Renovation and Reconstruction of Urban Land Use by a Cost-Heuristic Genetic Algorithm: A Case in Shenzhen
Abstract
:1. Introduction
- We introduced land renovation to the optimization process to accommodate the demand for upgrading the service capacity through refurbishment in mature areas of development so that the optimization schemes are more aligned with the actual requirements of urban redevelopment.
- We balanced economic benefits and implementation costs in urban land transformation, emphasizing the importance of considering actual costs over solely maximizing economic objectives, resulting in more feasible and economical optimization schemes.
- We proposed a cost-heuristic genetic algorithm, which aims to integrate both implementation costs and economic benefits into the optimization process of urban land use types. It selects optimized land cells and determines optimization directions according to renovation and reconstruction costs, which enhances optimization rationality.
2. Materials and Methods
2.1. Study Area and Data Sources
- (1)
- Population density (https://www.worldpop.org/, accessed on 23 February 2023).
- (2)
- Digital Elevation Model (https://search.asf.alaska.edu/, accessed on 24 February 2023).
- (3)
- Urban land price (https://pnr.sz.gov.cn/d-djtcx/djtcx/index.html, accessed on 20 February 2023).
- (4)
- Urban road network (https://www.openstreetmap.org/, accessed on 12 June 2022).
- (5)
- Building census (https://zjj.sz.gov.cn/xxgk/ztzl/pubdata/sjcx/index.html, accessed on 20 February 2023).
- (6)
- GDP grid data (http://nnu.geodata.cn/data/datadetails.html, accessed on 20 February 2023).
2.2. Model for Urban Land Use Optimization: CHGA
2.2.1. Cost Evaluation of Urban Land Use Optimization
2.2.2. Optimization Objective
- (1)
- Non-spatial objectives
- (2)
- Spatial objective
2.2.3. Constraints
- (1)
- Optimization area constraint: The minimum optimization area for each urban land use function is subject to restrictions, in accordance with urban planning standards and government policies;
- (2)
- Topographical constraint: Terrain with a slope greater than 10 degrees cannot be used for urban construction, thus ensuring the safety of urban construction and the effectiveness of resource management;
- (3)
- Functional protection constraint: Restricting changes to urban landmark buildings, historical cultural heritage, and urban road land, to maintain sustainable urban development.
2.2.4. Procedures of the Cost-Heuristic Genetic Algorithm
- (1)
- Selection probability based on comprehensive costs
- (2)
- Optimization direction probability between renovation and reconstruction
- (3)
- Cost-heuristic genetic algorithm considering selection and direction probabilities
3. Results
3.1. Cost Evaluation of Urban Land Use Optimization
3.2. Objective and Constraints
3.3. Cost-Heuristic Urban Land Use Optimization
3.3.1. Ablation Experiment
3.3.2. Optimized Land Quantity and Spatial Distribution
3.3.3. The Relationship between Cost and Economics during the Optimization Process
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bibri, S.E.; Krogstie, J.; Kärrholm, M. Compact City Planning and Development: Emerging Practices and Strategies for Achieving the Goals of Sustainability. Dev. Built Environ. 2020, 4, 100021. [Google Scholar] [CrossRef]
- Jin, R.; Huang, C.; Wang, P.; Ma, J.; Wan, Y. Identification of Inefficient Urban Land for Urban Regeneration Considering Land Use Differentiation. Land 2023, 12, 1957. [Google Scholar] [CrossRef]
- Siedentop, S.; Fina, S. Urban Sprawl beyond Growth: The Effect of Demographic Change on Infrastructure Costs. Flux 2010, 79–80, 90–100. [Google Scholar] [CrossRef]
- Su, Q.; Jiang, X. Evaluate the Economic and Environmental Efficiency of Land Use from the Perspective of Decision-Makers’ Subjective Preferences. Ecol. Indic. 2021, 129, 107984. [Google Scholar] [CrossRef]
- Song, R.; Hu, Y.; Li, M. Chinese Pattern of Urban Development Quality Assessment: A Perspective Based on National Territory Spatial Planning Initiatives. Land 2021, 10, 773. [Google Scholar] [CrossRef]
- Gao, J.; Chen, W.; Liu, Y. Spatial Restructuring and the Logic of Industrial Land Redevelopment in Urban China: II. A Case Study of the Redevelopment of a Local State-Owned Enterprise in Nanjing. Land Use Policy 2018, 72, 372–380. [Google Scholar] [CrossRef]
- Ma, S.; Wen, Z. Optimization of Land Use Structure to Balance Economic Benefits and Ecosystem Services under Uncertainties: A Case Study in Wuhan, China. J. Clean. Prod. 2021, 311, 127537. [Google Scholar] [CrossRef]
- Yu, X.; Shan, L.; Wu, Y. Land Use Optimization in a Resource-Exhausted City Based on Simulation of the FEW Nexus. Land 2021, 10, 1013. [Google Scholar] [CrossRef]
- Rahman, M.M.; Szabó, G. Multi-Objective Urban Land Use Optimization Using Spatial Data: A Systematic Review. Sustain. Cities Soc. 2021, 74, 103214. [Google Scholar] [CrossRef]
- Pan, T.; Su, F.; Yan, F.; Lyne, V.; Wang, Z.; Xu, L. Optimization of Multi-Objective Multi-Functional Landuse Zoning Using a Vector-Based Genetic Algorithm. Cities 2023, 137, 104256. [Google Scholar] [CrossRef]
- Castella, J.-C.; Kam, S.P.; Quang, D.D.; Verburg, P.H.; Hoanh, C.T. Combining Top-down and Bottom-up Modelling Approaches of Land Use/Cover Change to Support Public Policies: Application to Sustainable Management of Natural Resources in Northern Vietnam. Land Use Policy 2007, 24, 531–545. [Google Scholar] [CrossRef]
- Huang, Z.; Du, H.; Li, X.; Zhang, M.; Mao, F.; Zhu, D.; He, S.; Liu, H. Spatiotemporal LUCC Simulation under Different RCP Scenarios Based on the BPNN_CA_Markov Model: A Case Study of Bamboo Forest in Anji County. ISPRS Int. J. Geo-Inf. 2020, 9, 718. [Google Scholar] [CrossRef]
- Huang, Q.; Song, W. A Land-Use Spatial Optimum Allocation Model Coupling a Multi-Agent System with the Shuffled Frog Leaping Algorithm. Comput. Environ. Urban 2019, 77, 101360. [Google Scholar] [CrossRef]
- Hasti, F.; Salmanmahiny, A.; Rouhi, H.; Sakieh, Y.; Joolaei, R.; Pezhooli, N. Developing an Integrated Land Allocation Model Based on Linear Programming and Game Theory. Environ. Monit. Assess. 2023, 195, 493. [Google Scholar] [CrossRef] [PubMed]
- Gao, C.; Feng, Y.; Tong, X.; Jin, Y.; Liu, S.; Wu, P.; Ye, Z.; Gu, C. Modeling Urban Encroachment on Ecological Land Using Cellular Automata and Cross-Entropy Optimization Rules. Sci. Total Environ. 2020, 744, 140996. [Google Scholar] [CrossRef]
- Wu, C.; Chen, B.; Huang, X.; Wei, Y.D. Effect of Land-Use Change and Optimization on the Ecosystem Service Values of Jiangsu Province, China. Ecol. Indic. 2020, 117, 106507. [Google Scholar] [CrossRef]
- Aerts, J.C.J.H.; Eisinger, E.; Heuvelink, G.B.M.; Stewart, T.J. Using Linear Integer Programming for Multi-Site Land-Use Allocation. Geogr. Anal. 2003, 35, 148–169. [Google Scholar]
- Li, F.; Gong, Y.; Cai, L.; Sun, C.; Chen, Y.; Liu, Y.; Jiang, P. Sustainable Land-Use Allocation: A Multiobjective Particle Swarm Optimization Model and Application in Changzhou, China. J. Urban Plan Dev. 2018, 144, 04018010. [Google Scholar] [CrossRef]
- Liu, X.; Li, X.; Shi, X.; Huang, K.; Liu, Y. A Multi-Type Ant Colony Optimization (MACO) Method for Optimal Land Use Allocation in Large Areas. Int. J. Geogr. Inf. Sci. 2012, 26, 1325–1343. [Google Scholar] [CrossRef]
- Pan, T.; Zhang, Y.; Su, F.; Lyne, V.; Cheng, F.; Xiao, H. Practical Efficient Regional Land-Use Planning Using Constrained Multi-Objective Genetic Algorithm Optimization. ISPRS Int. J. Geo-Inf. 2021, 10, 100. [Google Scholar] [CrossRef]
- Li, X.; Parrott, L. An Improved Genetic Algorithm for Spatial Optimization of Multi-Objective and Multi-Site Land Use Allocation. Comput. Environ. Urban Syst. 2016, 59, 184–194. [Google Scholar] [CrossRef]
- Wang, Y.; Fan, Y.; Yang, Z. Challenges, Experience, and Prospects of Urban Renewal in High-Density Cities: A Review for Hong Kong. Land 2022, 11, 2248. [Google Scholar] [CrossRef]
- Sahebgharani, A. Multi-objective land use optimization through parallel particle swarm algorithm: Case study baboldasht district of Isfahan, Iran. J. Urban Environ. Eng. 2016, 10, 42–49. [Google Scholar] [CrossRef]
- Porta, J.; Parapar, J.; Doallo, R.; Rivera, F.F.; Santé, I.; Crecente, R. High performance genetic algorithm for land use planning. Comput. Environ. Urban Syst. 2013, 37, 45–58. [Google Scholar] [CrossRef]
- Mohammadi, M.; Nastaran, M.; Sahebgharani, A. Development, application, and comparison of hybrid meta-heuristics for urban land-use allocation optimization: Tabu search, genetic, GRASP, and simulated annealing algorithms. Comput. Environ. Urban Syst. 2016, 60, 23–36. [Google Scholar] [CrossRef]
- Liu, X.; Ou, J.; Li, X.; Ai, B. Combining system dynamics and hybrid particle swarm optimization for land use allocation. Ecol. Model. 2013, 257, 11–24. [Google Scholar] [CrossRef]
- Stewart, T.J.; Janssen, R.; Van Herwijnen, M. A Genetic Algorithm Approach to Multiobjective Land Use Planning. Comput. Oper. Res. 2004, 31, 2293–2313. [Google Scholar] [CrossRef]
- Gao, P.; Wang, H.; Cushman, S.A.; Cheng, C.; Song, C.; Ye, S. Sustainable Land-Use Optimization Using NSGA-II: Theoretical and Experimental Comparisons of Improved Algorithms. Landsc. Ecol. 2021, 36, 1877–1892. [Google Scholar] [CrossRef]
- Shaygan, M.; Alimohammadi, A.; Mansourian, A.; Govara, Z.S.; Kalami, S.M. Spatial Multi-Objective Optimization Approach for Land Use Allocation Using NSGA-II. IEEE J.-Stars 2013, 7, 906–916. [Google Scholar] [CrossRef]
- Ma, X.; Zhao, X. Land Use Allocation Based on a Multi-Objective Artificial Immune Optimization Model: An Application in Anlu County, China. Sustainability 2015, 7, 15632–15651. [Google Scholar] [CrossRef]
- Ministry of Housing and Urban-Rural Development. Notice on Preventing Large-Scale Demolition and Construction in Urban Renewal Actions; Ministry of Housing and Urban-Rural Development: Beijing, China, 2021.
- Chen, Y.; Liu, G.; Zhuang, T. Evaluating the Comprehensive Benefit of Urban Renewal Projects on the Area Scale: An Integrated Method. Int. J. Environ. Res. Public Health 2022, 20, 606. [Google Scholar] [CrossRef] [PubMed]
- Shenzhen Municipal Bureau of Statistics. Statistical Bulletin on National Economic and Social Development of Shenzhen in 2022. Available online: https://www.sz.gov.cn/cn/xxgk/zfxxgj/tjsj/tjgb/content/post_10578003.html (accessed on 8 February 2024).
- Meng, L.; Sun, Y.; Zhao, S. Comparing the spatial and temporal dynamics of urban expansion in Guangzhou and Shenzhen from 1975 to 2015: A case study of pioneer cities in China’s rapid urbanization. Land Use Policy 2020, 97, 104753. [Google Scholar] [CrossRef]
- Della Torre, S.; Cattaneo, S.; Lenzi, C.; Zanelli, A. Regeneration of the Built Environment from a Circular Economy Perspective; Springer Nature: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- Lai, Y.; Tang, B.; Chen, X.; Zheng, X. Spatial determinants of land redevelopment in the urban renewal processes in Shenzhen, China. Land Use Policy 2021, 103, 105330. [Google Scholar] [CrossRef]
- Gong, P.; Chen, B.; Li, X.; Liu, H.; Wang, J.; Bai, Y.; Chen, J.; Chen, X.; Fang, L.; Feng, S.; et al. Mapping essential urban land use categories in China (EULUC-China): Preliminary results for 2018. Sci. Bull. 2020, 65, 182–187. [Google Scholar] [CrossRef] [PubMed]
- Qian, J.; Peng, Y.; Luo, C.; Wu, C.; Du, Q. Urban land expansion and sustainable land use policy in Shenzhen: A case study of China’s rapid urbanization. Sustainability 2015, 8, 16. [Google Scholar] [CrossRef]
- Su, M.; Guo, R.; Chen, B.; Hong, W.; Wang, J.; Feng, Y.; Xu, B. Sampling strategy for detailed urban land use classification: A systematic analysis in Shenzhen. Remote Sens. 2020, 12, 1497. [Google Scholar] [CrossRef]
- Liu, Y.; Xia, C.; Ou, X.; Lv, Y.; Ai, X.; Pan, R.; Zhang, Y.; Shi, M.; Zheng, X. Quantitative structure and spatial pattern optimization of urban green space from the perspective of carbon balance: A case study in Beijing, China. Ecol. Indic. 2023, 148, 110034. [Google Scholar] [CrossRef]
- Cao, K.; Huang, B.; Wang, S.; Lin, H. Sustainable land use optimization using Boundary-based Fast Genetic Algorithm. Comput. Environ. Urban Syst. 2012, 36, 257–269. [Google Scholar] [CrossRef]
- Canesi, R.; Marella, G. Urban Density and Land Leverage: Market Value Breakdown for Energy-Efficient Assets. Buildings 2023, 14, 45. [Google Scholar] [CrossRef]
- Liu, W.; Yang, J.; Gong, Y.; Cheng, Q. An Evaluation of Urban Renewal Based on Inclusive Development Theory: The Case of Wuhan, China. ISPRS Int. J. Geo-Inf. 2022, 11, 563. [Google Scholar] [CrossRef]
- Liu, G.; Yi, Z.; Zhang, X.; Shrestha, A.; Martek, I.; Wei, L. An evaluation of urban renewal policies of Shenzhen, China. Sustainability 2017, 9, 1001. [Google Scholar] [CrossRef]
- Bae, W.; Kim, U.; Lee, J. Evaluation of the Criteria for Designating Maintenance Districts in Low-Rise Residential Areas: Urban Renewal Projects in Seoul. Sustainability 2019, 11, 5876. [Google Scholar] [CrossRef]
- Juan, Y.-K.; Roper, K.O.; Castro-Lacouture, D.; Ha Kim, J. Optimal Decision Making on Urban Renewal Projects. Manag. Decis. 2010, 48, 207–224. [Google Scholar] [CrossRef]
- Kumar, R.; Singh, S.; Bilga, P.S.; Jatin; Singh, J.; Singh, S.; Scutaru, M.-L.; Pruncu, C.I. Revealing the benefits of entropy weights method for multi-objective optimization in machining operations: A critical review. J. Mater. Res. Technol. 2021, 10, 1471–1492. [Google Scholar] [CrossRef]
- Diakoulaki, D.; Mavrotas, G.; Papayannakis, L. Determining Objective Weights in Multiple Criteria Problems: The Critic Method. Comput. Oper. Res. 1995, 22, 763–770. [Google Scholar] [CrossRef]
- Çelikbilek, Y.; Tüysüz, F. An In-Depth Review of Theory of the TOPSIS Method: An Experimental Analysis. J. Manag. Anal. 2020, 7, 281–300. [Google Scholar] [CrossRef]
- Cao, K.; Liu, M.; Wang, S.; Liu, M.; Zhang, W.; Meng, Q.; Huang, B. Spatial Multi-Objective Land Use Optimization toward Livability Based on Boundary-Based Genetic Algorithm: A Case Study in Singapore. ISPRS Int. J. Geo-Inf. 2020, 9, 40. [Google Scholar] [CrossRef]
- Handayanto, R.T.; Tripathi, N.K.; Kim, S.M.; Guha, S. Achieving a Sustainable Urban Form through Land Use Optimisation: Insights from Bekasi City’s Land-Use Plan (2010–2030). Sustainability 2017, 9, 221. [Google Scholar] [CrossRef]
- Pahlavani, P.; Sheikhian, H.; Bigdeli, B. Evaluation of Residential Land Use Compatibilities Using a Density-Based IOWA Operator and an ANFIS-Based Model: A Case Study of Tehran, Iran. Land Use Policy 2020, 90, 104364. [Google Scholar] [CrossRef]
- Silverman, B.W. Density Estimation for Statistics and Data Analysis; Routledge: London, UK, 2018. [Google Scholar]
- Liu, Y.; Tang, W.; He, J.; Liu, Y.; Ai, T.; Liu, D. A Land-Use Spatial Optimization Model Based on Genetic Optimization and Game Theory. Comput. Environ. Urban 2015, 49, 1–14. [Google Scholar] [CrossRef]
- Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T.A.M.T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 2002, 6, 182–197. [Google Scholar] [CrossRef]
- Xu, Y.; Zhao, S.; Fan, J. Urban planning construction land standard and its revision based on climate and topography in China. J. Geogr. Sci. 2021, 31, 603–620. [Google Scholar] [CrossRef]
Indicators | Description |
---|---|
Elevation | Elevation may increase construction difficulty, leading to higher renovation and reconstruction costs. |
Slope | Uneven land requires more cost for leveling and development. Additionally, building houses on slopes demands more technical and resource investment. |
Land price | High land prices increase investment costs. Since renovation does not involve land purchase or transfer costs, it is less affected by land prices compared to reconstruction. |
Building density | Renovation in densely built areas requires more manpower, resources, and management. High building density can also lead to traffic and crowd issues, increasing the difficulty of renovation and reconstruction. |
Floor area ratio | The floor area ratio is the ratio of a building’s ground floor area to the plot area. A higher ratio means more buildings per unit of land, increasing demolition or maintenance costs. |
Building structure | Building structure refers to the construction of a building. For reconstruction, poor building structure can reduce demolition costs. For renovation, poor building structure can lead to increased costs. |
Population density | In densely populated areas, relocating residents poses challenges for reconstruction. However, in such areas, infrastructure can be shared among multiple communities, thereby reducing renovation costs. |
land Use Types | Residential | Commercial | Industrial | Service |
---|---|---|---|---|
Cost coefficient | 0.44 | 0.34 | 0.44 | 0.65 |
Land Use Type | Residential | Commercial | Industrial | Service |
---|---|---|---|---|
Residential | 1 | 0.7 | 0.2 | 0.8 |
Commercial | 0.7 | 1 | 0.4 | 0.6 |
Industrial | 0.2 | 0.4 | 1 | 0.6 |
Service | 0.8 | 0.6 | 0.6 | 1 |
Evaluation Index | ||
---|---|---|
Elevation | 0.0802 | 0.1981 |
Slope | 0.0606 | 0.2584 |
Benchmark land price | 0.0142 | 0.2559 |
Building density | 0.3117 | 0.2498 |
Floor area ratio | 0.2517 | 0.0021 |
Building structure score | 0.1608 | 0.0276 |
Population density | 0.1208 | 0.0081 |
After Reconstruction | |||||
---|---|---|---|---|---|
Residential | Commercial | Industrial | Services | ||
Before Reconstruction | Residential | 1.1688 | 1.03997 | 2.4678 | 1.3058 |
Commercial | 1.3585 | 1.2184 | 2.7711 | 1.5074 | |
Industrial | −0.35033 | −0.38893 | 0.0388 | −0.3093 | |
Services | 1.2049 | 1.0738 | 2.5255 | 1.3441 |
Economic | Cost | Transport Accessibility | Compatibility | |
---|---|---|---|---|
SZ Land use | 6.5624 × 1010 | - | 3.5165 × 105 | 3.4756 × 105 |
NSGA-II | 6.6519 × 1010 | 7.7470 × 103 | 3.5167 × 105 | 3.4886 × 105 |
NSGA-II_R | 6.5933 × 1010 | 6.2216 × 103 | 3.5172 × 105 | 3.4886 × 105 |
CHGA | 6.5742 × 1010 | 5.7023 × 103 | 3.5165 × 105 | 3.4888 × 105 |
After Renovation | ||||
---|---|---|---|---|
Residential | Commercial | Industrial | Services | |
Before Renovation | 0.4259 | 0.6966 | 0.3451 | 0.6186 |
Type | Constraint | Describe |
---|---|---|
Optimization area | > 10 km2; > 45 km2; > 2.03 km2 | |
Topographical | Areas with slopes greater than 10 degrees are not allowed for urban construction land use. | |
Functional protection | Transportation land, historical heritage areas, and buildings will not be involved in the optimization process. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, Y.; Tang, Z.; Liu, B.; Shi, Y.; Deng, M.; Liu, E. Renovation and Reconstruction of Urban Land Use by a Cost-Heuristic Genetic Algorithm: A Case in Shenzhen. ISPRS Int. J. Geo-Inf. 2024, 13, 250. https://doi.org/10.3390/ijgi13070250
Deng Y, Tang Z, Liu B, Shi Y, Deng M, Liu E. Renovation and Reconstruction of Urban Land Use by a Cost-Heuristic Genetic Algorithm: A Case in Shenzhen. ISPRS International Journal of Geo-Information. 2024; 13(7):250. https://doi.org/10.3390/ijgi13070250
Chicago/Turabian StyleDeng, Yufan, Zhongan Tang, Baoju Liu, Yan Shi, Min Deng, and Enbo Liu. 2024. "Renovation and Reconstruction of Urban Land Use by a Cost-Heuristic Genetic Algorithm: A Case in Shenzhen" ISPRS International Journal of Geo-Information 13, no. 7: 250. https://doi.org/10.3390/ijgi13070250
APA StyleDeng, Y., Tang, Z., Liu, B., Shi, Y., Deng, M., & Liu, E. (2024). Renovation and Reconstruction of Urban Land Use by a Cost-Heuristic Genetic Algorithm: A Case in Shenzhen. ISPRS International Journal of Geo-Information, 13(7), 250. https://doi.org/10.3390/ijgi13070250