
Citation: Yang, Y.; Zuo, X.; Zhao, K.;

Li, Y. Integrating NoSQL, Hilbert

Curve, and R*-Tree to Efficiently

Manage Mobile LiDAR Point Cloud

Data. ISPRS Int. J. Geo-Inf. 2024, 13,

253. https://doi.org/10.3390/

ijgi13070253

Academic Editors: Wolfgang Kainz

and Eliseo Clementini

Received: 5 June 2024

Revised: 9 July 2024

Accepted: 12 July 2024

Published: 14 July 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of

Geo-Information

Article

Integrating NoSQL, Hilbert Curve, and R*-Tree to Efficiently
Manage Mobile LiDAR Point Cloud Data
Yuqi Yang 1, Xiaoqing Zuo 1,*, Kang Zhao 2 and Yongfa Li 1

1 Institute of Land and Resources Engineering, Kunming University of Science and Technology,
Kunming 650093, China; yyq0730@stu.kust.edu.cn (Y.Y.); yfli@stu.kust.edu.cn (Y.L.)

2 Department of Natural Resources of Yunnan Province, Kunming 650224, China; kzhao@whu.edu.cn
* Correspondence: zxq@kust.edu.cn

Abstract: The widespread use of Light Detection and Ranging (LiDAR) technology has led to a
surge in three-dimensional point cloud data; although, it also poses challenges in terms of data
storage and indexing. Efficient storage and management of LiDAR data are prerequisites for data
processing and analysis for various LiDAR-based scientific applications. Traditional relational
database management systems and centralized file storage struggle to meet the storage, scaling, and
specific query requirements of massive point cloud data. However, NoSQL databases, known for
their scalability, speed, and cost-effectiveness, provide a viable solution. In this study, a 3D point
cloud indexing strategy for mobile LiDAR point cloud data that integrates Hilbert curves, R*-trees,
and B+-trees was proposed to support MongoDB-based point cloud storage and querying from the
following aspects: (1) partitioning the point cloud using an adaptive space partitioning strategy to
improve the I/O efficiency and ensure data locality; (2) encoding partitions using Hilbert curves
to construct global indices; (3) constructing local indexes (R*-trees) for each point cloud partition
so that MongoDB can natively support indexing of point cloud data; and (4) a MongoDB-oriented
storage structure design based on a hierarchical indexing structure. We evaluated the efficacy of
chunked point cloud data storage with MongoDB for spatial querying and found that the proposed
storage strategy provides higher data encoding, index construction and retrieval speeds, and more
scalable storage structures to support efficient point cloud spatial query processing compared to
many mainstream point cloud indexing strategies and database systems.

Keywords: point cloud data; MongoDB; Hilbert curve; R*-tree; spatial index; LiDAR

1. Introduction

Light Detection and Ranging (LiDAR) technology originates from the 1960s and was
incorporated into airborne platforms in the 1980s [1]. Currently, LiDAR is used to gather
extensive spatial data of three-dimensional (3D) geospatial objects by combining multi-
platform construction methods with high-precision acquisition equipment and serves a
variety of decision-making processes by involving real-world spatial data [2,3]. With
advances in 3D laser scanning technology, point clouds have become the third largest
spatiotemporal data source in geospatial applications after vector maps and images [4].
In addition, 3D scanning, as one of the four major branches of the traditional geospatial
industry (global navigation satellite systems (GNSS) and positioning, geographic informa-
tion system (GIS) and spatial analysis, Earth observation, and 3D scanning), will become
the fastest-growing market and lead to the rapid development of smart cities, intelligent
transportation, global mapping, and other fields [3–5].

Point clouds have high value in research and for applications in many fields, such as
geographic information science. Point clouds can accurately depict the 3D morphological
structure of vegetation, glaciers, and islands, thus providing important support for global
forest accumulation, biomass estimation, global glacier material balance, marine economic

ISPRS Int. J. Geo-Inf. 2024, 13, 253. https://doi.org/10.3390/ijgi13070253 https://www.mdpi.com/journal/ijgi

https://doi.org/10.3390/ijgi13070253
https://doi.org/10.3390/ijgi13070253
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijgi
https://www.mdpi.com
https://doi.org/10.3390/ijgi13070253
https://www.mdpi.com/journal/ijgi
https://www.mdpi.com/article/10.3390/ijgi13070253?type=check_update&version=1

ISPRS Int. J. Geo-Inf. 2024, 13, 253 2 of 21

development management, and sea defense security. In smart cities, point clouds play an
increasingly important role in urban refinement management, urban security analysis, and
3D change detection. In intelligent transportation, point clouds can realize real-time motion
target detection and positioning, real-time obstacle avoidance, core support for HD map
production, accurate and intuitive 3D location information, and precise path planning and
control strategies beyond the capacity of sensors. Therefore, many countries are collecting
LiDAR data in large quantities, thus accumulating a large number of datasets [5,6]. The
rapid generation of hundreds of millions of unstructured data points with rich attribute
information in a short time leads to common problems associated with the increasing
size, density, and complexity of the data [7]. In addition, LiDAR data are typically stored,
shared, and exchanged using LAS/LAZ format files, which are inefficient and poorly
scalable when dealing with massive datasets [5,8]. Therefore, databases, which allow for
centralized access, concurrent retrieval, distributed storage, and indexing support are more
advantageous in managing large LiDAR data [8].

With the popularization and application of high-resolution vehicle-mounted laser
scanning systems, the rapid processing of large amounts of scattered point cloud data has
become the focus of international research. The post-processing of point cloud data, such
as simplified filtering, semantic segmentation, feature extraction, and other interactive
operations, is limited by the performance of data management, which greatly restricts the
rapid accessibility of point cloud data for comprehensive applications [9]. When utilizing
an out-of-core approach for massive point cloud management, achieving efficient data load-
ing, retrieval, and scheduling using an index structure is necessary [10]. On the one hand, a
single index structure shows high performance when presented with a small amount of
uniformly distributed data but is not appropriate for large-scale discrete point sets. On
the other hand, a complex nested index structure can integrate the advantages of different
indexes to organize a large number of 3D points but presents difficulties in the construc-
tion and maintenance of indexes. Additionally, the discrete and unstructured nature of
point cloud data renders local file storage inadequate for network parallel computing and
business needs [11].

An increasing number of studies have been devoted to the development of efficient
point cloud data management (PCDM) systems. While some of these systems utilize file-
based techniques for storing and querying point cloud data, a significant number aspire to
develop PCDM systems that rely on database technologies. The focus of PCDM research
is on coping with large amounts of heterogeneous point cloud data. Therefore, PCDM
solutions that rely on database technologies are primarily focused on achieving greater scal-
ability while maintaining acceptable performance levels. Traditional Relational Database
Management Systems (RDBMSs), designed primarily for structured data, experience perfor-
mance degradation when dealing with unstructured storage [12]. Research on distributed
storage for point clouds has focused on HDFS [1,13–15] and MongoDB [11,16,17], whereas
relatively few studies have utilized HBase [7] to manage point cloud data. Notably, systems
built on HBase have the flexibility to scale to a large number of nodes for accommodating
complex data, displaying greater fault tolerance and scalability [18]. Consequently, the
implementation of efficient point cloud data storage, retrieval, and indexing strategies in
NoSQL databases represents a popular research direction.

Despite the remarkable success in exploring the efficient management of large LiDAR
datasets supported with NoSQL, some problems remain. First, the spatial distribution
characteristics of point clouds are not fully considered; second, the storage system cannot
be integrated with high-performance spatial indices, which makes data transfer and storage
very inefficient. To overcome these problems, this paper proposes a 3D point cloud indexing
strategy based on the massive spatial information existing in the point cloud itself and the
discrete nature of points in 3D space, and it integrates Hilbert curves, R*-trees, and B+-trees
and uses MongoDB to complete the storage of unstructured mobile LiDAR point clouds
and realize the efficient organization and fast retrieval of large point cloud datasets. This
hybrid indexing model can fully utilize the spatial information in the point cloud data

ISPRS Int. J. Geo-Inf. 2024, 13, 253 3 of 21

and exhibits better query performance in comparison with both the existing single index
structure and the composite index structure. At the same time, it utilizes the advantages of
in-memory computing to improve the efficiency of retrieving data from secondary storage
and improves the storage and querying applications of large-scale point cloud data in an
NoSQL environment.

Section 2 provides an overview of the data structures and storage management systems
used to manage large-scale point cloud datasets; Section 3 details the proposed hierarchical
indexing architecture and its implementation; Section 4 evaluates the feasibility of the
proposed strategy by comparing this paper’s approach with other point cloud indexing
and storage schemes; and Section 5 summarizes this study and discusses the limitations
and future work.

2. Related Work

This section will provide current research on point cloud spatial indexing and point
cloud storage management systems.

2.1. Indexes for Point Cloud Data

Overall, this study aims to increase the flexibility and maneuverability of point clouds
for subsequent processing by building reliable and efficient spatial indexes [19]. As depicted
in Figure 1, the point cloud indexing structures that have received the most attention are
mainly based on regular lattice grids, Quadtree, Octree, R-tree and its variants, and KD-
tree [8].

ISPRS Int. J. Geo-Inf. 2024, 13, x FOR PEER REVIEW 3 of 21

cloud datasets. This hybrid indexing model can fully utilize the spatial information in the
point cloud data and exhibits beĴer query performance in comparison with both the ex-
isting single index structure and the composite index structure. At the same time, it utilizes
the advantages of in-memory computing to improve the efficiency of retrieving data from
secondary storage and improves the storage and querying applications of large-scale
point cloud data in an NoSQL environment.

Section 2 provides an overview of the data structures and storage management sys-
tems used to manage large-scale point cloud datasets; Section 3 details the proposed hier-
archical indexing architecture and its implementation; Section 4 evaluates the feasibility
of the proposed strategy by comparing this paper’s approach with other point cloud in-
dexing and storage schemes; and Section 5 summarizes this study and discusses the limi-
tations and future work.

2. Related Work
This section will provide current research on point cloud spatial indexing and point

cloud storage management systems.

2.1. Indexes for Point Cloud Data
Overall, this study aims to increase the flexibility and maneuverability of point

clouds for subsequent processing by building reliable and efficient spatial indexes [19]. As
depicted in Figure 1, the point cloud indexing structures that have received the most at-
tention are mainly based on regular laĴice grids, Quadtree, Octree, R-tree and its variants,
and KD-tree [8].

Figure 1. Common spatial data structures.

Kim et al. [20] implemented point cloud storage and indexing through the Discrete
Global Grid System (DGGS) with PH trees to support efficient point cloud spatial queries.
Space-filling curves have been introduced in some studies [21–24] to encode the mesh and
realize the downscaling of the point cloud. The use of efficient 1D queries to reduce the
number of 3D queries performed improves the query and processing efficiency of the
point cloud to some extent. This grid-based indexing structure can complete the organi-
zation of several point clouds in a short period of time but faces difficulties associated
with accuracy limitations, data imbalance, grid division complexity, and data update ex-
tension. Moreover, the seĴing of the curve order also needs to be fully considered. A lower
order is not meaningful for data division, and performance improvement is not obvious;
a higher order requires a lot of time for index construction, and the query statement will
become large and complex with the expansion of the query range. Even if the concept of
spatial adaptive partitioning is introduced, the limited curve accuracy will make the re-
sults filtered out by the index contain a lot of “fake data”, which requires a lot of time to
refine. Octrees and Quadtrees are flexible extensions of grid indexes with simple imple-
mentation, high automation, and a wide range of applications, making them ideal for
managing hundreds of millions of point cloud data [25]. Tian et al. [26] reduced blank

Figure 1. Common spatial data structures.

Kim et al. [20] implemented point cloud storage and indexing through the Discrete
Global Grid System (DGGS) with PH trees to support efficient point cloud spatial queries.
Space-filling curves have been introduced in some studies [21–24] to encode the mesh and
realize the downscaling of the point cloud. The use of efficient 1D queries to reduce the
number of 3D queries performed improves the query and processing efficiency of the point
cloud to some extent. This grid-based indexing structure can complete the organization of
several point clouds in a short period of time but faces difficulties associated with accuracy
limitations, data imbalance, grid division complexity, and data update extension. Moreover,
the setting of the curve order also needs to be fully considered. A lower order is not
meaningful for data division, and performance improvement is not obvious; a higher order
requires a lot of time for index construction, and the query statement will become large
and complex with the expansion of the query range. Even if the concept of spatial adaptive
partitioning is introduced, the limited curve accuracy will make the results filtered out
by the index contain a lot of “fake data”, which requires a lot of time to refine. Octrees
and Quadtrees are flexible extensions of grid indexes with simple implementation, high
automation, and a wide range of applications, making them ideal for managing hundreds
of millions of point cloud data [25]. Tian et al. [26] reduced blank space by reconstructing
the minimum boundary rectangle of the Octree’s child nodes, which effectively solved the

ISPRS Int. J. Geo-Inf. 2024, 13, 253 4 of 21

imbalance problem of the Octree caused by the uneven distribution of the point cloud space
and improved query efficiency. Huang [27] addressed the data redundancy problem of the
traditional multi-resolution point cloud structure by storing point cloud data with different
resolutions in leaf nodes at different levels of the Octree. However, with increasing data
size, massive discrete point clouds will inevitably lead to excessive depth of the Octree,
which remarkably degrades query efficiency. KD-trees have also been used to spatially
partition the point cloud and organize it through each partition of an Octree to achieve
fast indexing of massive discrete point clouds [19,28]. R-trees offer superior spatial query
efficiency compared to Octrees and KD-trees [29]. Zhu et al. [30] implemented a clustering
algorithm (K-means) to optimize the spatial clustering grouping and insertion of R-trees to
reduce node overlaps and search paths in R-trees. Gong et al. [31] proposed the 3DOR-tree,
which uses Octree for fine-grained spatial partitioning of point clouds and organizes Octree
leaf nodes as R-tree root nodes for increased spatial query efficiency. Wang et al. [32]
proposed the 3DOR*-tree based on 3DOR-tree, which utilizes R*-tree to organize the leaf
nodes of the Octree to provide superior point cloud query performance. Yu et al. [33]
divided the data into grids based on the spatial distribution of point clouds and used
R-trees to manage the non-empty grids. In this solution, the point clouds within the grid
are organized via Octrees and Quadtrees, which achieves efficient management of massive
point clouds. However, these complex and efficient indexing structures are designed with
little consideration for integration with database storage systems; thus, massive amounts of
point cloud data cannot be simultaneously loaded into memory for processing. Therefore,
point cloud storage management systems supported with composite index structures must
be explored further.

2.2. Storage Management System for Point Cloud Data

In the field of storage and management of point clouds, there have been numerous
studies based on RDBMS and NoSQL. Deibe, Amor, and Doallo [34] and Juan A. Béjar-
Martos et al. [8] conducted a comprehensive analysis of the most mature and widely
adopted RDBMS and distributed storage technologies. They concluded that MongoDB and
Cassandra exhibit superior performance in managing extensive point cloud datasets. The
authors of [11,16] harnessed the automatic slicing mechanism of MongoDB to proficiently
handle large point cloud datasets, yielding promising results. However, the usefulness
of these methods is limited to file selection, since data management is only performed
at the file abstraction level. Additionally, discussions concerning LiDAR data within a
Hadoop framework have revolved around the performance of distributed storage and
parallel computing [1,13–15]. Since MapReduce only supports HDFS as a data source
and lacks real-time data processing capabilities, data transfer and disk I/O can become
a performance bottleneck for very large quantities of point cloud data. Pajić et al. [35]
proposed a Spark-based point cloud storage model that ingeniously combines space-
filling curves and HBase for efficient organization and management of vast point cloud
datasets. Deibe, Amor, and Doallo [36] stored the point cloud uniformly in each node of
the Cassandra cluster with scheduling and processing via Spark. Vo et al. [6] proposed
Ariadne3D based on HBase and Spark, which manages massive point clouds through
flexible and scalable data encoding, indexing mechanisms, and resource scheduling. Rueda-
Ruiz et al. [17] proposed the conceptual SPSLiDAR model to support efficient point cloud
retrieval and concurrent access through MongoDB with Octree. However, almost all
of these point cloud management systems organize point clouds through a single data
structure, such as Octree, R-tree, and space-filling curves. When facing large-scale discrete
point cloud data, the maintenance, updating, and querying of these index structures can
become extremely complex, thereby reducing the efficiency of point cloud management.
Therefore, the composite index structure should be integrated with current mainstream
NoSQL systems to realize the efficient management of discrete point clouds by combining
the query efficiency of composite indexes with the flexible and scalable storage structure
of NoSQL.

ISPRS Int. J. Geo-Inf. 2024, 13, 253 5 of 21

Thus, in this study, we aim to explore the point cloud management strategy supported
with MongoDB with composite index structure to address the drawbacks associated with
using a non-relational database with a single index structure for storing and indexing point
clouds. The proposed point cloud data storage method based on the MongoDB database
was implemented to preserve the spatial distribution characteristics of point clouds and
provide efficient point cloud query support.

3. Methodology

This section describes the methods. Then, we will introduce the hierarchical index tree
in detail, as well as the MongoDB storage structure design and spatial query processing
based on the hierarchical index tree.

3.1. The Architecture of the Hierarchical Index

To provide efficient point cloud data query support, a hierarchical index structure is
proposed, and it includes a (i) global index, in which a Hilbert tree is constructed to globally
identify all the point cloud partitions and a (ii) local index, in which an R*-tree is utilized to
index 3D point objects in the partitions to provide spatial query support for point clouds.
The hierarchical index is used for query task scheduling to support NoSQL-based point
cloud spatial queries.

3.1.1. Global Index for High Data Locality

A common method for pruning the query task, reducing the I/O seek time, and
improving the retrieval efficiency is to construct a global index by partitioning the space.
Meanwhile, the spatial association of spatially partitioned objects is maintained using the
3D points in space.

In particular, tile-based structures are widely used to store and manage large-scale
point cloud data. In a slice-based structure, the raw point cloud data are divided into many
slices (usually squares) based on their spatial distribution, and each slice is organized into
an LAS file [15]. This “divide and conquer” aspect of data partitioning can divide big
data into relatively small independent sub-blocks, thereby improving data processing and
computation and increasing data storage and management system efficiency [37]. However,
this uniform partitioning strategy is more effective when applied to terrestrial LiDAR
systems, whereas the discrete spatial distribution characteristics of the point cloud need
to be considered for the more widely used mobile LiDAR scanning systems to avoid data
skewing after division [38,39].

Moreover, instead of partitioning the point cloud in a spatially homogeneous manner,
these data are divided into spatial regions that do not overlap and can be dynamically
adjusted by setting a threshold. In addition, the partitions are encoded using space-filling
curves to realize the reduced dimensional spatial representation of the point cloud for
subsequent data retrieval and access.

A space-filling curve is a one-dimensional continuous curve that can run through
multi-dimensional space, and it represents an effective method of dimensionality reduction
that is widely used in various types of GIS algorithms [40]. Commonly used space filling
curves include the Z curve and Hilbert curve [41]. The Z curve has local proximity, although
it also has serious spatial mutability, i.e., the points coded by neighboring numbers may
not be adjacent to each other, and its coding cannot effectively reflect spatial distance [42].
The Hilbert curve has optimal spatial aggregation and discrete approximation abilities, and
adjacent points in space are adjacent and continuous on the curve; thus, it can realize the
mapping from multidimensional space to one-dimensional space well [40,43]. Therefore,
the Hilbert curve is chosen as the basis of the coding algorithm in this study and realizes the
adaptive grading of discrete data by setting the following threshold: higher-order Hilbert
curves are generated in regions with dense 3D points, and lower-order Hilbert curves are
generated in regions with sparse 3D points. The underlying coding algorithm for Hilbert
curves is available on GitHub [44]. To clearly describe the process of spatial adaptive

ISPRS Int. J. Geo-Inf. 2024, 13, 253 6 of 21

segmentation, a two-dimensional example is provided in Figure 2. The subsequent plots in
this paper are likewise provided in two dimensions.

ISPRS Int. J. Geo-Inf. 2024, 13, x FOR PEER REVIEW 6 of 21

higher-order Hilbert curves are generated in regions with dense 3D points, and lower-
order Hilbert curves are generated in regions with sparse 3D points. The underlying cod-
ing algorithm for Hilbert curves is available on GitHub [44]. To clearly describe the pro-
cess of spatial adaptive segmentation, a two-dimensional example is provided in Figure
2. The subsequent plots in this paper are likewise provided in two dimensions.

Figure 2. Hilbert coding strategies based on inhomogeneous space partitioning.

The Hilbert mesh is dynamically divided via the iterative octet method of 3D spatial
mesh. At the first division, based on the set initial Hilbert curve order (Nini), the three-
dimensional space is uniformly divided into a 2 2 2Nini Nini Nini grid. Subsequently, the
amount of data contained within each grid is counted and the grid cells are filtered for
iterative subdivision according to a set threshold for region delineation (Pmax) to construct
locally finer grids. Subdivision stops when the subdivision order reaches the predefined
maximum order (Nmax) or when the point data in a single grid cell are less than the thresh-
old value Pmax. The initial Hilbert curve is determined with the following equation:

8
max

log 1.5

all
ini

P
N

P
 (1)

where Nini is the initial coding level, Pall is the total number of points, and Pmax is the region
spliĴing threshold. In general, pmax can be selected based on hardware performance and
network speed or the size of the most frequently queried study area. For most applica-
tions, a few thousands to tens of thousands of points is an appropriate value size. For
example, for 1 million points and a spliĴing threshold of 2000, there will be 500 records if
the data points are uniformly distributed in 3D space. A level 3 Hilbert curve can pass
through 512 grid cells; therefore, this value is sufficient. However, due to the uneven dis-
tribution of data points, we chose level 4 as the initial coding level because level 4 can pass
through 4096 grid cells. Choosing the appropriate initial coding level based on the distri-
bution of points in 3D space can reduce the time spent on the subsequent refinement and
combination process.

Spatially adaptive partitioning is used as the basis for constructing the Hilbert tree,
which enables the construction of the global index (Figure 3). The unique corresponding
Hilbert code of the point cloud partition indicates its position in the Hilbert tree in the
storage system. Additionally, to avoid redundant coding calculations and grid space, we
optimized the index structure of the Hilbert tree and proposed a compact Hilbert tree. For
the eight leaf nodes obtained from the subdivision, the leaf nodes that do not contain data
are chosen to be eliminated from the index tree and the minimum bounding box that can
contain them is obtained by re-computing according to the remaining leaf nodes to com-
plete the reconstruction of the parent node.

Figure 2. Hilbert coding strategies based on inhomogeneous space partitioning.

The Hilbert mesh is dynamically divided via the iterative octet method of 3D spatial
mesh. At the first division, based on the set initial Hilbert curve order (Nini), the three-
dimensional space is uniformly divided into a 2Nini × 2Nini × 2Nini grid. Subsequently, the
amount of data contained within each grid is counted and the grid cells are filtered for
iterative subdivision according to a set threshold for region delineation (Pmax) to construct
locally finer grids. Subdivision stops when the subdivision order reaches the predefined
maximum order (Nmax) or when the point data in a single grid cell are less than the threshold
value Pmax. The initial Hilbert curve is determined with the following equation:

Nini =

[
log8

Pall
Pmax

+ 1.5
]

(1)

where Nini is the initial coding level, Pall is the total number of points, and Pmax is the region
splitting threshold. In general, pmax can be selected based on hardware performance and
network speed or the size of the most frequently queried study area. For most applications,
a few thousands to tens of thousands of points is an appropriate value size. For example, for
1 million points and a splitting threshold of 2000, there will be 500 records if the data points
are uniformly distributed in 3D space. A level 3 Hilbert curve can pass through 512 grid
cells; therefore, this value is sufficient. However, due to the uneven distribution of data
points, we chose level 4 as the initial coding level because level 4 can pass through 4096 grid
cells. Choosing the appropriate initial coding level based on the distribution of points in 3D
space can reduce the time spent on the subsequent refinement and combination process.

Spatially adaptive partitioning is used as the basis for constructing the Hilbert tree,
which enables the construction of the global index (Figure 3). The unique corresponding
Hilbert code of the point cloud partition indicates its position in the Hilbert tree in the
storage system. Additionally, to avoid redundant coding calculations and grid space, we
optimized the index structure of the Hilbert tree and proposed a compact Hilbert tree.
For the eight leaf nodes obtained from the subdivision, the leaf nodes that do not contain
data are chosen to be eliminated from the index tree and the minimum bounding box that
can contain them is obtained by re-computing according to the remaining leaf nodes to
complete the reconstruction of the parent node.

ISPRS Int. J. Geo-Inf. 2024, 13, 253 7 of 21
ISPRS Int. J. Geo-Inf. 2024, 13, x FOR PEER REVIEW 7 of 21

Figure 3. Overview of Hilbert tree.

3.1.2. Local Index of Point Clouds Based on R*-Tree
R*-tree optimizes the data insertion and node spliĴing logic by introducing a series

of measures for regions, boundary shapes, and overlapping nodes and proposes a forced
reinsertion mechanism, which makes the tree structure more reasonable and efficient. The
memory persistence feature of R*-tree makes it possible to retrieve the objects without
accessing the actual data objects and provides a list of the objects directly in line with the
spatial relationship, which lowers the response latency. Due to the fixed form of index
elements, the volume of the R*-tree is proportional to the number of indexed objects. Un-
der conditions of large data volumes, the construction of a single centralized R*-tree often
leads to a larger depth of the tree and a high volume of the index, index loading, memory
cost traversal, and time cost. Variants of the R*-tree are proposed as a distributed index
for processing multidimensional spatiotemporal data in a cluster of workstations [45].
Therefore, we construct an R*-tree [46] as a local index for each point cloud partition while
controlling the index volume. The implementation of R*-tree can be referred to GitHub
[47], which provides ideas for the design of the algorithm in this paper. Readers can mod-
ify and extend it according to their needs. When performing a spatial query, the corre-
sponding local index is loaded into memory on demand, and data retrieval is performed
based on the input spatial query range.

R*-tree is utilized to store the relevant information of the point objects in point cloud
blocks, i.e., each leaf node of the R*-tree stores the aĴribute information of the 3D point
objects, and the non-leaf nodes store their corresponding minimum bounding box (MBB)
as well as the pointers to their child nodes.

As shown in Figure 4, the R*-tree comprehensively optimizes the volume, edge
length and degree of superposition of each MBB in the path to achieve more reasonable
spatial clustering. It offers performance advantages over R-tree in terms of rectangular
data, multidimensional point data, and query operation and map overlay display. In prac-
tical applications, although the realization cost of R*-tree is slightly higher than that of R-
tree, the point cloud is processed in chunks and the number of three-dimensional points
indexed by a single R*-tree is not excessive. Therefore, the complexity of constructing and
maintaining R*-tree is not significantly higher than that of R-tree. In addition, compari-
sons with other common point cloud data structures, such as Octree and KD-tree, reveal
that R*-tree is much more complicated to construct and maintain. However, with its ex-
cellent node spliĴing design and internal index structure, R*-tree provides more efficient
data retrieval support.

Figure 3. Overview of Hilbert tree.

3.1.2. Local Index of Point Clouds Based on R*-Tree

R*-tree optimizes the data insertion and node splitting logic by introducing a series
of measures for regions, boundary shapes, and overlapping nodes and proposes a forced
reinsertion mechanism, which makes the tree structure more reasonable and efficient. The
memory persistence feature of R*-tree makes it possible to retrieve the objects without
accessing the actual data objects and provides a list of the objects directly in line with the
spatial relationship, which lowers the response latency. Due to the fixed form of index
elements, the volume of the R*-tree is proportional to the number of indexed objects. Under
conditions of large data volumes, the construction of a single centralized R*-tree often
leads to a larger depth of the tree and a high volume of the index, index loading, memory
cost traversal, and time cost. Variants of the R*-tree are proposed as a distributed index
for processing multidimensional spatiotemporal data in a cluster of workstations [45].
Therefore, we construct an R*-tree [46] as a local index for each point cloud partition while
controlling the index volume. The implementation of R*-tree can be referred to GitHub [47],
which provides ideas for the design of the algorithm in this paper. Readers can modify and
extend it according to their needs. When performing a spatial query, the corresponding
local index is loaded into memory on demand, and data retrieval is performed based on
the input spatial query range.

R*-tree is utilized to store the relevant information of the point objects in point cloud
blocks, i.e., each leaf node of the R*-tree stores the attribute information of the 3D point
objects, and the non-leaf nodes store their corresponding minimum bounding box (MBB)
as well as the pointers to their child nodes.

As shown in Figure 4, the R*-tree comprehensively optimizes the volume, edge
length and degree of superposition of each MBB in the path to achieve more reasonable
spatial clustering. It offers performance advantages over R-tree in terms of rectangular
data, multidimensional point data, and query operation and map overlay display. In
practical applications, although the realization cost of R*-tree is slightly higher than that
of R-tree, the point cloud is processed in chunks and the number of three-dimensional
points indexed by a single R*-tree is not excessive. Therefore, the complexity of construct-
ing and maintaining R*-tree is not significantly higher than that of R-tree. In addition,
comparisons with other common point cloud data structures, such as Octree and KD-tree,
reveal that R*-tree is much more complicated to construct and maintain. However, with
its excellent node splitting design and internal index structure, R*-tree provides more
efficient data retrieval support.

ISPRS Int. J. Geo-Inf. 2024, 13, 253 8 of 21ISPRS Int. J. Geo-Inf. 2024, 13, x FOR PEER REVIEW 8 of 21

Figure 4. Comparison of R- tree and R*-tree. (a) R-tree and (b) R*-tree.

3.2. Construction of Hierarchical Index Tree
The hierarchical index structure is organized in the form of nested secondary index

trees, in which the Hilbert tree is the primary data structure, and the 3D R*-tree is the
secondary data structure. This nested tree structure can fully exploit the fast convergence
of the Hilbert tree to quickly divide the three-dimensional space; however, it also has the
potential advantage of the R*-tree for efficient retrieval in high-dimensional space. In this
section, we will describe in detail how to integrate both processes. Figure 5 shows the
organization of the integrated data structure of Octree and 3D R*-tree, and the leaf nodes
of the Hilbert tree represented using dashed boxes indicate redundant nodes without data
that need to be eliminated.

Figure 5. Data structure organization of Hilbert tree integrating with 3D R*-tree.

Figure 4. Comparison of R-tree and R*-tree. (a) R-tree and (b) R*-tree.

3.2. Construction of Hierarchical Index Tree

The hierarchical index structure is organized in the form of nested secondary index
trees, in which the Hilbert tree is the primary data structure, and the 3D R*-tree is the
secondary data structure. This nested tree structure can fully exploit the fast convergence
of the Hilbert tree to quickly divide the three-dimensional space; however, it also has the
potential advantage of the R*-tree for efficient retrieval in high-dimensional space. In this
section, we will describe in detail how to integrate both processes. Figure 5 shows the
organization of the integrated data structure of Octree and 3D R*-tree, and the leaf nodes of
the Hilbert tree represented using dashed boxes indicate redundant nodes without data
that need to be eliminated.

ISPRS Int. J. Geo-Inf. 2024, 13, x FOR PEER REVIEW 8 of 21

Figure 4. Comparison of R- tree and R*-tree. (a) R-tree and (b) R*-tree.

3.2. Construction of Hierarchical Index Tree
The hierarchical index structure is organized in the form of nested secondary index

trees, in which the Hilbert tree is the primary data structure, and the 3D R*-tree is the
secondary data structure. This nested tree structure can fully exploit the fast convergence
of the Hilbert tree to quickly divide the three-dimensional space; however, it also has the
potential advantage of the R*-tree for efficient retrieval in high-dimensional space. In this
section, we will describe in detail how to integrate both processes. Figure 5 shows the
organization of the integrated data structure of Octree and 3D R*-tree, and the leaf nodes
of the Hilbert tree represented using dashed boxes indicate redundant nodes without data
that need to be eliminated.

Figure 5. Data structure organization of Hilbert tree integrating with 3D R*-tree. Figure 5. Data structure organization of Hilbert tree integrating with 3D R*-tree.

ISPRS Int. J. Geo-Inf. 2024, 13, 253 9 of 21

The construction of a hierarchical index tree involves two sub-processes: spatial
partitioning of a Hilbert tree and spatial object storage of a 3D R*-tree. The construction
algorithm integrates the two sub-processes together and associates these processes through
the leaf nodes of the Hilbert tree. In the spatial division process of the Hilbert tree, the leaf
nodes of the Hilbert tree that satisfy the threshold condition are used as the root nodes of
the 3D R*-tree. Based on the given 3D R*-tree fan-out parameters (each node is allowed to
contain the maximum number of entries and the minimum number of entries, fmax and fmin),
spatial objects are inserted individually to construct the internal nodes of the 3D R*-tree
until all spatial objects have completed the insertion operation, that is, the construction of
the 3D R*-tree is completed. The specific construction process is shown in Figure 6.

ISPRS Int. J. Geo-Inf. 2024, 13, x FOR PEER REVIEW 9 of 21

The construction of a hierarchical index tree involves two sub-processes: spatial par-
titioning of a Hilbert tree and spatial object storage of a 3D R*-tree. The construction algo-
rithm integrates the two sub-processes together and associates these processes through
the leaf nodes of the Hilbert tree. In the spatial division process of the Hilbert tree, the leaf
nodes of the Hilbert tree that satisfy the threshold condition are used as the root nodes of
the 3D R*-tree. Based on the given 3D R*-tree fan-out parameters (each node is allowed to
contain the maximum number of entries and the minimum number of entries, fmax and fmin),
spatial objects are inserted individually to construct the internal nodes of the 3D R*-tree
until all spatial objects have completed the insertion operation, that is, the construction of
the 3D R*-tree is completed. The specific construction process is shown in Figure 6.

Figure 6. Construction flow chart of hierarchical index tree.

The hierarchical index tree construction algorithm is described as follows:
Algorithm Input: Hilbert tree split threshold (N) and R*-tree fan-out parameters (fmin,

fmax);
Algorithm Output: hierarchical index tree structure;

 Step 1: Obtain the initial partitioning results, take each independent partition as a
child node of the Hilbert tree, and the smallest bounding box containing all child
nodes is the root node;

 Step 2: Count the number of points (ptNum) contained in each child node; if ptNum >
N, divide the space into eight child nodes uniformly and assign the 3D point objects
to the corresponding child nodes. If ptNum ≤ N is satisfied, the division stops and
goes directly to step 3; otherwise, the recursive division needs to be continued;

 Step 3: Construct the initialized three-dimensional R*-tree for leaf nodes of the Hil-
bert tree that satisfy the threshold condition if ptNum ≠ 0 in the current node, and

Figure 6. Construction flow chart of hierarchical index tree.

The hierarchical index tree construction algorithm is described as follows:
Algorithm Input: Hilbert tree split threshold (N) and R*-tree fan-out parameters

(fmin, fmax);
Algorithm Output: hierarchical index tree structure;

• Step 1: Obtain the initial partitioning results, take each independent partition as a
child node of the Hilbert tree, and the smallest bounding box containing all child
nodes is the root node;

• Step 2: Count the number of points (ptNum) contained in each child node; if ptNum > N,
divide the space into eight child nodes uniformly and assign the 3D point objects to
the corresponding child nodes. If ptNum ≤ N is satisfied, the division stops and goes
directly to step 3; otherwise, the recursive division needs to be continued;

• Step 3: Construct the initialized three-dimensional R*-tree for leaf nodes of the Hilbert
tree that satisfy the threshold condition if ptNum ̸= 0 in the current node, and in-

ISPRS Int. J. Geo-Inf. 2024, 13, 253 10 of 21

sert the three-dimensional point objects into the three-dimensional R*-tree one by
one; otherwise, remove the current node from the index tree and reconstruct the
parent node;

• Step 4: Perform the insertion operation of the 3D R*-tree; if the inserted node contains
the number of child nodes (chNum) < fmin after insertion, then this reorganizes the
node objects within the node; otherwise, continue to step 5;

• Step 5: Divide an overflow situation after the insertion of the node containing chNum > fmax
into two cases. If the node is in the layer of the first overflow, then perform the re-
insertion operation; otherwise, perform the node split operation. If chNum < fmax, then
this three-dimensional point object is used to complete the insertion and continue on
to step 6;

• Step 6: Check whether 3D point objects have not been inserted; if so, repeat step
4 and step 5 until all 3D point objects are inserted into the tree structure and the
algorithm ends.

3.3. Point Cloud Storage and Query

In this paper, by refining the spatial units, the dense spatial point cloud data are
divided into relatively small groups to participate in the point cloud hierarchical index
construction, and a spatial index framework for large-scale point cloud data oriented to
NoSQL is designed based on the hierarchical index structure (see Figure 7). The main idea
is to organize the point cloud by spatial encoding via R*-tree and accelerate point cloud
spatial query processing via one-dimensional B+-tree. The spatial query uses the classical
two-stage processing strategy. The index screening stage is based on the global Hilbert
tree for rough querying, according to which the R*-tree of the corresponding partition is
obtained for precise query to obtain the final result.

ISPRS Int. J. Geo-Inf. 2024, 13, x FOR PEER REVIEW 10 of 21

insert the three-dimensional point objects into the three-dimensional R*-tree one by
one; otherwise, remove the current node from the index tree and reconstruct the par-
ent node;

 Step 4: Perform the insertion operation of the 3D R*-tree; if the inserted node contains
the number of child nodes (chNum) < fmin after insertion, then this reorganizes the
node objects within the node; otherwise, continue to step 5;

 Step 5: Divide an overflow situation after the insertion of the node containing chNum
> fmax into two cases. If the node is in the layer of the first overflow, then perform the
re-insertion operation; otherwise, perform the node split operation. If chNum < fmax,
then this three-dimensional point object is used to complete the insertion and con-
tinue on to step 6;

 Step 6: Check whether 3D point objects have not been inserted; if so, repeat step 4
and step 5 until all 3D point objects are inserted into the tree structure and the algo-
rithm ends.

3.3. Point Cloud Storage and Query
In this paper, by refining the spatial units, the dense spatial point cloud data are di-

vided into relatively small groups to participate in the point cloud hierarchical index con-
struction, and a spatial index framework for large-scale point cloud data oriented to
NoSQL is designed based on the hierarchical index structure (see Figure 7). The main idea
is to organize the point cloud by spatial encoding via R*-tree and accelerate point cloud
spatial query processing via one-dimensional B+-tree. The spatial query uses the classical
two-stage processing strategy. The index screening stage is based on the global Hilbert
tree for rough querying, according to which the R*-tree of the corresponding partition is
obtained for precise query to obtain the final result.

Figure 7. Overview of the point cloud storage and indexing framework.

3.3.1. Structural Design of MongoDB
Spatial query processing of large-scale data in file systems without native index sup-

port usually requires traversing all spatial information records to match the correspond-
ing query results; thus, the query efficiency is extremely low. However, in mature spatial
databases, R-Tree indexes are usually used to manage point cloud data. In addition, be-

Figure 7. Overview of the point cloud storage and indexing framework.

3.3.1. Structural Design of MongoDB

Spatial query processing of large-scale data in file systems without native index
support usually requires traversing all spatial information records to match the corre-
sponding query results; thus, the query efficiency is extremely low. However, in mature
spatial databases, R-Tree indexes are usually used to manage point cloud data. In ad-
dition, because of the exponential increase in the number of mobile application users,

ISPRS Int. J. Geo-Inf. 2024, 13, 253 11 of 21

discrete spatial data management methods require cloud storage support. In the era of
big data, the application of NoSQL is becoming increasingly widespread. Therefore, in
this paper, the document-based non-relational database MongoDB is used as the storage
medium to implement the hierarchical index. The organizational structure of MongoDB
is database–collections–document objects–elements; collections are similar to tables in
relational databases, document objects are similar to records, and elements are similar to
fields. MongoDB supports record collections that do not require the same strict structure,
presents flexible design patterns, and has a rich data format that is suitable for point cloud
data storage. We designed the MongoDB-oriented point cloud document storage structure
based on the hierarchical index structure, as shown in Figure 8. This section will focus on
the MongoDB-based point cloud storage scheme.

ISPRS Int. J. Geo-Inf. 2024, 13, x FOR PEER REVIEW 11 of 21

cause of the exponential increase in the number of mobile application users, discrete spa-
tial data management methods require cloud storage support. In the era of big data, the
application of NoSQL is becoming increasingly widespread. Therefore, in this paper, the
document-based non-relational database MongoDB is used as the storage medium to im-
plement the hierarchical index. The organizational structure of MongoDB is database–
collections–document objects–elements; collections are similar to tables in relational data-
bases, document objects are similar to records, and elements are similar to fields. Mon-
goDB supports record collections that do not require the same strict structure, presents
flexible design paĴerns, and has a rich data format that is suitable for point cloud data
storage. We designed the MongoDB-oriented point cloud document storage structure
based on the hierarchical index structure, as shown in Figure 8. This section will focus on
the MongoDB-based point cloud storage scheme.

Figure 8. Document storage model based on hierarchical index structure.

The global index is designed to index all partitions and their physical locations to
obtain a global overview of the point cloud partitions in the storage system. Since the
global index resides in the memory of a single node, it should take up as liĴle memory
space as possible and be easily implemented. Therefore, the Hilbert tree with its leaf nodes
only holds the Hilbert-encoded information of the corresponding grid, indicating its po-
sition in the storage system with the Hilbert tree, and does not actually store the point
cloud data.

For the Hilbert tree leaf nodes in which the actual data are stored, the local index R*-
tree is stored in the collection and the documents within the collection store the ROWID
number of the root node of the R*-tree and its node information. The ROWID of the root
node is the unique identifier of the root node document, and it is used to read the root
node data from the database as well as the data for any node in the R*-tree. In this study,
Hilbert encoding is chosen as the ROWID of each document in MongoDB, which repre-
sents an important foundation for MongoDB to realize distributed storage. To facilitate
point cloud spatial querying, this study constructs a B+-tree index on the ROWID field and
ensures that the nodes of a single R*-tree that uniquely correspond to the grid Hilbert
encoding are also deposited into the same set as the elements of the document. Moreover,
the nodes are divided into leaf and non-leaf nodes, which have different structures. For
storage convenience, this study serializes the node data of the R*-tree as binary blocks,
that is, BinData type elements deposited into the document. Among them, the leaf nodes
record the aĴribute information of the point cloud, the non-leaf nodes store the corre-
sponding minimum bounding boxes and pointers to child nodes, and access to non-leaf
nodes reveals whether the child nodes satisfy the coarse check requirements.

3.3.2. Point Cloud Spatial Query

Figure 8. Document storage model based on hierarchical index structure.

The global index is designed to index all partitions and their physical locations to
obtain a global overview of the point cloud partitions in the storage system. Since the global
index resides in the memory of a single node, it should take up as little memory space as
possible and be easily implemented. Therefore, the Hilbert tree with its leaf nodes only
holds the Hilbert-encoded information of the corresponding grid, indicating its position in
the storage system with the Hilbert tree, and does not actually store the point cloud data.

For the Hilbert tree leaf nodes in which the actual data are stored, the local index
R*-tree is stored in the collection and the documents within the collection store the ROWID
number of the root node of the R*-tree and its node information. The ROWID of the root
node is the unique identifier of the root node document, and it is used to read the root node
data from the database as well as the data for any node in the R*-tree. In this study, Hilbert
encoding is chosen as the ROWID of each document in MongoDB, which represents an
important foundation for MongoDB to realize distributed storage. To facilitate point cloud
spatial querying, this study constructs a B+-tree index on the ROWID field and ensures
that the nodes of a single R*-tree that uniquely correspond to the grid Hilbert encoding
are also deposited into the same set as the elements of the document. Moreover, the nodes
are divided into leaf and non-leaf nodes, which have different structures. For storage
convenience, this study serializes the node data of the R*-tree as binary blocks, that is,
BinData type elements deposited into the document. Among them, the leaf nodes record
the attribute information of the point cloud, the non-leaf nodes store the corresponding
minimum bounding boxes and pointers to child nodes, and access to non-leaf nodes reveals
whether the child nodes satisfy the coarse check requirements.

3.3.2. Point Cloud Spatial Query

Querying spatial data is the inverse process of spatial indexing and data storage and is
closely related to the data storage model and index structure. Spatial-oriented queries are

ISPRS Int. J. Geo-Inf. 2024, 13, 253 12 of 21

query operations based on spatial indices, and the more common and important ones are
those based on specific spatial boundaries. Combined with the hybrid spatial index model
in Section 3.2 of this paper, the spatial query of the point cloud is divided into two phases,
i.e., Hilbert tree filtering phase and R*-tree filtering phase. Figure 9 illustrates the general
framework of point cloud spatial range query processing. The Hilbert tree filtering phase
uses a relatively low computational cost to find a set of partition encoding candidate sets
that intersect with the spatial query range; the R*-tree filtering phase reads the information
of the corresponding spatial partition’s R*-tree nodes from MongoDB based on the mesh
encoding candidate sets and deserializes them into memory for precise querying to obtain
the final query results.

ISPRS Int. J. Geo-Inf. 2024, 13, x FOR PEER REVIEW 12 of 21

Querying spatial data is the inverse process of spatial indexing and data storage and
is closely related to the data storage model and index structure. Spatial-oriented queries
are query operations based on spatial indices, and the more common and important ones
are those based on specific spatial boundaries. Combined with the hybrid spatial index
model in Section 3.2 of this paper, the spatial query of the point cloud is divided into two
phases, i.e., Hilbert tree filtering phase and R*-tree filtering phase. Figure 9 illustrates the
general framework of point cloud spatial range query processing. The Hilbert tree filtering
phase uses a relatively low computational cost to find a set of partition encoding candidate
sets that intersect with the spatial query range; the R*-tree filtering phase reads the infor-
mation of the corresponding spatial partition’s R*-tree nodes from MongoDB based on the
mesh encoding candidate sets and deserializes them into memory for precise querying to
obtain the final query results.

Figure 9. The general framework of spatial range query.

The algorithm for performing point cloud spatial queries is described below.
Algorithm Input: spatial query boundary;
Algorithm Output: point cloud collection;

 Step1: Obtain the given query boundary information;
 Step2: Compute a Hilbert grid code set from the Hilbert tree based on the given spa-

tial query boundary to implement a spatial coarse query to clip the query null;
 Step3: Traverse each Hilbert code in the grid code set to obtain information about the

corresponding R*-tree node represented as a binary block in MongoDB;
 Step4: Deserialize the R*-tree node information represented as binary blocks into

memory, retrieve leaf nodes from R*-tree that satisfy the query conditions according
to the given spatial query boundaries, and obtain point cloud data from leaf nodes
that satisfy the conditions;

 Step5: Merge and return all R*-tree filtering results and finish the query.

4. Performance Evaluation

Figure 9. The general framework of spatial range query.

The algorithm for performing point cloud spatial queries is described below.
Algorithm Input: spatial query boundary;
Algorithm Output: point cloud collection;

• Step 1: Obtain the given query boundary information;
• Step 2: Compute a Hilbert grid code set from the Hilbert tree based on the given

spatial query boundary to implement a spatial coarse query to clip the query null;
• Step 3: Traverse each Hilbert code in the grid code set to obtain information about the

corresponding R*-tree node represented as a binary block in MongoDB;
• Step 4: Deserialize the R*-tree node information represented as binary blocks into

memory, retrieve leaf nodes from R*-tree that satisfy the query conditions according to
the given spatial query boundaries, and obtain point cloud data from leaf nodes that
satisfy the conditions;

• Step 5: Merge and return all R*-tree filtering results and finish the query.

ISPRS Int. J. Geo-Inf. 2024, 13, 253 13 of 21

4. Performance Evaluation
4.1. Data Description and Experimental Platform

The point cloud dataset provided by Astyx was selected for this study. This dataset
was acquired using a Velodyne VLP-16 sensor (10 Hz, 16 laser beams, 100 m range) installed
in the vehicle. The dataset contains a high density of ground points as well as other features
such as vegetation with attributes such as 3D coordinates (x, y, z), laser ID, reflectivity, and
timestamps, for a total of approximately 11 million point cloud data points. The point
cloud index construction and spatial query algorithms were implemented using Java17
with Oracle version 11.2.0.1.0 and MongoDB version 4.4.0, which were run on the Windows
10 64-bit operating system configured with an Intel® CoreTM i7-9750H CPU @ 2.60 GHz
and 16 GB RAM.

4.2. Performance Analysis

To validate the correctness and effectiveness of the hierarchical index structure and
storage scheme for mobile laser point cloud data proposed in this paper, the effectiveness
of the Hilbert tree optimization was validated, the indexing performance was evaluated,
and the comprehensive test of point cloud spatial querying based on RDBMS and NoSQL
was verified using the point cloud dataset described in Section 4.1.

4.2.1. Validation of the Effectiveness of the Hilbert Tree Optimization

To solve the indexing and partitioning problem of large-scale discrete point elements,
this paper utilizes Hilbert curves with adaptive space partitioning to construct a Hilbert tree
to alleviate data skewing and avoid the complex computational problem of constructing
high-order curves. Meanwhile, the Hilbert tree is optimized, and a compact Hilbert tree is
proposed. To verify the feasibility and effectiveness of the compact Hilbert tree proposed
in this study, we conducted experiments using point cloud data with different scale sizes
(percentage of total data amount) to compare the construction time and number of partitions
of the Hilbert tree before and after optimization. In this case, the data have been preloaded
into the memory and the initial partitioning has been completed. The initial partition order
is 3, the maximum partition order is 10, and the space-splitting threshold is 20,000. The
specific results are shown in Figure 10.

ISPRS Int. J. Geo-Inf. 2024, 13, x FOR PEER REVIEW 13 of 21

4.1. Data Description and Experimental Platform
The point cloud dataset provided by Astyx was selected for this study. This dataset

was acquired using a Velodyne VLP-16 sensor (10 Hz, 16 laser beams, 100 m range) in-
stalled in the vehicle. The dataset contains a high density of ground points as well as other
features such as vegetation with aĴributes such as 3D coordinates (x, y, z), laser ID, reflec-
tivity, and timestamps, for a total of approximately 11 million point cloud data points. The
point cloud index construction and spatial query algorithms were implemented using
Java17 with Oracle version 11.2.0.1.0 and MongoDB version 4.4.0, which were run on the
Windows 10 64-bit operating system configured with an Intel® CoreTM i7-9750H CPU @
2.60 GHz and 16 GB RAM.

4.2. Performance Analysis
To validate the correctness and effectiveness of the hierarchical index structure and

storage scheme for mobile laser point cloud data proposed in this paper, the effectiveness
of the Hilbert tree optimization was validated, the indexing performance was evaluated,
and the comprehensive test of point cloud spatial querying based on RDBMS and NoSQL
was verified using the point cloud dataset described in Section 4.1.

4.2.1. Validation of the Effectiveness of the Hilbert Tree Optimization
To solve the indexing and partitioning problem of large-scale discrete point elements,

this paper utilizes Hilbert curves with adaptive space partitioning to construct a Hilbert
tree to alleviate data skewing and avoid the complex computational problem of construct-
ing high-order curves. Meanwhile, the Hilbert tree is optimized, and a compact Hilbert
tree is proposed. To verify the feasibility and effectiveness of the compact Hilbert tree
proposed in this study, we conducted experiments using point cloud data with different
scale sizes (percentage of total data amount) to compare the construction time and number
of partitions of the Hilbert tree before and after optimization. In this case, the data have
been preloaded into the memory and the initial partitioning has been completed. The ini-
tial partition order is 3, the maximum partition order is 10, and the space-spliĴing thresh-
old is 20,000. The specific results are shown in Figure 10.

Figure 10. Hilbert tree construction time and the number of partitions before and after optimization.
(a) Construction time comparison and (b) number of partitions comparison.

Figure 10 shows that the optimized Hilbert tree has more excellent construction effi-
ciency and avoids redundant space without data. When the redundant space without data
is eliminated, the number of partitions that must be encoded and calculated is reduced,

Figure 10. Hilbert tree construction time and the number of partitions before and after optimization.
(a) Construction time comparison and (b) number of partitions comparison.

Figure 10 shows that the optimized Hilbert tree has more excellent construction
efficiency and avoids redundant space without data. When the redundant space without

ISPRS Int. J. Geo-Inf. 2024, 13, 253 14 of 21

data is eliminated, the number of partitions that must be encoded and calculated is reduced,
which narrows the construction time of the Hilbert tree to a certain extent. In addition,
the internal structure complexity of the optimized Hilbert tree is reduced, and the space
utilization is improved.

For data load balancing, we also examined the situation. The discretization of the data
in each partition was investigated with the following standard deviation formula:

σ =

√√√√ 1
n − 1

n

∑
k=1

(Pi − µ)
2

(2)

where n is the number of grid spaces containing 3D point objects after the end of the
division; Pi indicates the number of 3D point objects contained in each grid space; and µ
is the average number of 3D point objects contained in each grid space. σ can reflect the
discrete situation of the data contained in each grid space. If σ is larger, it indicates that
there is a large difference in the number of 3D point objects in each grid space, and there is
a more serious skewed data; on the contrary, it has a better realization of load balancing.

We compare the data load balancing between the two cases of uniform division and
adaptive division based on 3D space. The order of uniform division is 4; the minimum
order of adaptive division is 3, and the maximum order is 10. The experimental results are
shown in Figure 11. The adaptive spatial division result corresponds to a smaller σ value,
and the discrete degree of the number of 3D point objects contained in each grid is lower.
This indicates that adaptive spatial division can alleviate the data skew to some extent and
balance the amount of data in each grid space.

ISPRS Int. J. Geo-Inf. 2024, 13, x FOR PEER REVIEW 14 of 21

which narrows the construction time of the Hilbert tree to a certain extent. In addition, the
internal structure complexity of the optimized Hilbert tree is reduced, and the space uti-
lization is improved.

For data load balancing, we also examined the situation. The discretization of the
data in each partition was investigated with the following standard deviation formula:

2

1

1

1

n

i
k

P
n

 (2)

where n is the number of grid spaces containing 3D point objects after the end of the divi-
sion; Pi indicates the number of 3D point objects contained in each grid space; and µ is the
average number of 3D point objects contained in each grid space. σ can reflect the discrete
situation of the data contained in each grid space. If σ is larger, it indicates that there is a
large difference in the number of 3D point objects in each grid space, and there is a more
serious skewed data; on the contrary, it has a beĴer realization of load balancing.

We compare the data load balancing between the two cases of uniform division and
adaptive division based on 3D space. The order of uniform division is 4; the minimum
order of adaptive division is 3, and the maximum order is 10. The experimental results are
shown in Figure 11. The adaptive spatial division result corresponds to a smaller σ value,
and the discrete degree of the number of 3D point objects contained in each grid is lower.
This indicates that adaptive spatial division can alleviate the data skew to some extent and
balance the amount of data in each grid space.

Figure 11. Data skew examination.

4.2.2. Index Performance Evaluation
The node spliĴing threshold of R*-tree, as a data structure for actually storing point

cloud data, affects the maintenance and querying of hierarchical index trees. To examine
the effect of the R*-tree node spliĴing threshold on the hierarchical index tree, three dif-
ferent sets of threshold ranges of (4, 8), (8, 16), and (16, 32) were selected for index con-
struction and spatial query testing. Among them, different sizes of data (percentage of

Figure 11. Data skew examination.

4.2.2. Index Performance Evaluation

The node splitting threshold of R*-tree, as a data structure for actually storing point
cloud data, affects the maintenance and querying of hierarchical index trees. To examine the
effect of the R*-tree node splitting threshold on the hierarchical index tree, three different
sets of threshold ranges of (4, 8), (8, 16), and (16, 32) were selected for index construction
and spatial query testing. Among them, different sizes of data (percentage of total data
amount) were selected to complete the index construction; the spatial query range was set

ISPRS Int. J. Geo-Inf. 2024, 13, 253 15 of 21

to 20%, 40%, 60%, 80%, and 100% of the total data volume, respectively; the spatial-splitting
threshold of the Hilbert tree was 20,000; and the minimum and maximum coding lengths
were 3 and 10, respectively.

Figure 12a shows that a larger R*-tree node splitting threshold significantly increases
the construction time of the hierarchical tree. This is mainly because a larger splitting
threshold means that each node needs to store more data, and when node splitting and
reorganization are performed during the construction of the R*-tree, each node needs to
process more child nodes and data entries to complete the optimization and balancing of the
tree structure, thus increasing the construction time. In terms of query efficiency, Figure 12b
shows that a smaller R*-tree node splitting threshold is not conducive to improving the
query efficiency of a hierarchical index tree. When the R*-tree node splitting threshold is
increased, each node can accommodate more child nodes, which reduces the length of the
search path and allows the query to locate the region where the target data are located
more quickly. Therefore, we conclude that the R*-tree node splitting threshold should not
be too large or too small to achieve efficient construction and querying of hierarchical trees
simultaneously. The suggested node splitting threshold for R*-tree is (8, 16). It is important
to note that this choice is not the global optimal solution, and appropriate adjustments
must be made when the study area and data size change.

ISPRS Int. J. Geo-Inf. 2024, 13, x FOR PEER REVIEW 15 of 21

total data amount) were selected to complete the index construction; the spatial query
range was set to 20%, 40%, 60%, 80%, and 100% of the total data volume, respectively; the
spatial-spliĴing threshold of the Hilbert tree was 20,000; and the minimum and maximum
coding lengths were 3 and 10, respectively.

Figure 12a shows that a larger R*-tree node spliĴing threshold significantly increases
the construction time of the hierarchical tree. This is mainly because a larger spliĴing
threshold means that each node needs to store more data, and when node spliĴing and
reorganization are performed during the construction of the R*-tree, each node needs to
process more child nodes and data entries to complete the optimization and balancing of
the tree structure, thus increasing the construction time. In terms of query efficiency, Fig-
ure 12b shows that a smaller R*-tree node spliĴing threshold is not conducive to improv-
ing the query efficiency of a hierarchical index tree. When the R*-tree node spliĴing
threshold is increased, each node can accommodate more child nodes, which reduces the
length of the search path and allows the query to locate the region where the target data
are located more quickly. Therefore, we conclude that the R*-tree node spliĴing threshold
should not be too large or too small to achieve efficient construction and querying of hier-
archical trees simultaneously. The suggested node spliĴing threshold for R*-tree is (8, 16).
It is important to note that this choice is not the global optimal solution, and appropriate
adjustments must be made when the study area and data size change.

Moreover, we selected the two index structures R*-tree and 3DOR-tree [31] with hi-
erarchical index trees for index construction and query performance testing. The selection
of the dataset and the seĴing of the query range were the same as those used in the previ-
ous experiment. Among them, the node spliĴing thresholds of R*-tree and R-tree in the
3DOR-tree were both (8, 16); the node spliĴing thresholds and depths of Octree in the
3DOR-tree and Hilbert tree in the hierarchical indexing tree were both 20,000 and 10, re-
spectively; and the initial division order of the Hilbert tree was 3. The experimental results
are shown in Figure 13.

Figure 12. Comparison of index construction and query execution under different R*-tree node split-
ting thresholds. (a) Construction time comparison and (b) query time comparison.
Figure 12. Comparison of index construction and query execution under different R*-tree node
splitting thresholds. (a) Construction time comparison and (b) query time comparison.

Moreover, we selected the two index structures R*-tree and 3DOR-tree [31] with
hierarchical index trees for index construction and query performance testing. The selection
of the dataset and the setting of the query range were the same as those used in the previous
experiment. Among them, the node splitting thresholds of R*-tree and R-tree in the 3DOR-
tree were both (8, 16); the node splitting thresholds and depths of Octree in the 3DOR-tree
and Hilbert tree in the hierarchical indexing tree were both 20,000 and 10, respectively; and
the initial division order of the Hilbert tree was 3. The experimental results are shown in
Figure 13.

ISPRS Int. J. Geo-Inf. 2024, 13, 253 16 of 21

ISPRS Int. J. Geo-Inf. 2024, 13, x FOR PEER REVIEW 16 of 21

Figure 13. Comparison of construction and query execution of different index structures. (a) Con-
struction time comparison and (b) query time comparison.

Figure 13 shows that the R*-tree undoubtedly consumes more time in index construc-
tion and spatial queries. This is mainly because a single index structure, when facing a
large number of spatial objects, has an internal structure that continues to deteriorate with
the continuous insertion of data, thus requiring a large amount of time for the mainte-
nance and updating of the index structure. Moreover, the query of the point cloud usually
focuses on a specific spatial region, and a large number of redundant and overlapping
MBBs may occur in a specific region, resulting in the need to traverse multiple search
paths to obtain data that satisfy the query conditions.

For the hierarchical index tree and 3DOR-tree, both had higher index construction
and query efficiency and reduced the complexity of index construction through a two-
level nested index structure. Moreover, they pruned the query space to provide efficient
data query support. In terms of index construction, the construction of a hierarchical index
tree takes more time, mainly because the construction of a Hilbert tree is slightly more
complex than that of an Octree, in which the space of child nodes must be encoded and
calculated, while the index structure is optimized. Secondly, the second level index selec-
tion of the hierarchical index tree and 3DOR tree are R* tree and R tree, respectively, and
the maintenance and update of R* tree is more time-consuming than R tree. In terms of
spatial query, due to the optimization of the Hilbert tree, the space of nodes and search
paths that need to be re-solved are reduced and the query efficiency is improved. The
reconstructed nodes can more accurately filter the partitioned R* trees that satisfy the
query conditions, thus reducing the size of subqueries and further improving the query
efficiency. In addition, the query efficiency of R*-tree is higher than that of R tree, and with
the increase in query data volume, the advantage of R*-tree is more obviously demon-
strated.

4.2.3. Point Cloud Query Efficiency
To investigate the influence of spatial adaptive spliĴing threshold on data import and

query, this experiment uses a complete point cloud dataset for testing, with a minimum
coding length of 3 and a maximum of 10, and a spliĴing threshold of 20,000–30,000, with
a spacing of 2000, and the results are shown in Figure 14.

Figure 13. Comparison of construction and query execution of different index structures. (a) Con-
struction time comparison and (b) query time comparison.

Figure 13 shows that the R*-tree undoubtedly consumes more time in index construc-
tion and spatial queries. This is mainly because a single index structure, when facing a
large number of spatial objects, has an internal structure that continues to deteriorate with
the continuous insertion of data, thus requiring a large amount of time for the maintenance
and updating of the index structure. Moreover, the query of the point cloud usually focuses
on a specific spatial region, and a large number of redundant and overlapping MBBs may
occur in a specific region, resulting in the need to traverse multiple search paths to obtain
data that satisfy the query conditions.

For the hierarchical index tree and 3DOR-tree, both had higher index construction
and query efficiency and reduced the complexity of index construction through a two-level
nested index structure. Moreover, they pruned the query space to provide efficient data
query support. In terms of index construction, the construction of a hierarchical index
tree takes more time, mainly because the construction of a Hilbert tree is slightly more
complex than that of an Octree, in which the space of child nodes must be encoded and
calculated, while the index structure is optimized. Secondly, the second level index selection
of the hierarchical index tree and 3DOR tree are R* tree and R tree, respectively, and the
maintenance and update of R* tree is more time-consuming than R tree. In terms of spatial
query, due to the optimization of the Hilbert tree, the space of nodes and search paths that
need to be re-solved are reduced and the query efficiency is improved. The reconstructed
nodes can more accurately filter the partitioned R* trees that satisfy the query conditions,
thus reducing the size of subqueries and further improving the query efficiency. In addition,
the query efficiency of R*-tree is higher than that of R tree, and with the increase in query
data volume, the advantage of R*-tree is more obviously demonstrated.

4.2.3. Point Cloud Query Efficiency

To investigate the influence of spatial adaptive splitting threshold on data import and
query, this experiment uses a complete point cloud dataset for testing, with a minimum
coding length of 3 and a maximum of 10, and a splitting threshold of 20,000–30,000, with a
spacing of 2000, and the results are shown in Figure 14.

ISPRS Int. J. Geo-Inf. 2024, 13, 253 17 of 21ISPRS Int. J. Geo-Inf. 2024, 13, x FOR PEER REVIEW 17 of 21

Figure 14. The effect of spatial-spliĴing thresholds on load and query.

From Figure 14, it is observed that the lower the threshold of spatial adaptive split-
ting, the shorter the data insertion time, mainly due to the fact that the 3D space undergoes
an increased number of splits, which results in the growth of the number of R*-trees, but
the size of a single R*-tree decreases, and the time to serialize it into binary blocks is short-
ened. Meanwhile, observe also that the threshold of spatial adaptive spliĴing has liĴle
effect on the query elapsed time. The reason for this is that, when the sample data are
constant, the query time is mainly determined by the size of the query result set.

To verify the efficiency of the point cloud spatial indexing method in this paper for
querying in a database management system, point cloud-based spatial extent query was
examined. This querying process aĴempts to identify point clouds that include certain
activities within predefined spatial boundaries. The spatial query ranges were set to 10%,
20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, and 100% of the total data amount. The spatial
adaptive division threshold was 25,000, which was chosen based on the experimental re-
sults shown in Figure 15. In addition, the node spliĴing threshold of the R*-tree was (8,
16), and the minimum and maximum coding lengths were 3 and 10, respectively. Effi-
ciency metrics for queries were determined by testing the performance of indexed queries
at different spatial dimensional scales, and execution runtimes were analyzed based on
the activity of acquiring different amounts of point cloud data and compared with two
available point cloud indexing strategies. One of them is based on the SDO_PC extension
of Oracle spatial to manage the point cloud, which implements the indexing of the point
cloud using R-trees [48]. The SDO_PC is a special data type for point cloud data organi-
zation and management, which extends the functions of storage object creation, querying,
visualization, etc., for the characteristics of point cloud data. The other is based on encod-
ing 3D point cloud with a Hilbert curve and organizing it into MongoDB. At the same
time, B+-tree indexes are constructed on the encoded fields. To conduct a fair test and en-
sure the persuasiveness of the results, the three database systems were not optimized, and
all the experiments were conducted with the default system seĴings. The query results are
shown in Figure 15.

Figure 14. The effect of spatial-splitting thresholds on load and query.

From Figure 14, it is observed that the lower the threshold of spatial adaptive splitting,
the shorter the data insertion time, mainly due to the fact that the 3D space undergoes an
increased number of splits, which results in the growth of the number of R*-trees, but the
size of a single R*-tree decreases, and the time to serialize it into binary blocks is shortened.
Meanwhile, observe also that the threshold of spatial adaptive splitting has little effect on
the query elapsed time. The reason for this is that, when the sample data are constant, the
query time is mainly determined by the size of the query result set.

To verify the efficiency of the point cloud spatial indexing method in this paper for
querying in a database management system, point cloud-based spatial extent query was
examined. This querying process attempts to identify point clouds that include certain
activities within predefined spatial boundaries. The spatial query ranges were set to 10%,
20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, and 100% of the total data amount. The spatial
adaptive division threshold was 25,000, which was chosen based on the experimental
results shown in Figure 15. In addition, the node splitting threshold of the R*-tree was
(8, 16), and the minimum and maximum coding lengths were 3 and 10, respectively.
Efficiency metrics for queries were determined by testing the performance of indexed
queries at different spatial dimensional scales, and execution runtimes were analyzed
based on the activity of acquiring different amounts of point cloud data and compared
with two available point cloud indexing strategies. One of them is based on the SDO_PC
extension of Oracle spatial to manage the point cloud, which implements the indexing
of the point cloud using R-trees [48]. The SDO_PC is a special data type for point cloud
data organization and management, which extends the functions of storage object creation,
querying, visualization, etc., for the characteristics of point cloud data. The other is based
on encoding 3D point cloud with a Hilbert curve and organizing it into MongoDB. At the
same time, B+-tree indexes are constructed on the encoded fields. To conduct a fair test and
ensure the persuasiveness of the results, the three database systems were not optimized,
and all the experiments were conducted with the default system settings. The query results
are shown in Figure 15.

ISPRS Int. J. Geo-Inf. 2024, 13, 253 18 of 21ISPRS Int. J. Geo-Inf. 2024, 13, x FOR PEER REVIEW 18 of 21

Figure 15. Comparison of point cloud query efficiency supported with different methods.

Figure 15 illustrates the performance of spatial thresholding-based queries. During
the point cloud query processing, the Hilbert tree is traversed first to prune the sub-parti-
tions in each partition that exceed the given spatial range and reduce the number of
subqueries. From the effectiveness test results, the performance of the hierarchical index
structure is much beĴer. As described in Section 3.2 of this paper for the hierarchical index
structure, the subqueries utilize the smaller R*-tree instead of the entire index to prune
the search efficiently. The proposed index exhibits more efficient spatial query processing
compared to the other two point cloud indexing methods.

Figure 15 shows the features and advantages of this paper’s method in point cloud
spatial queries. The running time of the query increases as the spatial range and data size
increase because it needs to access a large number of partitions storing the R*-tree to ob-
tain all the points that satisfy the query conditions. However, it always maintains a beĴer
spatial querying performance and shows good scalability. Additionally, when the user
accesses a point cloud with a small range, the search prunes it according to the spatial
boundaries, thus accessing a reduced set of R*-trees. Moreover, this study constructs a
hierarchical index of point clouds using flexible spatial partitioning with R*-tree to pro-
vide efficient point cloud query support. The hierarchical index is especially good at han-
dling large-scale spatial queries of point clouds, and increases in the query range have less
impact on the query efficiency of the hierarchical index and a greater impact on the other
two indexes. The R-tree index retrieves the point cloud data that meets the query condi-
tions through the top-down approach, and with the expansion of the query boundary,
multiple search paths must be traversed to obtain the three-dimensional point objects, and
the query efficiency is significantly reduced. When using Hilbert curves for point cloud
organization, the use of 1D queries instead of 3D queries improves the query efficiency to
some extent as the query boundary expands. However, due to the limited curve accuracy,
a large number of 3D point objects will be inaccurately included in the query boundary in
the index-filtered results. Therefore, after the first filtering of the main index, a large num-
ber of records still need to be filtered to accurately obtain the point cloud data, which
increases the time and space overhead of executing a complete point cloud spatial query
process. Hierarchical indexing reduces the number of 3D queries by clipping the query

Figure 15. Comparison of point cloud query efficiency supported with different methods.

Figure 15 illustrates the performance of spatial thresholding-based queries. During the
point cloud query processing, the Hilbert tree is traversed first to prune the sub-partitions
in each partition that exceed the given spatial range and reduce the number of subqueries.
From the effectiveness test results, the performance of the hierarchical index structure is
much better. As described in Section 3.2 of this paper for the hierarchical index structure,
the subqueries utilize the smaller R*-tree instead of the entire index to prune the search
efficiently. The proposed index exhibits more efficient spatial query processing compared
to the other two point cloud indexing methods.

Figure 15 shows the features and advantages of this paper’s method in point cloud
spatial queries. The running time of the query increases as the spatial range and data size
increase because it needs to access a large number of partitions storing the R*-tree to obtain
all the points that satisfy the query conditions. However, it always maintains a better spatial
querying performance and shows good scalability. Additionally, when the user accesses a
point cloud with a small range, the search prunes it according to the spatial boundaries,
thus accessing a reduced set of R*-trees. Moreover, this study constructs a hierarchical
index of point clouds using flexible spatial partitioning with R*-tree to provide efficient
point cloud query support. The hierarchical index is especially good at handling large-scale
spatial queries of point clouds, and increases in the query range have less impact on the
query efficiency of the hierarchical index and a greater impact on the other two indexes.
The R-tree index retrieves the point cloud data that meets the query conditions through the
top-down approach, and with the expansion of the query boundary, multiple search paths
must be traversed to obtain the three-dimensional point objects, and the query efficiency is
significantly reduced. When using Hilbert curves for point cloud organization, the use of
1D queries instead of 3D queries improves the query efficiency to some extent as the query
boundary expands. However, due to the limited curve accuracy, a large number of 3D point
objects will be inaccurately included in the query boundary in the index-filtered results.
Therefore, after the first filtering of the main index, a large number of records still need to
be filtered to accurately obtain the point cloud data, which increases the time and space
overhead of executing a complete point cloud spatial query process. Hierarchical indexing
reduces the number of 3D queries by clipping the query task through global and local

ISPRS Int. J. Geo-Inf. 2024, 13, 253 19 of 21

two-level index filtering and is able to accurately filter the point cloud data that satisfies the
query conditions directly from the R*-tree, which makes the query efficiency even better.

5. Conclusions and Discussion

With the goal of efficiently processing large point cloud datasets containing spatial
information, this study explores how to utilize NoSQL to provide efficient point cloud data
indexing, storage, and query support and proposes a point cloud management method
based on the hierarchical spatial indexing model and the MongoDB fusion design storage
structure. The experimental results verify the effectiveness of the method proposed in this
paper: (1) the Hilbert tree constructed with spatial adaptive partitioning can effectively
reduce the computational complexity while avoiding redundant space, thereby alleviating
data skewing and fully exploiting the performance of the R*-tree to provide efficient and
accurate support for data querying, and (2) when performing spatial range queries on
point cloud data, based on the hierarchical indexing architecture, MongoDB outperforms
the other three mainstream point cloud management methods. The method first realizes
point cloud block management and global index construction through adaptive spatial
partitioning and Hilbert curves. Subsequently, local spatial indexing is realized by using
the R*-tree. Finally, the high performance and high scalability of MongoDB are utilized to
complete the storage structure. As the data volume increases, the features and advantages
of the proposed method become increasingly evident. Compared with existing point cloud
data storage and query schemes, the spatial index model and storage strategy presented in
this paper can effectively satisfy the point cloud data storage requirements of data-intensive
spatial applications.

The proposed methodology has a few limitations. In the future, the following research
will be conducted, with a focus on the storage and distribution of data:

• Larger point cloud datasets will be selected for performance testing, while the coding
accuracy of Hilbert curves will be extended beyond 64 bits to cover larger spatial
regions and improve coordinate accuracy;

• Additional types of point cloud data will be selected for testing, such as airborne
LiDAR data and fixed LiDAR data, to discuss the wide applicability of the method;

• The method in this study provides a limited variety of point cloud queries and only
considers range queries that are widely used in practical engineering. Therefore, we
will provide additional point cloud query algorithms, such as kNN query, to perform
similar queries in the future;

• The methodology proposed in this paper will be used in real point cloud data applica-
tion scenarios, while a more comprehensive methodology comparison will be carried
out to compare the performance of the proposed method with that of other database
management systems, e.g., Cassandra and PostgreSQL, to refine the methodology of
this paper and apply it in a clustered environment;

• Cloud computing and virtualization technologies provide on-demand, scalable com-
puting resources that have been widely used to support a variety of geospatial studies.
Thus, the feasibility of the proposed approach will be explored in other cloud comput-
ing environments.

Author Contributions: Yuqi Yang conceived, designed, and performed the experiments and wrote
the manuscript; Xiaoqing Zuo and Kang Zhao supervised this study; and Yongfa Li offered helpful
suggestions and reviewed the manuscript. All authors have read and agreed to the published version
of the manuscript.

Funding: This work was supported by the National Natural Science Foundation of China (No.
42161067), Yunnan Province Technical Innovation Talent Development Projects (No. 202405AD350058),
and Major Science and Technology Projects of Yunnan Province (No. 202202AD080010).

Data Availability Statement: The data that support the findings of this study are openly available at
https://github.com/under-the-radar/radar_dataset_astyx (accessed on 24 February 2021).

https://github.com/under-the-radar/radar_dataset_astyx

ISPRS Int. J. Geo-Inf. 2024, 13, 253 20 of 21

Acknowledgments: We would like to thank the reviewers for their in-depth suggestions and correc-
tions that helped improve the quality of this paper.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Wang, C.; Hu, F.; Sha, D.; Han, X. Efficient LiDAR point cloud data managing and processing in a hadoop-based distributed

framework. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, 4, 121–124. [CrossRef]
2. Che, E.; Jung, J.; Olsen, M.J. Object Recognition, Segmentation, and Classification of Mobile Laser Scanning Point Clouds: A State

of the Art Review. Sensors 2019, 19, 810. [CrossRef] [PubMed]
3. Poux, F. The Smart Point Cloud: Structuring 3D Intelligent Point Data. Ph.D. Thesis, Université de Liège, Liège, Belgium, 2019.
4. Yang, B.; Haala, N.; Dong, Z. Progress and Perspectives of Point Cloud Intelligence. Geo-Spat. Inf. Sci. 2023, 26, 189–205.

[CrossRef]
5. Vo, A.V.; Hewage, C.N.L.; Russo, G.; Chauhan, N.; Laefer, D.F.; Bertolotto, M.; Le-Khac, N.-A.; Oftendinger, U. Efficient LiDAR

Point Cloud Data Encoding for Scalable Data Management within the Hadoop Eco-System. In Proceedings of the 2019 IEEE
International Conference on Big Data (Big Data), Los Angeles, CA, USA, 9–12 December 2019; pp. 5644–5653.

6. Vo, A.V.; Laefer, D.F.; Trifkovic, M.; Hewage, C.N.L.; Bertolotto, M.; Le-Khac, N.A.; Ofterdinger, U. A highly scalable data
management system for point cloud and full waveform lidar data. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2020,
XLIII-B4-2020, 507–512. [CrossRef]

7. Vo, A.-V.; Konda, N.; Chauhan, N.; Aljumaily, H.; Laefer, D.F. Lessons Learned with Laser Scanning Point Cloud Management
in Hadoop HBase. In Proceedings of the Advanced Computing Strategies for Engineering; Smith, I.F.C., Domer, B., Eds.; Springer
International Publishing: Cham, Switzerland, 2018; pp. 231–253.

8. Béjar-Martos, J.A.; Rueda-Ruiz, A.J.; Ogayar-Anguita, C.J.; Segura-Sánchez, R.J.; López-Ruiz, A. Strategies for the Storage of
Large LiDAR Datasets—A Performance Comparison. Remote Sens. 2022, 14, 2623. [CrossRef]

9. Ogayar-Anguita, C.J.; López-Ruiz, A.; Rueda-Ruiz, A.J.; Segura-Sánchez, R.J. Nested Spatial Data Structures for Optimal Indexing
of LiDAR Data. ISPRS J. Photogramm. Remote Sens. 2023, 195, 287–297. [CrossRef]

10. Schütz, M.; Ohrhallinger, S.; Wimmer, M. Fast Out-of-Core Octree Generation for Massive Point Clouds. Comput. Graph. Forum
2020, 39, 155–167. [CrossRef]

11. Wang, W.; Hu, Q. The Method of Cloudizing Storing Unstructured LiDAR Point Cloud Data by MongoDB. In Proceedings of the
2014 22nd International Conference on Geoinformatics, Kaohsiung, Taiwan, 25–27 June 2014; pp. 1–5.

12. Hu, F.; Yang, C.; Jiang, Y.; Li, Y.; Song, W.; Duffy, D.Q.; Schnase, J.L.; Lee, T. A Hierarchical Indexing Strategy for Optimizing
Apache Spark with HDFS to Efficiently Query Big Geospatial Raster Data. Int. J. Digit. Earth 2020, 13, 410–428. [CrossRef]

13. Hanusniak, V.; Svalec, M.; Branicky, J.; Takac, L.; Zabovsky, M. Exploitation of Hadoop Framework for Point Cloud Geo-
graphic Data Storage System. In Proceedings of the 2015 Fifth International Conference on Digital Information Processing and
Communications (ICDIPC), Sierre, Switzerland, 7–9 October 2015; pp. 197–200.

14. Li, Z.; Yang, C.; Liu, K.; Hu, F.; Jin, B. Automatic Scaling Hadoop in the Cloud for Efficient Process of Big Geospatial Data. ISPRS
Int. J. Geo-Inf. 2016, 5, 173. [CrossRef]

15. Li, Z.; Hodgson, M.E.; Li, W. A General-Purpose Framework for Parallel Processing of Large-Scale LiDAR Data. Int. J. Digit. Earth
2018, 11, 26–47. [CrossRef]

16. Boehm, J.; Liu, K. NOSQL For Storage and Retrieval of Large LiDAR Data Collections. ISPRS Int. Arch. Photogramm. Remote Sens.
Spat. Inf. Sci. 2015, 40, 577–582. [CrossRef]

17. Rueda-Ruiz, A.J.; Ogáyar-Anguita, C.J.; Segura-Sánchez, R.J.; Béjar-Martos, J.A.; Delgado-Garcia, J. SPSLiDAR: Towards a
Multi-Purpose Repository for Large Scale LiDAR Datasets. Int. J. Geogr. Inf. Sci. 2022, 36, 992–1011. [CrossRef]

18. Lokugam Hewage, C.N.; Laefer, D.F.; Vo, A.-V.; Le-Khac, N.-A.; Bertolotto, M. Scalability and Performance of LiDAR Point Cloud
Data Management Systems: A State-of-the-Art Review. Remote Sens. 2022, 14, 5277. [CrossRef]

19. Lu, B.; Wang, Q.; Li, A. Massive Point Cloud Space Management Method Based on Octree-like Encoding. Arab. J. Sci. Eng. 2019,
44, 9397–9411. [CrossRef]

20. Kim, T.; Lee, J.; Kim, K.-S.; Matono, A.; Li, K.-J. Utilizing Extended Geocodes for Handling Massive Three-Dimensional Point
Cloud Data. World Wide Web 2021, 24, 1321–1344. [CrossRef]

21. Wang, J.; Shan, J. Space-Filling Curve Based Point Clouds Index. In Proceedings of the 8th International Conference on
GeoComputation, Kraków, Poland, 23–25 June 2008.

22. Guan, X.; Van Oosterom, P.; Cheng, B. A Parallel N-Dimensional Space-Filling Curve Library and Its Application in Massive
Point Cloud Management. ISPRS Int. J. Geo-Inf. 2018, 7, 327. [CrossRef]

23. Chen, J.; Yu, L.; Wang, W. Hilbert Space Filling Curve Based Scan-Order for Point Cloud Attribute Compression. IEEE Trans.
Image Process. 2022, 31, 4609–4621. [CrossRef] [PubMed]

24. Chen, W.; Zhu, X.; Chen, G.; Yu, B. Efficient Point Cloud Analysis Using Hilbert Curve. In Proceedings of the Computer Vision—ECCV
2022; Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T., Eds.; Springer Nature Switzerland: Cham, Switzerland, 2022;
pp. 730–747.

https://doi.org/10.5194/isprs-annals-IV-4-W2-121-2017
https://doi.org/10.3390/s19040810
https://www.ncbi.nlm.nih.gov/pubmed/30781508
https://doi.org/10.1080/10095020.2023.2175478
https://doi.org/10.5194/isprs-archives-XLIII-B4-2020-507-2020
https://doi.org/10.3390/rs14112623
https://doi.org/10.1016/j.isprsjprs.2022.11.018
https://doi.org/10.1111/cgf.14134
https://doi.org/10.1080/17538947.2018.1523957
https://doi.org/10.3390/ijgi5100173
https://doi.org/10.1080/17538947.2016.1269842
https://doi.org/10.5194/isprsarchives-XL-3-W3-577-2015
https://doi.org/10.1080/13658816.2022.2030479
https://doi.org/10.3390/rs14205277
https://doi.org/10.1007/s13369-019-03968-7
https://doi.org/10.1007/s11280-020-00783-1
https://doi.org/10.3390/ijgi7080327
https://doi.org/10.1109/TIP.2022.3186532
https://www.ncbi.nlm.nih.gov/pubmed/35776811

ISPRS Int. J. Geo-Inf. 2024, 13, 253 21 of 21

25. Elseberg, J.; Borrmann, D.; Nüchter, A. One Billion Points in the Cloud—An Octree for Efficient Processing of 3D Laser Scans.
ISPRS J. Photogramm. Remote Sens. 2013, 76, 76–88. [CrossRef]

26. Tian, S.; Li, X.; Zeng, J.; Wei, Z. The Organization of Point Cloud Data Based on the Compact Octree Model. J. Phys. Conf. Ser.
2019, 1302, 022047. [CrossRef]

27. Huang, H. Construction of Multi-Resolution Spatial Data Organization for Ultralarge-Scale 3D Laser Point Cloud. Sens. Mater.
2023, 35, 87. [CrossRef]

28. Zhang, R.; Li, G.; Wang, L.; Li, M.; Zhou, Y. A New Method of Hybrid Index for Mobile LiDAR Point Cloud Data. Geomat. Inf. Sci.
Wuhan Univ. 2018, 43, 993–999.

29. Wang, Y.; Lv, H.; Ma, Y. Geological Tetrahedral Model-Oriented Hybrid Spatial Indexing Structure Based on Octree and 3D
R*-tree. Arab. J. Geosci. 2020, 13, 728. [CrossRef]

30. Zhu, Q.; Gong, J.; Zhang, Y. An Efficient 3D R-Tree Spatial Index Method for Virtual Geographic Environments. ISPRS J.
Photogramm. Remote Sens. 2007, 62, 217–224. [CrossRef]

31. Gong, J.; Zhu, Q.; Zhong, R.; Zhang, Y.; Xie, X. An Efficient Point Cloud Management Method Based on a 3D R-Tree. Photogramm.
Eng. Remote Sens. 2012, 78, 373–381. [CrossRef]

32. Wang, Y.; Yang, L.; Liao, L.; Pan, H. Integrated laser point cloud data storage structure based on octree and 3D R*-tree. J. Geo-Inf.
Sci. 2017, 19, 587–594.

33. Yu, A.; Mei, W. Efficient Management Method for Massive Point Cloud Data of Metro Tunnel Based on R-tree and Grid. Geomat.
Inf. Sci. Wuhan Univ. 2019, 44, 1553–1559.

34. Deibe, D.; Amor, M.; Doallo, R. Big Data Storage Technologies: A Case Study for Web-Based LiDAR Visualization. In Proceedings
of the 2018 IEEE International Conference on Big Data (Big Data), Seattle, WA, USA, 10–13 December 2018; pp. 3831–3840.

35. Pajić, V.; Govedarica, M.; Amović, M. Model of Point Cloud Data Management System in Big Data Paradigm. ISPRS Int. J. Geo-Inf.
2018, 7, 265. [CrossRef]

36. Deibe, D.; Amor, M.; Doallo, R. Big Data Geospatial Processing for Massive Aerial LiDAR Datasets. Remote Sens. 2020, 12, 719.
[CrossRef]

37. Yao, X.; Mokbel, M.F.; Alarabi, L.; Eldawy, A.; Yang, J.; Yun, W.; Li, L.; Ye, S.; Zhu, D. Spatial Coding-Based Approach for
Partitioning Big Spatial Data in Hadoop. Comput. Geosci. 2017, 106, 60–67. [CrossRef]

38. Di Stefano, F.; Chiappini, S.; Gorreja, A.; Balestra, M.; Pierdicca, R. Mobile 3D Scan LiDAR: A Literature Review. Geomat. Nat.
Hazards Risk 2021, 12, 2387–2429. [CrossRef]

39. Yiğit, A.Y.; Gamze Hamal, S.N.; Ulvi, A.; Yakar, M. Comparative Analysis of Mobile Laser Scanning and Terrestrial Laser Scanning
for the Indoor Mapping. Build. Res. Inf. 2024, 52, 402–417. [CrossRef]

40. Cao, B.; Feng, H.; Liang, J.; Li, X. Hilbert Curve and Cassandra Based Indexing and Storing Approach for Large-Scale Spatiotem-
poral Data. Geomat. Inf. Sci. Wuhan Univ. 2021, 46, 620–629.

41. Eldawy, A.; Alarabi, L.; Mokbel, M.F. Spatial Partitioning Techniques in SpatialHadoop. Proc. VLDB Endow. 2015, 8, 1602–1605.
[CrossRef]

42. Kang, Y.; Gui, Z.; Ding, J.; Wu, J.; Wu, H. Parallel Ripley’s K function based on Hilbert spatial partitioning and Geohash indexing.
J. Geo-Inf. Sci. 2022, 24, 74–86.

43. Yao, X.; Yang, J.; Li, L.; Ye, S.; Yun, W.; Zhu, D. Parallel Algorithm for Partitioning Massive Spatial Vector Data in Cloud
Environment. Geomat. Inf. Sci. Wuhan Univ. 2018, 43, 1092–1097.

44. Moten, D. Hilbert-Curve. Available online: https://github.com/davidmoten/hilbert-curve (accessed on 23 February 2017).
45. Wang, H.; Belhassena, A. Parallel Trajectory Search Based on Distributed Index. Inf. Sci. 2017, 388–389, 62–83. [CrossRef]
46. Beckmann, N.; Kriegel, H.-P.; Schneider, R.; Seeger, B. The R*-tree: An Efficient and Robust Access Method for Points and

Rectangles. In Proceedings of the 1990 ACM SIGMOD International Conference on Management of Data, Atlantic City, NJ, USA,
23–25 May 1990; pp. 322–331.

47. Moten, D. Rtree. Available online: https://github.com/davidmoten/rtree (accessed on 1 September 2014).
48. van Oosterom, P.; Martinez-Rubi, O.; Ivanova, M.; Horhammer, M.; Geringer, D.; Ravada, S.; Tijssen, T.; Kodde, M.; Gonçalves, R.

Massive Point Cloud Data Management: Design, Implementation and Execution of a Point Cloud Benchmark. Comput. Graph.
2015, 49, 92–125. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.isprsjprs.2012.10.004
https://doi.org/10.1088/1742-6596/1302/2/022047
https://doi.org/10.18494/SAM4190
https://doi.org/10.1007/s12517-020-05752-6
https://doi.org/10.1016/j.isprsjprs.2007.05.007
https://doi.org/10.14358/PERS.78.4.373
https://doi.org/10.3390/ijgi7070265
https://doi.org/10.3390/rs12040719
https://doi.org/10.1016/j.cageo.2017.05.014
https://doi.org/10.1080/19475705.2021.1964617
https://doi.org/10.1080/09613218.2023.2227900
https://doi.org/10.14778/2824032.2824057
https://github.com/davidmoten/hilbert-curve
https://doi.org/10.1016/j.ins.2017.01.016
https://github.com/davidmoten/rtree
https://doi.org/10.1016/j.cag.2015.01.007

	Introduction
	Related Work
	Indexes for Point Cloud Data
	Storage Management System for Point Cloud Data

	Methodology
	The Architecture of the Hierarchical Index
	Global Index for High Data Locality
	Local Index of Point Clouds Based on R*-Tree

	Construction of Hierarchical Index Tree
	Point Cloud Storage and Query
	Structural Design of MongoDB
	Point Cloud Spatial Query

	Performance Evaluation
	Data Description and Experimental Platform
	Performance Analysis
	Validation of the Effectiveness of the Hilbert Tree Optimization
	Index Performance Evaluation
	Point Cloud Query Efficiency

	Conclusions and Discussion
	References

