods ignore the dynamics of spatial interaction networks, in order
to track the evolution of spatial communities, we use the group evolution discovery
(GED) [19] algorithm to identify the type of evolution of the spatial community.

The remaining sections of this paper are organized as follows. Section 2 reviews the
related work. Section 3 introduces the conceptual framework of the spatial community de-
tection and evolutionary identification proposed in this study. Here, we provide a detailed
overview of all components of the framework, describe their formal representations, and
outline the computational methods for quantifying dynamic processes. Section 4 presents
the results of our proposed method and discusses its effectiveness and advantages. More-
over, considering the apparent scale dependence of geospatial data, we conduct spatial
community detection experiments under grids of different scales to further evaluate the
proposed method. Section 5 is a discussion. Section 6 summarizes the conclusions of this
paper and future work.

2. Related Work

Community detection methods have evolved from the field of social networks, and
since both spatial interaction networks and social networks belong to complex networks,
early methods for detecting spatial communities directly utilized community detection
methods from the field of social networks (hereafter referred to as community detection)



ISPRS Int. J. Geo-Inf. 2024, 13, 248 4 of 28

for related research. Subsequently, researchers have gradually developed methods for
community detection in the field of geography, as well as methods based on deep learning.
Therefore, the following mainly reviews the methods and work of these three branches.

2.1. Community Detection

Community detection is a fundamental task in network analysis, aiming to identify
tightly connected subgroups within a network. In their early stages, community detection
methods relied on explicit rules and optimization criteria for community detection. Initially,
research on community detection was mainly based on graph partitioning theory, with
the basic idea being to divide the network into several subgraphs with closely connected
nodes based on partitioning criteria. Representative methods include the KL algorithm [20]
and spectral dichotomy [21], which are highly interpretable but susceptible to resolution
parameters. As research into complex networks progressed, community detection methods
based on statistical inference theory gradually developed, with the basic idea being to use
various prior knowledge and probabilistic graphical models [22] to construct and optimize
statistical models, thereby inferring the community structures in networks. For instance,
Karrer et al. [23] combined the stochastic block model to identify community structures
by simulating random connections within the network. Airoldi et al. [24] developed a
mixed-membership stochastic block model, enabling a low-dimensional representation
of the network structure and subsequent community detection. These methods offer a
probabilistic interpretation of community detection results, aiding in the assessment of
result reliability and uncertainty; however, they involve complex mathematical models
and computational processes, leading to high computational costs and unsuitability for
ultra-large networks. Since community detection is a technique for revealing the clustering
of network nodes into communities, some studies have also applied clustering algorithms
to community detection [25], giving rise to clustering-based methods. Representative
methods are the Girvan–Newman (GN) algorithm based on hierarchical clustering [26] and
the FastQ algorithm based on cohesive clustering [27], which can be applied to a variety
of network types and adapted to different community shapes and sizes; however, they
rely on preset parameters (e.g., the number of clusters), the selection of which requires
domain knowledge. Concurrently with clustering-based community detection research,
optimization-based community detection also emerged [28], with the basic idea being
to find community detection solutions that maximize modularity through optimization
algorithms. Representative methods include the Louvain algorithm [29] and the Leiden
algorithm [30].

Although directly applying community detection methods from the field of network
science can identify some valuable spatial interaction patterns embedded within spatial
networks, ignoring the spatial relationships between nodes (such as spatial topological
relationships and spatial distances) often results in the discovered community structure
primarily reflecting the influence of spatial proximity. This limitation prevents the discovery
of community structures caused by other potential factors, thereby restricting the ability to
interpret community structures in terms of spatial interactions [31].

2.2. Spatial Community Detection

Spatial community detection refers to the collection of geographical units that are
closely connected by spatial interactions, forming clustered patterns with certain structures
and functions. Compared to most non-spatial networks, spatial interaction networks are a
type of network embedded in space with more nonlinear characteristics [32], which poses
significant challenges for community detection in geographical spaces. Scholars, both do-
mestically and internationally, have explored methods of incorporating spatial relationship
constraints into community detection methods, mainly including two approaches: (1) Con-
sidering the constraints of spatial relationships in the process of defining the objective
function. For example, Expert et al. [31] and Gao et al. [33] tried to measure the impact of
spatial distance on the connection probability between nodes using the gravity model and
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modified the modularity function accordingly. Chen et al. [34] considered the decay of node
weights with spatial distance to modify the modularity function. Incorporating spatial
relationships into the objective function requires additional assumptions (such as distance
decay) and parameter settings, which increase the complexity of practical applications, and
unreasonable assumptions may also lead to deviations in the mined community results
from reality. Therefore, in recent years, some scholars have tried another research approach:
(2) Directly adding spatial relationship constraints between nodes in community detection
algorithms. For instance, Guo et al. [35] added spatial proximity constraints in the process
of modularity optimization and used a tabu search strategy to discover the community
structures from taxi trajectory data. Fan et al. [36] added spatial distance constraints in the
process of searching for community structures and provided an approximate algorithm
to search for the community structures from social media check-in data. Wan et al. [37]
extended the density-based community detection method by incorporating spatial dis-
tance constraints when estimating local density. Chen et al. [38] detected communities
with spatial correlation by using signed spectral clustering to capture the relevance of
spatial networks.

In conclusion, community detection methods that incorporate spatial relationship
constraints focus on introducing spatial relationship constraints into existing community
detection methods to identify spatial communities. However, in most real-world scenarios,
network data lack node label information and prior knowledge about communities, placing
community detection methods within the realm of unsupervised tasks. This direct approach
of capturing information from connections may lead to suboptimal community detection
results [39].

2.3. Community Detection Based on Deep Learning

With the development of computer and information technology, deep learning tech-
niques have begun to be applied in the research of community detection methods. Since
complex networks are organized as graph-structured data, methods based on Graph Con-
volutional Networks (GCNs) [40] have become a mainstream approach for community
detection. These methods effectively preserve and utilize the topological structure of the
network by aggregating the neighborhood information of nodes to capture node repre-
sentations for community detection at a global level. In the early stages, semi-supervised
learning strategies were mainly used. For example, Jin et al. [41] proposed MRFasGCN,
which adds the Markov Random Field model as a new convolutional layer in the framework
of a GCN to solve the problem of semi-supervised community detection in attribute net-
works with semantic information. Bhattacharya et al. [42] proposed CommunityGCN as a
semi-supervised node classification model, which combines the concept of message passing
for node classification with the architecture of semi-supervised graph neural networks to
achieve community partitioning. To address the task of community detection in real-world
scenarios without labeled data, clustering-based unsupervised learning strategies have
been developed. For example, Sun et al. [43] proposed a network embedding model for
node clustering to learn the network embeddings of node clusters in attributed graphs,
applying clustering loss to complete the clustering task and thereby achieve community
detection. Liu et al. [44] proposed a community detection method based on the commu-
nity perspective and a GCN, combining representation learning and clustering through a
Bernoulli–Poisson model to more accurately explore potential community structures. Liang
et al. [45] proposed the Region2vec method, which takes a network with node attributes
as an input into a GCN to generate node embeddings and uses clustering algorithms to
divide communities. Tsitsulin et al. [46] introduced deep modularity networks (DMoNs),
an unsupervised pooling method inspired by a modular measure of clustering quality,
and showed how it can solve the problem of recovering the challenging clustering struc-
tures of real-world attributed graphs. However, clustering-based unsupervised learning
strategies typically have a fixed pattern recognition capability, which can easily lead to
locally optimal solutions in community detection results. Therefore, when implementing
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unsupervised community detection, it is necessary to consider new methods that adapt to
complex network data.

In summary, compared to the earlier non-deep learning methods, community detec-
tion methods based on deep learning tend to focus on two aspects for method research
and improvement: network feature learning and model optimization objectives. From the
perspective of network feature learning, the key focus is on the topology and attributes
of the network. Starting from the local topological connections of network nodes and
continuing to the integration of global topological connection relationships, as well as
combining the attribute information of network nodes, these model methods have continu-
ously improved the ability to represent network features. However, most studies usually
compute network embeddings in Euclidean space to learn low-dimensional representations
of the network, without fully considering the hierarchical structure and scale-free nature of
spatial interaction networks [11–14]. Secondly, from the perspective of model optimization
objectives, the key focus is on how model methods construct optimization objectives to
complete the community detection task. Nevertheless, most research tends to adopt cluster-
ing algorithms or modularity optimization methods to obtain communities, failing to fully
utilize the structural information of the network data. Studies have shown that methods
based on graph probability generation are built on a consensus that the nodes in a common
community are more likely to be connected with each other than nodes distributed in other
communities. Therefore, it is natural to model community detection using a probabilistic
framework [47,48].

3. Methodology
3.1. Overview
3.1.1. Research Framework

In this study, a framework for spatial community detection and evolutionary identi-
fication is proposed (Figure 2), which consists of two parts: spatial community detection
and spatial community evolution identification. The first part is spatial community de-
tection, which comprises three steps: firstly, introducing geographical spatial knowledge
to construct spatial interaction networks based on human mobility (Figure 2a); secondly,
feeding the constructed spatial interaction networks into a hyperbolic graph convolutional
module for embedding (Figure 2b). Subsequently, based on the graph generation concept,
we construct the optimization objective function for the community detection part to obtain
membership information from the known spatial interaction network to complete the
community detection task. From the output community affiliation matrix, the column with
the largest probability value in each row is chosen as the community to which the node
belongs. The second part is the evolutionary recognition of spatial communities (Figure 2d),
mainly inspired by robust community evolution recognition methods in social networks
(GED algorithm [19]) for identifying and analyzing evolutionary types.

3.1.2. Detailed Description

This framework is used to infer the spatial community structures of urban areas
based on spatial interaction networks and their evolutionary types. The spatial community
detection consists of three parts. Initially, we extract the spatial and non-spatial information
inherent to spatial interaction data to construct spatial interaction networks. Considering
that the connections between nodes in the network also exhibit distance decay in spatial
interaction, meaning that, the closer the distance, the higher the likelihood of a connection
between two nodes, we incorporate the influence of geographical spatial distance on
the network’s connectivity by using the spatial coordinates of the geographical units as
attributes of the network nodes. Subsequently, in order to fully learn the structural features
of the spatial interaction network, a hyperbolic map convolution module is introduced,
which can be embedded into urban spatial units to obtain a vector representation of their
spatial features, reflecting the similarity of the urban spatial units in vector space. Finally,
we employ the concept of graph generation models to optimize the node representation
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vectors after the hyperbolic graph convolution module to output the community affiliation
matrix of the network nodes, thereby completing the task of community detection. For the
community evolution identification, we measure the similarity based on the joint variation
in the number of community nodes and their importance during evolution, and then
determine the type of community evolution based on this similarity.
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3.2. Construction of the Spatial Interaction Networks

The spatial interaction network is a type of dynamic network, which, in this study, is
organized in the form of snapshot graphs. That is, given a time interval ∆, a day can be
divided into t = 24/∆ time snapshots. Therefore, the dynamic network can be represented
as an ordered set {G1, G2, . . . , Gt}, where each snapshot Gt = (Vt, Et, Xt) is uniquely
determined by the set of nodes Vt, the set of edges Et, and node attributes Xt.

Specifically, we use a given time interval (for example, ∆ = 2 h) to divide and aggregate
the trajectory data with spatiotemporal information into geographic units within the study
area, organizing interactions between these units in the form of time snapshots (Figure 3a).
Specifically, geographic units are used as nodes, the interactions between geographic
units as edges, and the geographic coordinates of the units as node attributes, thereby
constructing the spatial interaction networks (Figure 3b). This network can be abstracted
as an attribute graph Gt = (Vt, Et, Xt), where Vt, = {1, . . ., N} contains N geographic
units; Et =

{
(i, j) ∈ V × V : Aij

}
includes edges between any two geographic units; and

Aij represents the weight of the edge between nodes i and j. The weights of the edges
between all nodes form the adjacency matrix At; moreover, the features of the nodes can be
represented as Xt ∈ RN×D, where D denotes the dimensionality of the node features. Here,
we treat the geographical coordinates of the nodes as node attributes.
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3.3. Spatial Community Detection
3.3.1. Network Embedding Based on Hyperbolic Graph Convolution

In this section, we describe the specific operations for embedding the spatial interaction
network into low-dimensional vectors using the hyperbolic graph convolution module.
The node representation vectors obtained after the network embedding are set as the initial
values of the node community affiliation matrix.

To fully capture the attributes of the nodes in the spatial interaction network, the
neighborhood structure of the nodes, and the features of the edges, this study employs a
hyperbolic graph convolution module [49] for embedding to obtain a reduced-dimensional
representation of the spatial interaction network. In this manner, a refined characterization
of network nodes abstracted from geographic units is achieved (Figure 4). Specifically,
the multiple spatial interaction networks constructed in Section 3.2 are sequentially fed
into the hyperbolic graph convolution for embedding in time order, thereby capturing
the structure and attribute information of the spatial interaction network. This generates
potential representation vectors for geographic units, which are then used as inputs for
downstream tasks.
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For the specific task of this study, the description is as follows. Firstly, the mathematical
form of the spatial interaction network Gt = (Vt, Et, Xt) embedded through the hyperbolic
graph convolution module is:

f : Vt, Et,
(

XE
t,i

)
i∈V

→ Xl,H
t,i ∈ R|V|×d′ (1)
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where E represents the Euclidean space and H represents the hyperbolic space,
(

XE
t,i

)
i∈V

represents the Euclidean features of the i-th node input at the t-th time, Xl,H
t,i is the vec-

tor representation of the spatial interaction network i-th node obtained after embedding
through l layers of hyperbolic graph convolution modules, and d′ represents the dimension
of the node feature.

Specifically, the embedding of the spatial interaction network through the hyper-
bolic graph convolution module can be described as follows: given a spatial interaction
network Gt = (Vt, Et, Xt) and input Euclidean features

(
XE

t,i

)
i∈V

, they are input into l
layers of hyperbolic graph convolution to obtain the feature representation of the nodes in
hyperbolic space.

First, we employ exponential mapping to map the Euclidean input features to the
hyperbolic space, expressed as:

XH
t,i = expK

o (0, XE
t,i) = (

√
Kcosh(

∥ XE
t,i ∥2√
K

)·
√

Ksinh(
∥ XE

t,i ∥2√
K

)
XE

t,i

∥ XE
t,i ∥2

) (2)

where XE
t,i represents the input features of the i-th node of the spatial interaction network at

the t-th time in Euclidean space; K represents the curvature of the hyperbolic space, which is
computable; cosh and sin h, respectively, denote the hyperbolic cosine and hyperbolic sine
functions; expK

o (·) denotes the exponential mapping in hyperbolic space with curvature K,
with the reference point o being the origin of the tangent plane in hyperbolic space; and XH

t,i
represents the features of the i-th node at the t-th time in hyperbolic space obtained after
applying expK

o (·).
Then, the mathematical expression for message passing in each layer of the HGCN is:

hℓ,H
t,i =

(
Wℓ ⊗Kℓ−1,H Xℓ−1,H

t,i

)
⊕Kℓ−1 bℓ (3)

yℓ,H
t,i = AGGKℓ−1

(
hℓ,H

t,i

)
i

(4)

Xℓ,H
t,i = σ⊗

Kℓ−1,Kℓ
(

yℓ,H
t,i

)
(5)

where hℓ,H
t,i represents the features of the i-th node at the t-th time obtained after the

hyperbolic feature transformation, yℓ,H
t,i denotes the features of the i-th node at the t-th time

after the attention-based neighbor aggregation operation AGGKℓ−1(·), and Xℓ,H
t,i represents

the final hyperbolic embedding features. Generally, features obtained through two layers
of HGCN embedding are more appropriate, that is, the value of l is set to 2.

3.3.2. Optimize Community Affiliation Matrix Based on Graph Generation Model

The hyperbolic graph convolution module introduced in Section 3.3.1 is capable of
capturing the complex relationships in spatial interaction networks and obtaining the
hyperbolic embedding vectors for each node. The downstream task of spatial community
detection is aimed at real-world scenarios and is expected to be accomplished through an
unsupervised community detection framework. Inspired by the concept of probabilistic
generative models [48,50], a connection can be established between the spatial community
detection results and the original network to achieve spatial community detection (Figure 5).
The underlying logic is: assuming that the probability of forming edges between nodes
within spatial communities is higher than that between nodes outside spatial communities,
the question arises of how to optimize the spatial community detection results to ensure
their accuracy. By reversing this thinking, we assume that, based on the achieved spatial
community division, the spatial interaction network is generated by inferring from the
results. If the generated spatial interaction network is as close as possible to the original
network, it will be considered as the final result of the spatial community detection. There-
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fore, the problem of spatial community detection can be considered within a probabilistic
inference framework. That is, drawing on the idea of probabilistic generative modeling, the
original network can be used to guide the embedding of the spatial interaction network by
the hyperbolic graph convolution module in Section 3.3.1, and eventually, the community
affiliation of each node can be obtained, thus realizing spatial community detection.
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Specifically, suppose that the community set of the spatial interaction network is
denoted as C (C is a hyperparameter, given an initial value, the final number is determined
by model training) and that there are two nodes, i and j, with affiliation strength vectors Fi
and Fj, where Fi and Fj, respectively, represent the membership probability vectors of node
i and node j in their respective communities. The probability P(i, j) of generating an edge
between nodes i and j in the community affiliation graph model is given by:

P(i, j) = 1 − exp
(
−Fi·FT

j

)
(6)

Therefore, after giving the community affiliation for each geographic unit, the proba-
bility of a connection between any two points can be calculated using Equation (6), thereby
generating the spatial interaction network. The community detection task can be under-
stood as the inverse process of the following: continuously optimizing the community
affiliation matrix of geographical units until the original spatial interaction network is
maximally reconstructed with the highest probability. At this point, the affiliation matrix
serves as the final output result. In summary, finding the F that maximizes p(G|F):

p(G|F) = ∏
(i, j)ϵE

p(i, j) ∏
(i, j)/∈E

(1 − p(i, j)) = ∏
(i, j)ϵE

(
1 − exp

(
−Fi·FT

j

))
∏

(i, j)/∈E
exp

(
−Fi·FT

j

)
(7)

3.3.3. The Overall Structure of Spatial Community Detection Models

This study combines the HGCN module described in Section 3.3.1 and the graph
generation model described in Section 3.3.2 to solve the optimization problem of the
node community affiliation matrix F in Equation (7), thereby accomplishing the task of
spatial community detection. The constructed spatial community detection model can be
expressed as:

F := HGCNα(At, Xt) (8)

where F is defined as the output of the HGCN, α represents the parameters of the model,
and A and Xt, respectively, denote the adjacency matrix and node features of the spatial
interaction network.

The objective of model optimization is to better delineate communities and accomplish
the task of community detection. Inspired by the probabilistic generative model, our
fundamental assumption is that if a pair of nodes share a community, the likelihood of
them being connected in the network is higher. Based on this premise, a non-negative
initial value is assigned to each node–community pair, representing the node’s membership
to the community. Then, the probability of an edge between a pair of nodes in the network
is modeled as a function of their shared community membership. This establishes a direct
connection between the node’s community membership and the probability of edges in the
original network. With knowledge of the network structure, this function can be used as the
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optimization objective, thereby achieving node–community partitioning. The optimization
objective of the model is to maximize p(G|F). Combining with Equation (7), we can deduce
the loss function of the model optimization process:

LF = ∑
(i,j)ϵE

log
(

1 − exp
(
−Fi·FT

j

))
− ∑

(i,j)/∈E
Fi·FT

j (9)

Thus, the optimization objective of the HGCN is:

α⋆ = argmax
α

L(F) = argmax
α

L(HGCNα(At, Xt)) (10)

During the training process, the loss function continually constrains the HGCN module,
optimizing the process of extracting network features by the HGCN. Consequently, the
optimal membership matrix of communities is obtained, leading to the detection results of
spatial communities. From the output community affiliation matrix, the column with the
largest probability value in each row is chosen as the community to which the node belongs.

3.3.4. Evaluation of Spatial Community Detection Models

As community detection methods are a type of optimization task that falls under
the category of unsupervised learning, the evaluation of community detection methods
generally relies on unsupervised learning metrics. This paper measures the effectiveness of
the model through the intrinsic structure of the community, density, clustering quality, and
other aspects. The specific evaluation metrics used include modularity, average density,
average conductivity, and average clustering coefficient, all of which are internal evaluation
metrics and are described below:

(1) Modularity Metric

The Modularity (Modularity, Q) metric is used to measure the tightness of connections
within communities relative to the connections between communities. A modularity score
above 0.3 is generally considered to indicate a reasonable quality of community detection.
The specific calculation formula is as follows:

Q =
1

2m∑
i,j

(Aij −
kik j

2m
)δ(ci, cj) (11)

where m is the sum of the weights of all edges in the network, Aij is the weight of the edge
between nodes i and j, ki and k j are the degrees of nodes i and j, respectively, and δ

(
ci, cj

)
is an indicator function that equals 1 if nodes i and j belong to the same community and
0 otherwise.

(2) Average Density Metric

The Average Density (Average Density, AD) metric is used to measure the average
density of the edges within all detected communities. A higher average density value
indicates that the connections between nodes within the community are closer. The specific
calculation formula is as follows:

AD(C1, . . . , CK) =
∑ iϕ (Ci) · |Ci|

∑ i |Ci|
(12)

where ϕ(Ci) represents the density of a single community Ci, which is calculated by
dividing the number of existing edges within the community by the number of possible
edges that could exist within the community. |Ci| represents the size of the ith community,
which is the number of nodes in that community.

(3) Average Conductance Metric
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The Average Conductance (Average Conductance, AC) metric is a concept used to
measure the connectivity of nodes within a network and can be used to assess the compact-
ness of communities. A low conductance indicates a higher proportion of internal edges
within the community, suggesting a more tightly knit community structure. The specific
calculation formula is as follows:

Conductance(C) =
cut

(
C, C

)
2 × vol(C) + cut

(
C, C

) (13)

AC(C1, . . . , CK) =
∑ i Conductance (Ci) · |Ci|

∑ i |Ci|
(14)

where Equation (13) shows the calculation of the conductance and Equation (14) shows
the calculation of the average conductance. C1, . . . , CK are all the communities detected in
the network, |Ci| represents the size of the ith community, C represents a subgraph within
the community, C represents the complement of C, cut

(
C, C

)
represents the number of

edges between the community C and its complement C, which is the number of external
connections of the community, and vol(C) represents the sum of the edges within the
community C, which is the total number of internal connections within the community.

(4) Average Clustering Coefficient Metric

The Average Clustering Coefficient (Average Clustering Coefficient, ACC) metric is
used to measure the degree to which the nodes within detected communities form triangle
relationships. A high clustering coefficient indicates that the interconnections among the
nodes within the community are relatively tight. The specific calculation formula is as
follows:

ClustCoef(Ci) =
3 × triangles in Ci

triplets in Ci
(15)

AvgClustCoe f (C1, . . . , CK) =
∑ i ClustCoef (Ci) · |Ci|

∑ i |Ci|
(16)

where Equation (15) shows the shows the calculation of the clustering coefficient and
Equation (16) shows the calculation of the average clustering coefficient. C1, . . . , CK are
all the communities detected in the network, |Ci| represents the size of the ith community,
“triplets” refers to combinations of any three nodes within the community Ci, and “triangles”
refers to the node combinations among these that actually form a triangle relationship.

3.4. Identification of the Evolution of Spatial Communities

Spatial interaction networks are inherently dynamic, with the interactions between
nodes continually changing. Therefore, it is necessary to study the evolution of spatial
communities. Drawing on relevant definitions of community evolution in social networks,
the types of community evolution mainly include birth, growth, split, merge, shrinkage,
death, and continuity. Here, we employ a method for discovering the community evolution
in social networks (GED algorithm) [19], which compares the importance of node quantity
and similarity to distinguish types of community evolution. Specifically, we compare the
spatial communities in adjacent time snapshots and introduce a metric to characterize
their evolution. This can be mathematically described as follows: suppose that the spatial
communities in adjacent time snapshots at time t − 1 and t are Ct−1

i and Ct
j , respectively.

The metric measuring the similarity between adjacent temporal communities is defined as
I
(

Ct−1
i , Ct

j

)
and I

(
Ct

j , Ct−1
i

)
:

I
(

Ct−1
i , Ct

j

)
=

∣∣∣Ct−1
i ∩ Ct

j

∣∣∣∣∣∣Ct−1
i

∣∣∣ ·
∑xϵ(Ct−1

i ∩Ct
j )

SPCt−1
i

(x)

∑xϵ(Ct−1
i ) SPCt−1

i
(x)

(17)
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I
(

Ct
j , Ct−1

i

)
=

∣∣∣Ct−1
i ∩ Ct

j

∣∣∣∣∣∣Ct
j

∣∣∣ ·
∑xϵ(Ct−1

i ∩Ct
j )

SPCt
j
(x)

∑xϵ(Ct
j )

SPCt
j
(x)

(18)

where
∣∣∣Ct−1

i

∣∣∣ denotes the number of network nodes in community Ct−1
i ,

∣∣∣Ct−1
i ∩ Ct

j

∣∣∣ rep-
resents the number of overlapping network nodes between the two communities, and
SPCt−1

i
(x) represents the importance indicator of the community nodes, which can be

calculated using metrics such as node betweenness or degree centrality to measure the
importance of node x in community Ct−1

i . In this study, we choose the degree centrality of
nodes for calculation.

Furthermore, two hyperparameters, δ1 and δ2, are set to determine the types of evolu-
tion. Schematic diagrams of the community evolution types and the criteria for determining
the community evolution types are shown in Table 1.

Table 1. The schematic diagram of community evolution types and discriminatory criteria for
evolution types.

Types Judgmental Condition Sketch

Birth
For Ct

j in t and each community Ct−1
i in t − 1, I

(
Ct−1

i , Ct
j

)
< δ1,

I
(

Ct
j , Ct−1

i

)
< δ2.
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4. Case Study and Results
4.1. Study Area and Data Description

The case study was conducted in the central urban area of Beijing within the fifth ring
road, as shown in Figure 6. This area is bounded by the fifth ring road expressway and
has a total area of approximately 668.72 km2. It encompasses the core functional area of
Beijing and parts of the surrounding districts, including Dongcheng, Xicheng, Haidian,
Shijingshan, Chaoyang, and Fengtai. The area is characterized by the highest population
density and most active economic activity in Beijing.
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Figure 6. Map of the study area: (a) The geographical location of the study area and its extent. (b) The
specific descriptions within the study area.

This study selected taxi trip data from Beijing for the period from 13 July 2017 (Monday)
to 19 July 2017 (Sunday) for experimental validation. The data were anonymized to protect
user privacy. From the trajectory data, origin–destination (OD) pairs were extracted to form
trip flows. A data example is shown in Table 2, which includes detailed field information
and data examples of taxi order data. To obtain accurate and usable data, the data were
cleaned: 1⃝ the pick-up and drop-off times were converted from UTC to Beijing time
to obtain accurate time information; 2⃝ data with excessively short time intervals and
abnormal speeds were filtered out; and 3⃝ the Mercator projection coordinates under
the WGS 1984 coordinate system’s zone 50N were calculated based on the latitude and
longitude of the pick-up and drop-off points.

Table 2. The original taxi trip data example.

Field Field Description Data Example

Ot Pick-up time 1,489,352,929
Olat Pick-up latitude 40.00288
Olon Pick-up longitude 116.39449

Dt Drop-off time 1,489,355,684
Dlat Drop-off latitude 40.07928
Dlon Drop-off longitude 116.58233

Deltat Ride duration 2755
Owday Start date 1
Ohour Start time 5
Dwday End date 1
Dhour End time 5

Distance Ride distance 18.136932727754598
Speed Travel speed 23.699803201421616

The study area was divided into 584 traffic analysis zones. Additionally, considering
that this study mainly focuses on the clustering patterns of the second-order spatial inter-
actions of spatially extensive data, which exhibit scale dependence [51] under different
aggregation units, we supplemented experiments of spatial community detection using
the proposed method under different-scale regular grid networks to further evaluate our
approach. The study area was divided into 2790, 727, 196, and 90 research units based on
regular grid networks with sizes of 0.5 km, 1 km, 2 km, and 3 km, respectively.
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4.2. Experimental Setup for Spatial Community Detection

In order to verify the effectiveness and advantages of the proposed method, we choose
the Leiden method and GCN-based method for comparison. Firstly, we chose the Leiden
method because the Leiden method is currently recognized as an SOTA method and
the algorithm is more stable. By comparing the Leiden method, the effectiveness of the
proposed method can be reflected to some extent. Secondly, the GCN-based method is a
suitable deep learning method for spatial cluster detection. It is more versatile than the
spatial community detection methods reviewed in Section 2.2. By comparing the GCN-
based method, it can reflect the advantage of introducing hyperbolic space in the proposed
method in this paper.

Specifically, this study analyzes the quantitative and qualitative perspectives, re-
spectively. Firstly, from a quantitative perspective, this study introduces four metrics:
modularity, average density, average conductance, and average clustering coefficient, to
evaluate the communities detected by the proposed method. Secondly, from a qualitative
perspective, the analyses conducted in this paper include: (1) To verify the effectiveness of
the proposed method, it is compared with the Leiden algorithm [30] and tested over five
weekdays. To demonstrate the advantages of the proposed method, an ablation study is
conducted by comparing it with the method based on GCN. (2) To investigate the scale
dependence of the data, experiments are conducted with regular grids of 0.5 km, 1 km,
2 km, and 3 km, respectively.

As described in Section 3.3.2, C is a hyperparameter used as an initial value for the
number of communities output by a given spatial community detection model (the number
of communities ultimately output by the model is determined by the input network data,
up to a maximum of the hyperparameter C). We used the spatial interaction network
constructed from Monday’s taxi data as experimental data, explored the initial number of
communities between 10 and 35 at intervals of 5, and repeated the experiment three times,
taking the change in the mean and standard deviation values of the modularity (Table 3).
Our experiments showed that the results were better when C was set to 30, and none of
the final outputs exceeded 30 communities as the value of C increased. Thus, we set the
hyperparameter C of the model to 30.

Table 3. Determination of the hyperparameter C.

C 10 15 20 25 30 35

Modularity 0.307 ± 0.015 0.330 ± 0.016 0.340 ± 0.010 0.352 ± 0.010 0.364 ± 0.005 0.294 ± 0.021

4.3. Results of Spatial Community Detection
4.3.1. The Effectiveness of The Proposed Method

First, we took traffic analysis zones (TAZs) as the research units and processed the
taxi trajectory data within the fifth ring road of Beijing on 13 March 2017 (Monday). We
aggregated these data to construct a network of spatial interaction. The network consisted
of 584 TAZ units as nodes, and the edges represent the interaction volume between the
research units. Based on the start timestamps, we split all the trip data into 12 time
snapshots separated by two hours.

To better illustrate the training effects of the proposed method, the loss function during
training is visualized (Figure 7). Clearly, the loss of the proposed method converged during
training, and it can also be seen that the modularity gradually increased and then stabilized.

Firstly, for the quantitative evaluation, all communities detected during the four time
snapshots, including both the morning and evening peak hours on Mondays, were selected
for assessment. We conducted three repeated experiments and reported the mean and
standard deviation of each metric. Table 4 shows the comparison of the Modularity metric,
Table 5 shows the comparison of the Average Density (AD) metric, Table 6 shows the
comparison of the Average Conductance (AC) metric, and Table 7 shows the comparison of
the Average Clustering Coefficient (ACC) metric.
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Table 4. Modularity metric comparison.

Time Snapshots

S4 S5 S9 S10

Leiden 0.322 ± 0.006 0.344 ± 0.002 0.338 ± 0.004 0.337 ± 0.004
GCN-based 0.306± 0.004 0.350 ± 0.004 0.340 ± 0.004 0.353 ± 0.003

Ours 0.330 ± 0.008 0.364 ± 0.005 0.346 ± 0.005 0.361 ± 0.003

Table 5. AD metric comparison.

Time Snapshots

S4 S5 S9 S10

Leiden 0.092 ± 0.000 0.146 ± 0.002 0.144 ± 0.004 0.134 ± 0.005
GCN-based 0.096 ± 0.002 0.180 ± 0.003 0.200 ± 0.001 0.203 ± 0.004

Ours 0.112 ± 0.001 0.173 ± 0.003 0.205 ± 0.002 0.215 ± 0.003

Table 6. AC metric comparison.

Time Snapshots

S4 S5 S9 S10

Leiden 0.404 ± 0.008 0.375 ± 0.018 0.393 ± 0.007 0.375 ± 0.035
GCN-based 0.507 ± 0.006 0.528 ± 0.010 0.559 ± 0.008 0.574 ± 0.020

Ours 0.480 ± 0.004 0.441 ± 0.009 0.537 ± 0.010 0.560 ± 0.021

Table 7. ACC metric comparison.

Time Snapshots

S4 S5 S9 S10

Leiden 0.004 ± 0.000 0.012 ± 0.001 0.012 ± 0.002 0.009 ± 0.002
GCN-based 0.004 ± 0.002 0.017 ± 0.002 0.024 ± 0.000 0.022 ± 0.002

Ours 0.006 ± 0.001 0.022 ± 0.001 0.028 ± 0.001 0.032 ± 0.003
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As shown in Table 4, the modularity of the communities detected by the proposed
method and the comparison methods was always higher than 0.3, and the modularity of the
proposed method was slightly higher than that of the comparison methods. This indicates
that the proposed method can effectively distinguish the community structures in the
spatial interaction network. As shown in Table 5, the average density of the communities
detected by the proposed method was slightly higher than that of the Leiden method and
the GCN-based method, suggesting that the communities detected by the proposed method
were, on average, more closely connected, which is generally considered to be better in
community detection. As shown in Table 6, the average conductance of the communities
detected by the proposed method and the method based on GCN was higher than that of
the Leiden method, indicating that the communities detected by the Leiden method had
less connectivity between communities, which is its advantage; compared to the GCN-
based method, the communities detected by the proposed method had less connectivity,
implying that the proposed method detected communities that were more separable than
those detected by the GCN-based method. As shown in Table 7, the average clustering
coefficient of the communities detected by the proposed method was higher than that of
the Leiden method and the GCN-based method, indicating that the communities detected
by the proposed had have a higher degree of aggregation among community nodes.

In summary, the communities detected by the proposed method exhibited a good
performance on all four evaluation metrics. Considering these metrics together, it can be
concluded that the proposed method achieved a satisfactory level of rationality in detecting
spatial community structures.

Secondly, for the qualitative analysis, we selected four time snapshots containing two
special time periods: the morning rush hour and the evening rush hour. We compared
our method with the widely recognized Leiden method, and the community detection
results of both methods are shown in Figure 8. The number of communities detected by
the Leiden method was generally less, with larger community sizes and more continuous
structures [30]. In contrast, the communities detected by our method tended to have smaller
sizes compared to those detected by the Leiden method.
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Meanwhile, we further analyzed the community detection results of our method by
combining them with a geographic base map and highlighted three core communities.
Compared to the Leiden method, the communities detected by our method, as shown
in Figure 9a, primarily included scenic spots such as the Summer Palace, Fragrant Hills
Park, and West Lake in Community 4; educational institutions like Tsinghua University,
Peking University, and Renmin University in Community 6; and areas with transportation
facilities like Beijing West Railway Station, Beijing South Railway Station, and Beijing
Fengtai Railway Station in Community 5. However, the communities detected by the
Leiden method failed to effectively differentiate functional areas. Overall, the Leiden
method is an algorithm based on modularity optimization and suffers from the problem
of resolution limitation. That is, the modularity is sensitive to the size of the community.
The value of modularity may overestimate the existence of large communities and ignore
the existence of small communities. In contrast, the proposed method is based on the
original network structure for the optimization of community results, which is able to solve
the resolution limitation problem due to the modularity and detects a more fine-grained
community structure.
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Figure 9. Community detection results. (a) Community detection results of our proposed method
and (b) community detection results of the Leiden method.

Since the proposed community detection method in this paper utilizes hyperbolic
graph convolutional modules for embedding in the network embedding part, to verify the
advantage of introducing hyperbolic space in our method, we conducted ablation exper-
iments using models based on Graph Convolutional Networks (GCNs) as the backbone
network. The GCN-based community detection method employs Euclidean embeddings,
which require a large number of dimensions to capture complex relationships. In contrast,
our method integrates hyperbolic geometry into the network embedding module to han-
dle complex networks, particularly those in spatial interaction networks. Specifically, we
achieved this by substituting Euclidean space with hyperbolic space. We applied the t-SNE
algorithm to reduce dimensionality and visualize the features obtained from both the GCN
embedding and hyperbolic graph convolutional embedding, as shown in Figure 10.

To verify the superiority of the community detection results, under the same condi-
tions, we further conducted community detection using a model based on Graph Convolu-
tional Networks (GCNs) as the backbone network. We selected four time periods, including
both the morning and evening rush hours, and compared the results with our method. The
community detection results are shown in Figure 11.
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nities. The first row visualizes the embedding features based on the GCN method, while the second
row visualizes the embedding features of our method.
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The first row represents the community detection results based on GCN, while the second row
represents the community detection results of our method.

Based on the feature visualization after the t-SNE dimensionality reduction (Figure 10),
we found that the embedded features of our method exhibited a better out-of-cluster
separability and in-cluster cohesion by introducing hyperbolic space. Thus, the separability
of communities can be improved by introducing the hyperbolic space. In addition, we
found that the features obtained after the convolutional embedding of the hyperbolic map
approximated a circular distribution.

Comparing the community detection results of our method and the ablation experi-
ments based on GCN modules (Figure 11), we found that the proposed method detected
more fine-grained communities. For example, during the time period from 6 to 8 a.m.,
community C1 identified by the GCN-based method corresponded to community C2
and community C12 identified by the proposed method; during the time period from
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8 to 10 a.m., community C7 identified by the GCN-based method corresponded to com-
munity C4 and community C6 identified by the proposed method; during the time period
from 4 to 6 p.m., community C5 identified by the GCN-based method corresponded to
community C3 and community C10 identified by the proposed method; and in the time
period from 6 to 8 p.m., community C2 identified by the GCN-based method corresponded
to community C4 and communities C10 and C14 identified by the proposed method.

Since most residents have the same travelling purpose during weekday commuting
time, there was some similarity in their community structure. To further validate the
stability of the community detection results of the proposed method, we used this as
a reference to conduct experiments on snapshots containing weekday commute times.
Figure 12 shows the results of the community detection, comparing the vertical distribution
of communities in each column, where the locations of larger communities were basically
the same. The results show that our method could consistently detect relatively stable
community structures, indirectly confirming the stability of our model.
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In addition, we conducted experiments using data from the same time snapshots
on weekends, and the community detection results obtained are shown in Figure 13.
Comparing the community detection results between weekdays and weekends, it is evident
that the community structure on weekends differed significantly from that on weekdays,
especially during Sunday mornings from 8 to 10 a.m., where the community structure
appeared fragmented, indicating a diversified travel pattern during this time period.
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Figure 13. Visualization of community detection results for four time snapshots on weekends.

Overall, our comparative analysis between weekdays and weekends confirms the
differences in travel patterns between these two time periods.

4.3.2. Exploring the Scale Dependence of Spatial Interaction Data

Considering the scale dependence of the spatial interactions in different aggregation
units, we conducted experiments using multiscale regular grids. Based on the size of
the study area, we divided the area into 0.5 km, 1 km, 2 km, and 3 km regular grids
and performed community detection using our method. We visualized the community
detection results for four time snapshots, including both morning and evening rush hours
(as shown in Figure 14), under different grid sizes. When using a 0.5 km grid as the study
unit, the community structure detected was sparse and scattered. When conducting spatial
community detection using grids ranging from 1 km to 3 km as research units, the number
of spatial communities detected during the time period of 6–8 a.m. was 24-17-7; during
8–10 a.m. it was 22-13-7; during 4–6 p.m. it was 26-13-8; and during 6–8 p.m. it was 23-13-8.
By comparing the results of different aggregation units, it was observed that, as the area
of the research unit increased, the number of detected communities decreased, and using
different scales of aggregation units led to differences in the results.

4.4. Identifying the Evolving Patterns of Spatial Communities

The evolution of spatial communities over time was captured by comparing the
similarities of various communities in consecutive time snapshots, describing the dynamic
patterns of urban spatial structures. Following the method described in Section 3.4, we
partitioned the evolution types of communities by comparing the calculated inclusion
indexes and community sizes. Considering the recommended range for the values of
hyperparameters δ1 and δ2 ∈ [0, 1], here, we set them to 0.7 based on specific experimental
data. The statistics of the community evolution types obtained are presented in Table 8.
To visually represent the overall evolution trend of spatial communities within a day, we
visualize the flow of communities across 12 time snapshots (as shown in Figure 15).
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Table 8. Evolution types and numbers of spatial communities.

Time Snapshots

S1–2 S2–3 S3–4 S4–5 S5–6 S6–7 S7–8 S8–9 S9–10 S10–11 S11–12

Types

Birth 10 10 11 6 8 11 10 2 4 5 2
Growth 1 / 1 3 1 2 3 2 3 1 /

Split / / / / 2 / / / / 2 /
Merge / / / / / 2 / 3 / / 2

Shrinkage / / / 1 2 1 2 1 2 1 1
Death 12 13 3 6 7 7 10 10 1 3 6

Continuity / / / / / / 5 / / / /

Count 23 23 15 16 20 23 30 18 10 12 11
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To further investigate the evolution of communities, we selected communities cover-
ing various types of evolution for visualization (Figure 16). The thumbnail in the top left 
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Figure 15. Evolution of spatial community over time in different time snapshots. A color block
on each time snapshot represents a community, and the length of the block represents the number
of communities, so that the evolution and development trend of communities can be tracked by
following the flow of data.

Based on observations, the number of evolution types identified during the morning
peak hours (S4–5 and S5–6), evening peak hours (S8–9 and S9–10), and nighttime (S10–11
and S11–12) periods was lower than that in other time intervals, indicating a more singu-
lar travel purpose during these times. In addition, events such as birth and dissolution
occurred more frequently among the identified community evolution types across differ-
ent time snapshots, while events classified as persistent types occurred less frequently,
reflecting rapid changes in the spatial structure of the city. Generally, as spatial interactions
dynamically altered the spatial organization of urban areas, the spatiotemporal characteris-
tics of spatial interaction networks were validated and further elucidated during network
evolution. This underscores the suitability of networked communities with spatiotemporal
properties for studying the spatial structure of dynamic cities.

To further investigate the evolution of communities, we selected communities cov-
ering various types of evolution for visualization (Figure 16). The thumbnail in the top
left corner represents the geographical location of the community. Figure 16a illustrates
the “growth” event of a community, indicating that, during the period of an increased
travel volume in the morning peak hours, community C1 expanded, connecting some
areas of Dongcheng District, Xicheng District, and parts of Fengtai District. Figure 16b
demonstrates the “continuity” event of a community, showing that, during the period from
12 a.m. to 4 p.m. when the travel volume remained relatively constant, the structure of
community C3 remained stable. Figure 16c depicts the “death” event of a community, indi-
cating that, during the period from midnight to 4 a.m. when the travel volume gradually
decreased, community C4 underwent dissolution. Figure 16d displays the “split” event
of a community, showing that, during the late stages of the evening peak hours when the
travel volume increased again, community C5 split into communities C6 and C7. Figure 16e
illustrates the “shrinkage” event of a community, indicating that, during the early stages of
the evening peak hours, the size of community C8 decreased and travel purposes became
more uniform. Figure 16f presents the “merge” event of communities, where communities
C10, C11, and C12 merged into community C13, indicating increased interactions between
communities, leading to connection formation. Figure 16g demonstrates the “birth” event
of a community, showing that, during the early stages of the morning peak hours, residents
began to travel, resulting in the emergence of a new community C14.
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From the perspective of practical application, the spatial communities detected based
on the taxi traveling data actually reflect the areas in the city where people travel relatively
frequently. In order to further analyze the practical application value of these results, we
selected a specific example in Figure 16a, the community “growth” event, and visualized
the spatial distribution of community C1 and community C2, respectively, as shown in
Figure 17. With the proposed method, we found that the community C1 detected in
time snapshot S4 evolved into community C2 in time snapshot S5, corresponding to the
real-life morning rush hour commuting scenario. In this scenario, due to the significant
increase in the amount of people traveling, it is easy to cause traffic congestion, which
negatively affects people’s travel efficiency. Through the above analysis, we are able to
gain a deeper understanding of the dynamic organization of urban space. Therefore, in our
future policy recommendations, we suggest that the spatial distribution of communities
and their evolution types can be used to assist the dynamic scheduling and optimization of
urban resources in order to alleviate traffic pressure and improve urban travel efficiency.

ISPRS Int. J. Geo-Inf. 2024, 13, x FOR PEER REVIEW 28 of 31 
 

 

From the perspective of practical application, the spatial communities detected based 
on the taxi traveling data actually reflect the areas in the city where people travel relatively 
frequently. In order to further analyze the practical application value of these results, we 
selected a specific example in Figure 16a, the community “growth” event, and visualized 
the spatial distribution of community C1 and community C2, respectively, as shown in 
Figure 17. With the proposed method, we found that the community C1 detected in time 
snapshot S4 evolved into community C2 in time snapshot S5, corresponding to the real-
life morning rush hour commuting scenario. In this scenario, due to the significant in-
crease in the amount of people traveling, it is easy to cause traffic congestion, which neg-
atively affects people’s travel efficiency. Through the above analysis, we are able to gain a 
deeper understanding of the dynamic organization of urban space. Therefore, in our fu-
ture policy recommendations, we suggest that the spatial distribution of communities and 
their evolution types can be used to assist the dynamic scheduling and optimization of 
urban resources in order to alleviate traffic pressure and improve urban travel efficiency. 

  
(a) (b) 

Figure 17. Visualization of the spatial distribution of community: (a) the spatial distribution of com-
munity C1 and (b) the spatial distribution of community C2. 

5. Discussions 
In this study, a framework for spatial community detection and evolution identifica-

tion based on hyperbolic graph convolution and graph generation was proposed, mainly 
consisting of two parts: spatial community detection and spatial community evolution 
identification. To validate the effectiveness and advantages of the community detection 
method, we conducted extensive experiments. First, we performed comparative experi-
ments by introducing four quantitative indicators: modularity, average density, average 
conductivity, and average clustering coefficient. The results demonstrated that the com-
munity structures detected by our method achieved good outcomes. Second, to further 
test the effectiveness of the method, we conducted comparative analyses: (1) comparing 
the proposed method with the Leiden community detection method and analyzing the 
commonalities and differences in the collective travel paĴerns on weekdays and week-
ends, the experimental results confirmed the effectiveness of our method; (2) conducting 
ablation experiments comparing the proposed method with a community detection 
method based on Graph Convolutional Networks (GCNs), the experimental results 
demonstrated the advantages of embedding in hyperbolic space; and (3) performing com-
munity detection under multi-scale regular grid networks, the experimental results con-
firmed the scale dependency of spatial interaction data. Furthermore, we analyzed the 
dynamic evolution of spatial communities over time and selected spatial communities 
covering seven types of evolution for further analysis based on collective travel paĴerns. 
These specific evolutionary events can reveal significant changes in the dynamic 

Figure 17. Visualization of the spatial distribution of community: (a) the spatial distribution of
community C1 and (b) the spatial distribution of community C2.

5. Discussion

In this study, a framework for spatial community detection and evolution identifica-
tion based on hyperbolic graph convolution and graph generation was proposed, mainly
consisting of two parts: spatial community detection and spatial community evolution iden-
tification. To validate the effectiveness and advantages of the community detection method,
we conducted extensive experiments. First, we performed comparative experiments by
introducing four quantitative indicators: modularity, average density, average conductivity,
and average clustering coefficient. The results demonstrated that the community structures
detected by our method achieved good outcomes. Second, to further test the effectiveness
of the method, we conducted comparative analyses: (1) comparing the proposed method
with the Leiden community detection method and analyzing the commonalities and differ-
ences in the collective travel patterns on weekdays and weekends, the experimental results
confirmed the effectiveness of our method; (2) conducting ablation experiments comparing
the proposed method with a community detection method based on Graph Convolutional
Networks (GCNs), the experimental results demonstrated the advantages of embedding in
hyperbolic space; and (3) performing community detection under multi-scale regular grid
networks, the experimental results confirmed the scale dependency of spatial interaction
data. Furthermore, we analyzed the dynamic evolution of spatial communities over time
and selected spatial communities covering seven types of evolution for further analysis
based on collective travel patterns. These specific evolutionary events can reveal significant
changes in the dynamic organization of urban spatial dynamic structures. In summary, the
proposed method fully considers the structural features of the spatial interaction network
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and the dynamics of the spatial interaction network, making it suitable for detecting the
community structures in geographic spaces.

6. Conclusions

This study proposed a spatial community detection and its evolution identification
framework coupled with hyperbolic graph convolution and graph generation, and applied
it to identify the dynamic organizational structure of urban space and its evolution. In
summary, the strength of this study lies in its ability to better capture the non-Euclidean
structure and spatial heterogeneity in spatial interaction networks, which improves the spa-
tial community detection accuracy and refinement. However, the proposed method has a
higher time complexity compared to traditional community detection algorithms. Secondly,
by introducing the time dimension into the analysis of spatial communities, it provides a
new tool for understanding the dynamic evolution of spatial community structure.

Future research can be improved in the following aspects: (1) The consideration of
more geographic features. In addition to the geographic spatial location features and
interaction volume used in our study, future research can incorporate geographic semantic
features, such as Points of Interest (POI) or land use data. These data can help to differentiate
the types of spatial communities more precisely. (2) The integration of multi-source spatial
interaction data for research: since the urban space is a complex dynamic system, single-
source flow data only reflect one aspect of urban spatial interactions. Future research
can conduct community detection studies on networks constructed from multi-source
spatial interaction data. By discovering the intrinsic correlations among multi-source flow
data, it can achieve the tight coupling between multi-source flow data [52], thus more
comprehensively exploring the spatial interactions between urban spatial units and urban
spatial communities.
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