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Abstract: The geoscience knowledge graph (GeoKG) has gained worldwide attention due to its ability
in the formal representation of spatiotemporal features and relationships of geoscience knowledge.
Currently, a quantitative review of the state and trends in GeoKG is still scarce. Thus, a bibliometric
analysis was performed in this study to fill the gap. Specifically, based on 294 research articles
published from 2012 to 2023, we conducted analyses in terms of the (1) trends in publications and
citations; (2) identification of the major papers, sources, researchers, institutions, and countries;
(3) scientific collaboration analysis; and (4) detection of major research topics and tendencies. The
results revealed that the interest in GeoKG research has rapidly increased after 2019 and is continually
expanding. China is the most productive country in this field. Co-authorship analysis shows
that inter-national and inter-institutional collaboration should be reinforced. Keyword analysis
indicated that geoscience knowledge representation, information extraction, GeoKG construction,
and GeoKG-based multi-source data integration were current hotspots. In addition, several important
but currently neglected issues, such as the integration of Large Language Models, are highlighted.
The findings of this review provide a systematic overview of the development of GeoKG and provide
a valuable reference for future research.

Keywords: knowledge graph; geoscience; spatio-temporal knowledge; bibliometric analysis; research
topics; scientific collaboration; VOSviewer

1. Introduction

Geoscience knowledge graph (GeoKG), also known as geographic KG or spatial-
temporal KG, has been receiving increasing attention from both academia and industry
in recent years. Just like general KGs, GeoKG is a graph-structured representation of
human knowledge, where nodes represent entities and the edges of the graph repre-
sent relationships between those entities [1]. It is effective in organizing knowledge into
machine-understandable and computable semantic networks so that the knowledge can
be processed efficiently and unambiguously by machines. Differing from general KGs,
GeoKG is a geoscience domain-specific KG and has excellent capability in representing the
unique spatiotemporal features and relationships of geoscience knowledge [2–5]. GeoKG
is playing an increasingly important role in the discovery, mining, sharing, and service of
geoscience knowledge and spatial data on the Web [5–8]. Moreover, GeoKGs are at the core
of geospatial artificial intelligence (GeoAI), which is an interdisciplinary field combining
geography, spatial data science, and AI, and seeks to solve major geospatial problems by
developing intelligent geographic methods and applications [9–11]. It can be used to foster
not only scientific research, such as the formal representation and sharing of geoscience
knowledge and data-driven discoveries in deep-time Earth [6], but also many practical
problems such as points-of-interest (POI) recommendation [12], geographical question
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answering [13], geospatial big data integration, intelligent environmental geo-services, and
interactive analysis of epidemic situations [14]. Given its diverse application scenarios and
immense potential, the number of GeoKG-related publications has been surging in the last
decade, signifying the thriving growth and progress of this field. Therefore, a comprehen-
sive review of GeoKG research is greatly needed so that researchers can understand the
state-of-the-art and identify the gaps in the field. To date, several review articles concerning
GeoKG have been published, focusing on either the historic development of the field [5,15]
or specific aspects of GeoKG research, e.g., knowledge acquisition [16,17] and GeoKG con-
struction [8,18]. While existing reviews are insightful and helpful in understanding GeoKG
research, they do not provide a quantitative perspective of the whole field. They were
typically based on qualitative analyses, limited not only by the small number of analyzed
publications, but also by a heavy reliance on the personal knowledge and judgment of the
reviewers.

Therefore, in this paper, a bibliometric analysis was performed to explore current
research performance and future development trends in GeoKG from a quantitative per-
spective, over the period 2012–2023, based on the Web of Science Core Collection (WoSCC)
database. Bibliometric analysis is a powerful method for exploring and analyzing large
volumes of scientific literature in a certain field by using quantitative and statistical tech-
niques [19,20]. It provides a quantitative and objective understanding of the current status
and trends in the whole field [19]. Furthermore, it presents a comprehensive overview
of the knowledge structures of the field, including the intellectual structure, conceptual
structure, and social structure, in terms of impactful authors, publications, sources, institu-
tions, and countries [21,22]. Bibliometric analysis methods have now been widely used in a
variety of scientific fields, such as geographical information systems [23] and KG [24,25].
In the field of GeoKG, although some bibliometric reviews have already been conducted
on specific sub-topics, e.g., geo-ontology [26], studies concerning the research status and
trends in the whole field are still scarce.

The purpose of this study is to provide valuable and practical references for researchers
and practitioners in the GeoKG field. The following questions are used to guide the
research: (1) What is the publication growth trend in GeoKG research? What are the
possible causes? (2) Which publications have had the most significant impact on GeoKG
research? What topics have they discussed? (3) What were the most prominent research
areas and sources where articles were published? (4) Who were the leading authors,
and what were the most prolific institutions and countries? (5) What were the scientific
collaborations between major authors, countries, and institutions? What should we do next
to enhance the collaborations? (6) What were the primary research topics in the field, and
which topics remain underexplored?

2. Materials and Methods
2.1. Research Framework and Data Source

The overall framework of this review that describes all of the analysis processes and
contents, including the data sources and search terms, as well as bibliometric analysis
methods, is shown in Figure 1. Detailed descriptions of each part are elaborated in the
following sub-sections.

The scientific literature used for analysis was collected from the WoSCC database.
WoSCC was chosen as the data source for the following two reasons. First, it is one of the
world’s leading citation databases and is widely used in bibliometric studies [27]. Second, it
includes detailed and high-quality bibliographic records about publications from thousands
of high-impact journals worldwide, making it possible to trace the progress and identify
the trend in the research on GeoKG.
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Figure 1. The research framework of this review.

2.2. Search Criteria and Justifications of Search Terms

In this review, we searched the academic literature information in WoSCC using the
following terms on 8 March 2024: TS = ((“geographic*” OR “geoscience*” OR “geospatial*”
OR “spatial–temporal*” OR “spatio-temporal*” OR “spatiotemporal*”) AND (“knowledge
graph*”)). The asterisk (*) represents any group of characters, including no character. The
term “knowledge graph” was first introduced by Google in 2012. Thus, the time was from
2012 to 2023 in this study. Moreover, the document type was selected as “all document
types”, including articles, proceeding papers, and reviews, et al. A total of 294 publications
were collected and processed for analysis based on the selection criteria. The analysis results
of these collected publications generated using Web of Science (WoS) were downloaded for
this review as well.

This study defines the keywords for search based on the investigation of search results
and data analysis results, the synonyms, the comparison of results using different search
terms, as well as by referring to already published articles and reviews, e.g., [5,24]. The
keywords “geoscience *” and “knowledge graph*” were originally included, since they are
the most relevant terms to the topic of this study, i.e., GeoKG. We then extended the key-
word list by considering more terms such as “geographic*” and “geospatial”, which have
been widely used in peer-reviewed articles, e.g., [28,29]. The keywords “spatial–temporal”,
“spatio-temporal”, and “spatiotemporal” were added into the list for similar reasons.

It is worth noting that this study has excluded the term “ontolog*” (matches ontology
and ontologies) from the data search. The reasons are twofold. First, the investigation
conducted by Chen, et al. [24] showed that adopting only the term “knowledge graph*”
is reasonable. Second, we conducted data searches using an extended list containing the
term “ontolog*” and obtained a total of 1875 publications. Preliminary examinations of
the publications indicated that the results were undesirable, as they involved too much
noise. For example, many highly cited articles within the results, such as [30] (442 citations)
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and [31] (263 citations), have employed the philosophical definition of ontology instead of
that in the field of computer science.

2.3. Methods of Analysis

Collected citation data were further analyzed using Python and two bibliometric map-
ping tools, i.e., the bibliometrix R-package 4.1.3 [32] and VOSviewer 1.6.20, as depicted in
Figure 1. Several Python 3.9 libraries including Matplotlib 3.8.0 and SciPy 1.11.4 were used
to fit and visualize the annual publications, citations, and the Logistic Growth Model. The
bibliometrix R-package was used to perform (1) a descriptive analysis of the publications,
authors, sources, institutions, and countries/regions; and (2) network analysis of keywords
to generate the thematic map. Particularly, the local citation score (LCS) and global cita-
tion score (GCS) are used as primary indicators to assess the impact of publications. LCS
represents the number of citations a document received from other documents included
in the dataset collected for this study, while GCS refers to the total citations a document
received in the whole bibliographic database [33], i.e., the WoSCC in this study. Thus, LCS
and GCS could be used to reveal the important documents in the specific research field and
the documents that attracted multidisciplinary attention.

VOSviewer is a frequently used science mapping tool for analyzing bibliometric net-
works. It was used in this study for constructing and visualizing the co-authorships between
various contributors (authors, institutions, and countries), the co-occurrences of keywords,
and the co-citation analysis of publications. Co-authorship analysis is a frequently used
way to identify the scientific collaborations among scholars (including their affiliations and
countries) in a specific research field at the intellectual or social level [19]. The information
provided by the co-authorship network is helpful for individual researchers, policy-makers,
and funding agencies. This is because scientific collaboration holds a pivotal guiding role
in promoting the dissemination of knowledge and enhancing academic communication. It
significantly contributes to the advancement of scientific discovery and the strengthening
of the global academic community. The co-occurrences of keywords appearing in the
literature can effectively reflect the heat of the topic corresponding to the keywords in a
field. Therefore, scholars use co-occurrence analysis of keywords in the literature to analyze
the change trajectory of research hotspots and reveal the emerging trends and frontiers in a
specific field [19,34]. The keywords frequently used in bibliometric analysis include both
author keywords (i.e., keywords given by authors), keywords plus that are generated from
cited article titles by algorithms in the WoS platform, and terms extracted from the title
and abstract of articles. The combination of multiple types of keywords can offer a more
comprehensive understanding of the research hotspots and trends in a given field [35].

Specifically, the geographic visualization of countries’ collaboration was conducted
using SCImago Graphica 1.0.39, a free and easy-to-use visualization tool, based on the data
exported from bibliometrix R-package and VOSviewer.

3. Results and Discussion
3.1. Trends in Publications and Citations

The annual trend in publications serves as a straightforward yet profound means of
reflecting global activity and scientific interest towards GeoKG. As shown in Figure 2, the
annual number of publications and citations on GeoKG increased significantly between
2012 and 2023. Moreover, a total of 261 papers (88.78%) were published in the last 5 years,
indicating that the research interest in this topic has been growing continually, particularly
since 2019, reaching 86 publications and 485 citations in 2022. It is interesting that the
number of publications in 2023 decreases compared to 2022. This may be because some of
the papers published in 2023 have not yet been indexed in WoSCC at the time we collected
the data (8 March 2024). Normally, it can take from a couple of weeks to several months for
an article to be indexed in the database after publication. Furthermore, it is common for the
data to experience regular variations before stabilizing over several years.
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Figure 2. Trends in the annual number of publications and citations on GeoKG during 2012–2023.

According to the theory of technology maturity, the Logistic Growth Model could be
employed to fit and forecast the cumulative number of publications [36]. The red dashed
curve in Figure 3 illustrates the logistic growth function (or the S-curve function) for the
global publication accumulation. It is described by Equation (1) as follows:

y =
738.03

1 + 790.9e−0.52(x−2011)
(1)

where x and y represent the year and the corresponding cumulative publications, respec-
tively. The least squares method for curve fitting in Python library SciPy is adopted to
obtain the parameters. Consequently, the cumulative publications on GeoKG over time
follow a logistic growth pattern in the shape of an S-curve.
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Similar to [36,37], the development of GeoKG could be divided into the following
three stages based on Equation (l) and Figure 3: (a) infant stage (before 2020, up to 10%
of publication output), (b) growth stage (2020–2028, 10–90% of publications), and (c) ma-
ture stage (after 2029). At the infant stage, GeoKG gained less attention and the annual
publication numbers increased slowly, with no more than 30 articles per year. The im-
portance of GeoKG was gradually recognized in the growth stage, and the number of
publications and citations increased exponentially. One reason could be the success of
general KGs in the computer science field and prominent industries. Another reason was
likely because of the official launch of the Deep-time Digital Earth (DDE) project in February
2019. DDE is the first IUGS (International Union of Geological Sciences)-recognized big
science program. Its research plan on building deep-time Earth knowledge systems may
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have aroused worldwide attention regarding the effectiveness of KG in sharing global
geoscience knowledge and facilitating data-driven scientific discovery [6]. It is anticipated
that this trend in GeoKG research will be sustained over a period until the year 2028. After
reaching maturity, the growth in the number of publications will gradually slow down.
Note that the predicted maturity year for GeoKG might be changed due to new theoretical
or technological advances in geoscience or generic KGs.

3.2. Top Publications, Research Areas, and Sources

The number of citations, including LCS and GCS, normally represents the academic
influence of a paper to a certain extent. On the whole, the retrieved 294 documents were
cited 323 times in the local database and 1843 times in the whole WoSCC database, with
an average of 1.10 and 6.27 citations per item, respectively. Notably, there are 34 (11.56%)
publications obtained only one citation, and a total of 206 (70%) publications have not
received local citations yet. Table 1 lists the top 11 articles in GeoKG with a minimal LCS
value of 8. Topics of these highly cited articles could be divided into the following five
categories: (a) geoscience knowledge representation [29,38,39], (b) geoscience information
extraction [40,41], (c) GeoKG construction and completion [3,8,42,43], (d) GeoKG applica-
tion [44], and (e) review articles that introduced the current status and future developments
of GeoKGs from a qualitative perspective [6,8].

Table 1. Top 11 most influential documents ranked using LCS with a minimal value of 8.

Rank Document Reference LCS GCS Year

1 Wang S, 2019, ISPRS INT J GEO-INF [29] 23 36 2019
2 Wang CB, 2018, COMPUT GEOSCI-UK [40] 15 108 2018
3 Ma XG, 2020, COMPUT GEOSCI-UK [39] 15 25 2020
4 Ma XG, 2022, COMPUT GEOSCI-UK [8] 12 43 2022
5 Janowicz K, 2022, AI MAG [42] 11 21 2022
6 Zhou CH, 2021, SCI CHINA EARTH SCI [3] 10 34 2021
7 Zhang YH, 2020, INT J DIGIT EARTH [44] 9 23 2020
8 Tempelmeier N, 2021, FUTURE GENER COMP SY [43] 9 18 2021
9 Zheng K, 2022, INT J GEOGR INF SCI [38] 9 18 2022

10 Li S, 2018, IEEE ACCESS [41] 8 46 2018
11 Wang CS, 2021, NATL SCI REV [6] 8 41 2021

DOI: Digital Object Identifier; LCS: local citation score; GCS: global citation score.

Particularly, in the first category, the article entitled “Geographic Knowledge Graph
(GeoKG): A Formalized Geographic Knowledge Representation” published by Wang et al. [29]
was the most cited (23 citations) document in the local database as of March 2024. It
designed a formalized knowledge representation model and supplemented the constructors
of the ALC (attributive language with complements) description language to represent
geographic states, evolutions, and mechanisms. Zheng, et al. [38] presented a hierarchical
cubical model structure to represent geographic evolutionary knowledge, including the
evolution mechanism of geographic elements and the reasons. Evolution not only happens
to geographic elements, but also to domain concepts. Thus, a mechanism of version control
and organization of concepts is needed to reduce the semantic ambiguity caused by the
evolution. To this end, Ma et al. [39] proposed a new structure based on the identifiers of
vocabulary schemes for version control and tracking of concepts and attributes in a GeoKG.
What the three highly cited papers have in common is a special focus on the evolution of
geoscience knowledge.

The second category focuses on geoscience information extraction from textual geo-
science data based on natural language processing (NLP) techniques. It is a very important
prerequisite task to the construction and application of GeoKGs. Specifically, the article
entitled “Information extraction and knowledge graph construction from geoscience liter-
ature” authored by Wang et al. [40] received the largest GCS value (108) and the second
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largest LCS value (15) as of March 2024. It developed a workflow to extract information
and construct KG from the unstructured Chinese geoscience literature.

The third category of highly cited papers centered on GeoKG construction and com-
pletion [3,8,42,43]. They are important prerequisites to the success of GeoKGs. They consist
of several iterative steps, including data curation and integration, text classification and
information extraction, knowledge representation and encoding, as well as entity disam-
biguation and linking. Currently, GeoKG construction and completion are still complex,
time-consuming, and limited in scale, taking into consideration the heterogenous of multi-
variate geoscience big data and the dynamic nature of geoscience knowledge. There are
still many important issues that need to be studied in the future [3,8,42,43].

GeoKGs can be used for many types of applications, although there was only one
highly cited paper [44]. Typical applications of GeoKGs include, but are not limited to, geo-
graphical question answering, geospatial knowledge summarization, knowledge-driven
integration and analysis of spatiotemporal big data, intelligent map editing and mapping,
intelligent environmental geo-services, knowledge-driven remote sensing image analy-
sis, smart city, digital humanities, virtual disaster environments, and so on [3,8,9,42,44].
Such applications show that GeoKGs could not only boost the performance of existing
applications, but also open up the path toward new smart applications in the big data era.

The total of 294 articles covered 41 WoS research areas, and the top 20 areas with the
most publications are shown in Figure 4. Note that each paper may belong to more than
one research area in the WoS database. The top 10 most productive research areas were
computer science (205 documents, 69.728% of the 294 outputs), engineering (51, 17.35%),
remote sensing (40, 13.61%), geology (36, 12.25%), physical geography (36, 12.25%), geogra-
phy (23, 7.82%), environmental sciences ecology (16, 5.44%), information science library
science (12, 4.08%), telecommunications (12, 4.08%), and science technology other topics
(10, 3.40%). The distribution of research areas suggested the high priority of technical
issues in GeoKG research. It also reveals the close relationships between GeoKG, computer
science, and earth science (including remote sensing, geology, physical geography, geogra-
phy, and ecology). AI techniques in computer science provided essential approaches and
standards for the implementation of GeoKG, including knowledge representation, extrac-
tion, embedding, completion, fusion, and reasoning; earth science data can yield unique
spatial-temporal information, which is important for not only scientific discovery, but also
practical applications such as policy-making, while GeoKG can facilitate the representation,
retrieval, integration, and sharing of earth science data from highly heterogeneous sources,
promoting knowledge assisted data intelligence and computational intelligence [5,42].
Thus, GeoKG researchers should keep a close eye on the development of computer science
and earth science.
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Furthermore, the 294 publications concerning GeoKG are contributed to by 180 sources.
According to the law of Bradford implemented in the bibliometrix R-package, there are
15 core publication sources. Among them, the top nine sources with a minimal publication
count of five are shown in Table 2. In terms of the publication number, ISPRS International
Journal of Geo-Information was the most productive source in the field (published 22 articles),
followed by Transactions in GIS (16) and Geoscience Frontiers (8). Specifically, the top nine
(5%) sources published 79 (26.87%) of the 294 outputs. In contrast, 131 sources (72.78%)
published only one paper on GeoKG. Moreover, regarding the citation count, the top
three sources were Computers & Geosciences (194 citations), ACM Transactions on Information
Systems (140), and ISPRS International Journal of Geo-Information (133). In addition, according
to the average citations, the top three were Computers & Geosciences (38.8), International
Journal of Geographic Information Science (11.83), and IEEE Access (11.8), suggesting their
considerable impact in this field. In addition, the h-index is frequently used to measure
both the productivity and citation impact of the publications of a source or a scientist. It
means the h number of publications were cited at least h times. Thus, the top four sources
with a minimal h-index value of 5 were ISPRS International Journal of Geo-Information (7),
Computers & Geosciences (5), International Journal of Geographic Information Science (5), and
Transactions in GIS (5). These findings indicated that the GeoKG outputs among journals
or conference proceedings were very dispersed, but the primary concentration was on a
limited number of sources. Researchers could follow these sources to keep updated with
the latest research or select suitable journals to publish their works.

Table 2. Top nine core sources on GeoKG that have published at least five papers.

Rank Source Name NP TC AC h_Index IF PY_Start JCR Category

1
ISPRS International

Journal of
Geo-Information

22 133 6.05 7 3.4 2015
Computer Science, Information
Systems; Geography, Physical;

Remote Sensing

2 Transactions in GIS 16 89 5.57 5 2.4 2019 Geography

3 Geoscience Frontiers 8 26 3.25 3 8.9 2023 Geosciences, Multidisciplinary

4

International
Journal of

Geographical
Information Science

6 71 11.83 5 5.7 2015

Computer Science, Information
Systems; Geography; Geography,
Physical; Information Science and

Library Science

5 Remote Sensing 6 42 7 3 5 2022

Environmental Sciences; Geosciences,
Multidisciplinary; Imaging Science

and Photographic Technology;
Remote Sensing

6
International

Journal of Digital
Earth

6 30 5 2 5.1 2020 Geography, Physical; Remote Sensing

7 Computers &
Geosciences 5 194 38.8 5 4.4 2018

Computer Science, Interdisciplinary
Applications; Geosciences,

Multidisciplinary

8 Knowledge Based
Systems 5 29 5.8 4 8.8 2019 Computer Science, Artificial

Intelligence

9 IEEE Access 5 59 11.8 2 3.9 2018
Computer Science, Information

Systems; Engineering, Electrical and
Electronic; Telecommunications

NP: number of productions; TC: WoSCC times cited count; AC: average citations; IF: impact factor 2022; PY_start:
first year published; JCR: Journal Citation Reports.
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3.3. Leading Authors, Institutions, and Countries

Author analysis in a certain research field can help scholars know the leading experts,
thereby timely tracking the latest research trends and achievements in the field. As a whole,
the collected 294 publications concerning GeoKG were contributed to by 1084 authors.
Table 3 presents the top ten most prolific authors who have published at least seven papers.
The top three authors were Janowicz Krzysztof (twelve publications), Mai Gengchen (ten),
and Qiu Qinjun (ten). In contrast, 894 (82.47%) authors had published only one paper.
Furthermore, according to the Price formula, i.e., N = 0.749(Nmax)1/2 and Nmax = 12 (the
number of the most prolific author’s publications), 72 authors who have published more
than 2.59 papers were recognized as core authors in the field. In terms of the number of
citations, the top three authors were Janowicz Krzysztof (246), Ma Xiaogang (221), and Mai
Gengchen (206). They were also the only three scholars who had more than 200 citations.
Notably, Janowicz Krzysztof is both the most prolific and influential researcher in the field
of GeoKG. He also has the most continued trajectory in GeoKG research. His research areas
include spatial and temporal principles of knowledge organization, geospatial semantics,
and semantic web, KGs, GeoAI, and spatial studies.

Table 3. Top ten most prolific authors ranked by the number of publications.

Rank Author NP TC h_Index g_Index PY_Start Current Institution

1 Janowicz Krzysztof 12 246 9 12 2015 University of California, Santa Barbara
2 Mai Gengchen 10 206 7 10 2017 University of Georgia
3 Qiu Qinjun 10 75 4 8 2020 China University of Geosciences, Wuhan
4 Ma Xiaogang 8 221 4 8 2018 University of Idaho
5 Zhu Rui 8 90 5 8 2019 University of Bristol
6 Xie Zhong 8 75 4 8 2020 China University of Geosciences, Wuhan
7 Demidova Elena 8 46 3 6 2020 University of Bonn
8 Ma Kai 8 37 3 6 2022 China Three Gorges University
9 Tao Liufeng 7 74 4 7 2020 China University of Geosciences, Wuhan

10 Lu Feng 7 33 3 5 2019 Institute of Geographic Sciences and
Natural Resources Research, CAS

NP: number of productions; TC: WoSCC times cited count; PY_start: first year published; CAS: Chinese Academy
of Sciences.

The collected 294 publications concerning GeoKG were contributed by 449 institutions.
Among them, as shown in Table 4, the Chinese Academy of Sciences (CAS) was the most
productive institution with 31 publications, accounting for 10.54% of the 294 outputs,
followed by the China University of Geosciences, Wuhan (23), and the University of
Chinese Academy of Sciences (20). In contrast, 345 (76.84%) institutions have published
only one paper. This shows that the production of these institutions was uneven. It is
worth noting that ten of the top fifteen most prolific institutions were located in China, with
129 papers, accounting for 43.88% of the total publications, indicating the great interest of
Chinese scientists in GeoKG research. However, regarding the total citations, the top three
institutions were the China University of Geosciences Wuhan (342 citations), the University
of California Santa Barbara (253), and the University of Idaho (221), revealing their high
impact on GeoKG research.

Furthermore, the 294 publications concerning GeoKG were contributed to by 45 coun-
tries, among which the top nine with a minimal publication count of 4 are shown in Table 5.
According to the results, China was the most productive country on GeoKG research with
158 publications, accounting for 53.74% of the total publications, followed by the USA (48)
and Germany (18). Additionally, China, the USA, and Australia were ranked as the top
three most cited countries, with 905, 464, and 130 citations, respectively. This reflects that
these three countries paid relatively high attention to the research of GeoKG. In addition,
total link strength (TLS) is widely used to indicate the influence of a node in a network.
The greater the TLS value of a node, the greater its impact. Thus, China was the most
influential country in the field of GeoKG, with a TLS value of 55, followed by the USA
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(49), India (20), Australia (20), and Germany (19). It is noteworthy that, although Australia,
New Zealand, and Finland have fewer publications (4, 1, and 1, respectively), their articles
have exhibited a significantly higher quality and influence, evident in their ACP values
(32.5, 24, and 20). However, the ACP value of China stands relatively low at 5.73, ranking
fifth, which suggests that Chinese scientists should strengthen their research and publish
high-impact papers in the future.

Table 4. The top 15 most contributed institutions with a minimal publication number of six.

Rank Institution NP TC AC Links TLS APY Country

1 Chinese Academy of Sciences 31 198 6.39 20 61 2021.97 China
2 China University of Geosciences, Wuhan 23 342 14.87 13 42 2021.78 China
3 University of Chinese Academy of Sciences 20 127 6.35 14 42 2021.9 China
4 University of California, Santa Barbara 13 253 19.46 4 7 2019.38 USA
5 University of Bonn 12 55 4.58 1 8 2021.67 Germany
6 Tsinghua University 11 64 5.82 13 23 2020.82 China
7 Leibniz University Hannover 9 49 5.44 1 8 2021.11 Germany
8 Arizona State University 8 56 7 4 9 2021 USA
9 Chengdu University of Technology 8 49 6.13 12 22 2022.75 China

10 China Three Gorges University 8 37 4.63 5 18 2022.75 China
11 Ministry of Natural Resources of the PRC 8 15 1.88 9 17 2022.75 China
12 University of Idaho 8 221 27.63 7 16 2021.63 USA
13 Nanjing University 7 89 12.71 12 22 2022.14 China
14 Southwest Jiaotong University 7 44 6.29 2 3 2021.86 China
15 Wuhan University 6 112 18.67 4 4 2021.67 China

NP: number of productions; TC: times cited count; AC: average citations; TLS: total link strength; APY: average
publication year; PRC: People’s Republic of China.

Table 5. The top nine most contributed countries on GeoKG research.

Rank Country NP TC SCP MCP ACP MCP_Ratio Links TLS

1 China 158 905 128 30 5.73 0.19 20 55
2 USA 48 464 30 18 9.67 0.375 20 49
3 Germany 18 70 15 3 3.89 0.167 15 19
4 France 9 26 7 2 2.89 0.222 10 12

5 United
Kingdom 8 35 6 2 4.38 0.25 7 14

6 Italy 6 44 4 2 7.33 0.333 4 6
7 Australia 4 130 2 2 32.50 0.5 10 20
8 Greece 4 26 4 0 6.50 0 1 1
9 Ireland 4 12 4 0 3.00 0 1 1

NP: number of productions; SCP: singular country publication; MCP: multi-country publication; ACP: average
citations per article; TLS: total link strength.

3.4. Scientific Collaboration Analysis

Scientific collaborations among scholars can generate new ideas and richer insights,
thus improving the research. In this section, we use VOSviewer to analyze the scientific
collaborations, i.e., co-authorship relationships of major contributors, including authors,
institutions, and countries. The parameter “minimum number of documents of an author”
was set to three according to the Price formula mentioned above. Figures 5 and 6 show
the resulting network map and the average year of each publication, respectively, with
a set of 57 authors. The size of the nodes and edges denote the TLS of a node and the
link strength between two nodes, respectively. Edges connecting nodes represent co-
authorships. The color of a node signifies the cluster it belongs to, where clusters are tightly
connected research communities of authors interlinked via co-authorship relations. The
colors depicted in Figure 6 illustrate the average publication year (APY) of each author.
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As illustrated in Figure 5, the network map primarily consists of 13 clusters. Detailed
information of the top seven clusters which have grouped at least four authors is listed in
Table 6. Regarding the number of involved influential authors (see Table 3), cluster 6 and
cluster 2 were the most impactful research communities on GeoKG research. Furthermore,
the TLS values show that authors in these clusters except cluster 7 have a very close
cooperative relationship. However, cooperations between clusters are limited to clusters 1,
4, and 6, with no collaboration discernible between the remaining clusters. This indicates
that the network is fragmented, and the cooperation among different research communities
is very weak. Therefore, scholars in the field of GeoKG should explore opportunities to
strengthen scientific collaborations across disciplines, institutions, and/or countries in the
future. Additionally, institutions and funding agencies should provide more support for
initiatives aimed at fostering scientific collaboration among different research communities.
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Table 6. Detailed information on the top seven clusters.

Cluster Centered Author * NA TLS NMIA APY Color Country

1 Zhou, Chenghu 15 22 1 2021.50 red China
2 Mai, Gengchen 8 26 3 2020.33 green USA
3 Ge, Xingtong and Peng, Ling 7 25 0 2022.17 light blue China
4 Lu, Feng 6 22 1 2021.57 golden China
5 Demidova, Elena 5 15 1 2021.63 lilac Germany
6 Qiu, Qinjun 4 30 4 2022.50 turquoise China
7 Zhu, Jun 4 7 0 2021.80 orange China

* Centered authors are those who have the largest total link strength (TLS) in the cluster; NA: number of core
authors included in the cluster; NMIA: number of the most influential authors (see Table 3) included in the cluster;
APY: average publication year.

Figure 7 shows the collaboration network map of the institutions with minimal number
of publications of three. It consists of 45 institutions grouped into 17 clusters. Six clusters
were established around three up to eight institutions, and the rest clusters included only
one or two institutions. Similar to Figure 5, the size of the nodes represents the TLS of
institutions, and lines connecting the nodes indicate the inter-institutional collaborations.
Nodes sharing the same color signify institutions that exhibit greater collaboration com-
pared to others. Details of the institutions with a minimal number of nine publications are
listed in Table 4. As a result, the most collaborative institutions were the Chinese Academy
of Sciences, University of Chinese Academy of Sciences, China University of Geosciences
Wuhan, Tsinghua University, Chengdu University of Technology, and Nanjing University;
each had collaborated with 20, 14, 13, 13, 12, and 12 other institutions. Notably, all six
institutions are based in China, demonstrating the close cooperation within the country.
However, the fragment of the network suggests the collaboration among institutions based
in different countries should be strengthened.
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Figure 8 shows the international collaboration among the 45 countries. The colors
on the map represent the clusters to which this country belongs. The size of each country
represents its total publications on GeoKG research. Lines connecting the countries indicate
collaboration among them, and the width of the lines signifies the intensity level of the
relationships (thin lines indicate weak relationships). As a result, China and the USA
were the most collaborative countries, both collaborating with 20 other countries. The
top four collaborative partners of China were the USA (fifteen links), Australia (seven),
the United Kingdom (six), and France (three). The top six collaborative partners of the
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USA were Poland (four links), India (four), the United Kingdom (three), Germany (three),
Austria (three), and Australia (three). It is worth noting that countries/regions from
four continents, namely Asia, North America, Europe, and Australia, have contributed
most of the publications and collaborations concerning GeoKG, as shown in Figure 8.
Thus, international scientific collaborations between the abovementioned continents and
Africa and South America should be strengthened in the future. Such collaboration can
facilitate the sharing of data, knowledge, resources, and funding, thereby accelerating the
development of global GeoKG research.
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3.5. Keyword Analysis

In this section, the co-occurrence analysis of keywords was performed based on both
author keywords and keywords plus using VOSviewer. To achieve better accuracy, the
collected bibliometric dataset was pre-processed. Firstly, keywords in plural forms were
converted to singular forms (e.g., “knowledge graphs”). Secondly, the term “geospatial
knowledge graph” and its synonyms (e.g., “geographic knowledge graph”) were abbrevi-
ated as “GeoKG”. Consequently, a total of 191 keywords that appeared at least two times
were clustered and visualized, as shown in Figure 9. The size of each node signifies the
occurrences of the keyword. Lines connecting two nodes indicate co-occurrence among
them, and the line width represents the frequency of the co-occurrence.

These keywords could be grouped into four clusters based on their association strength.
Keywords that occurred at least five times in each cluster are listed in Table 7. The average
link strength (ALS) of the cluster represents the closeness of the keywords contained in
it. The greater the ALS of a cluster, the greater the co-occurrence strength between the
keywords and the more concentrated the research topics. Otherwise, it means that the
co-occurrence intensity is relatively low and the research is more dispersed. In addition, the
TLS of a keyword represents the importance of the keyword in the network. The higher the
TLS, the more important the keyword is for the construction of the network. Additionally,
the average citation (AC) of the keywords indicates the level of interest in the cluster’s
topic.
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Table 7. Clusters of keywords in GeoKG publications.

Cluster Color Top Keywords (Occurrences, TLS) Size ALS AC Interpretation

1 red

knowledge graph (135, 370), deep learning
(15, 38), extraction (5, 45), framework (9, 41),
information extraction (7, 21), big data (6, 34),
construction (6, 37), artificial intelligence (5,
26), graph neural network (5, 14), natural

language processing (5, 14)

69 18.57 8.83
Information extraction

and GeoKG construction
based on AI

2 green

semantic web (15, 72), visualization (14, 84),
system (13, 61), model (11, 39), knowledge

representation (8, 20), semantics (7, 34),
management (6, 38), COVID-19 (5, 26), linked

open data (5, 16)

52 16.21 7.26

Knowledge
representation,

management, and
visualization

3 dark cyan
knowledge (8, 29), machine learning (8, 30),

knowledge graph completion (5, 8), link
prediction (5, 11), poi recommendation (5, 7)

34 7.62 6.71 GeoKG completion and
application

4 purple

ontology (37, 147), GeoKG (20, 51), web (19,
63), information (14, 77), linked data (12, 43),
OpenStreetMap (8, 21), data integration (7,

40), earth (5, 37), open data (5, 29), Wikidata
(5, 19)

31 24.35 6.69
Multi-source spatial data

integration based on
GeoKG

TLS: total link strength; ALS: average link strength; AC: average citation.

As illustrated in Figure 9, cluster 1 (red) includes terms commonly found in the topic
of AI-based information extraction and GeoKG construction. It covers a variety of AI
technologies such as deep learning, NLP, and graph neural networks, aiming to extract
knowledge and construct GeoKGs from big data for intelligent applications in different
fields [3,8,17]. Cluster 1 has the largest value of AC among the four clusters, indicating that
information extraction and GeoKG construction are currently the hottest research topics in
the field.

Cluster 2 (green) includes terms frequently used in studies of knowledge representa-
tion, management, and visualization that are based on semantic web techniques. It covers
several research aspects such as knowledge representation models [29,38], knowledge
management and visualization [45], knowledge-enhanced systems [46], and linked open
data [47], as well as their applications in various areas such as COVID-19 [14], digital
humanities [48], VGEs [44], and so on.



ISPRS Int. J. Geo-Inf. 2024, 13, 255 15 of 21

Cluster 3 (dark cyan) includes terms commonly found in the topic of GeoKG comple-
tion and application. It emphasizes the use of AI technologies such as machine learning
and knowledge embedding for KG completion tasks, particularly link prediction [49]. This
then could improve the effectiveness of knowledge-driven applications such as POI recom-
mendation [50] and decision-making [51]. The cluster’s ALS value is the lowest among the
four, and the TLS values of the keywords except “knowledge” and “machine learning” are
less than 11, demonstrating that the research topics of this cluster are less concentrated.

Cluster 4 (purple) includes terms frequently found in the research of multi-source
spatial data integration based on GeoKG. It covers multiple types of spatial data on the
Web such as OpenStreetMap, Wikidata, and geologic time scales, as well as semantic
web technologies such as ontology, KG, linked data, and SPARQL, aiming to improve the
integration and semantic interoperability of spatio-temporal data and information in earth
science [43,52]. This cluster has the largest ALS value, indicating that its research contents
are highly concentrated.

Furthermore, the APY when a keyword appeared in the GeoKG research domain
was calculated and added to each node in the network, shown in Figure 10. The warmer
(redder) the nodes are, the more recently the keywords have emerged. The top 10 keywords
with the largest value of APY were “bert” (Bidirectional Encoder Representations from
Transformers) (1), “knowledge reasoning” (1), “ontology model” (1), “smart city” (1), “ma-
chine” (2), “public transport” (2), “smart card data” (2), “models” (cluster 2), “city” (3), and
“interoperability” (4). Most of these keywords appear in clusters 1 and 2, indicating that
knowledge representation and GeoKG construction were hot topics in recent years. More-
over, these terms could be divided into the following three categories: (a) AI techniques
(e.g., BERT, machine, knowledge reasoning), (b) knowledge representation and interoper-
ability (e.g., models, ontology model, interoperability), and (c) smart city (e.g., smart city,
public transport, smart card data, city). This means that, in recent years, more attention
has been paid to the utilization of AI technologies in geoscience knowledge extraction and
reasoning, as well as the extended applications of GeoKG in new fields such as smart cities.
Interestingly, the APY for the keyword “ontology” (including “ontology model” and “do-
main ontology”) is greater than 2021, as the earliest research on geo-ontology can be traced
back to the 1990s [26]. Such a long history of activity in the research of geo-ontology implies
the fundamental role of semantic modeling and representation of geoscience knowledge in
GeoKG research. This may be because it is one of the most important goals of GeoKG to
transform unstructured knowledge fragments into a formal representation, to facilitate the
integration of multi-source geoscience data, and to enable intelligence.
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4. Future Directions for GeoKG Research

In addition to the above-mentioned research topics, there are other important issues
that should be paid attention to, but are currently being neglected, as seen in the recent
research of geoscience, as well as through examination of the latest KG and AI studies.
These important issues are as follows.

(1) Representation of procedural knowledge in GeoKGs.

Generally, there are two basic types of knowledge: declarative knowledge, and proce-
dural knowledge [5]. Declarative knowledge is also known as descriptive or conceptual
knowledge. It comprises all of the explicit knowledge about facts, concepts, and principles
that can be used to explain and distinguish things, helping people answer the questions of
what, why, and how. Procedural knowledge is also known as operational knowledge or
application-context knowledge, and is normally implicit or tacit. It refers to the cognitive
processes and operational procedures that define how things are conducted, helping people
answer the questions of how to do something to solve a given problem. For example, the
experiences and steps to build a geographic model or geoprocessing workflow for a specific
application context [53,54]. Existing GeoKGs mainly focus on declarative knowledge, since
it is easier to extract and represent than procedural knowledge. Thus, new methods are
required in the future to represent procedural knowledge in GeoKG. One possible solu-
tion could be case-based methods which transform the acquisition of implicit procedural
knowledge from the elicitation of explicit knowledge (e.g., rules) into a task of gathering
historical cases, and that is easier and more efficient [55–57]. Prof. John P. Wilson, a famous
geographer and Editor-in-Chief of the journal Transactions in GIS, has featured case-based
method as one of the future needs and opportunities to capture and use the relevant digital
terrain modeling application-context knowledge [58].

(2) Knowledge representation of geoscientific models in GeoKGs.

Geoscientific models have been recognized as powerful and effective tools to solve
complex geoscientific problems. Prof. Krzysztof Janowicz outlined spatially explicit models
as one of the significant research directions of GeoAI in one of his hot papers (with an LCS
value of 140) [10]. To date, the number of geoscientific models available across various sub-
domains of geoscience, including earth and environmental science, geography and remote
sensing, and related fields, has increased significantly [59]. Consequently, it is increasingly
difficult for users, especially non-experts, to discover and build fit-for-application models.
Therefore, intelligent methods and tools that can minimize the dependence on users’
modeling knowledge and skills, e.g., question answering and recommendation of models
and input data for specific application contexts, are urgently needed [53,54,60]. This idea
is similar to the semantically aware environmental modeling approach proposed by Villa
et al. [61], who have received 91 citations in the local database. However, existing GeoKGs
have mostly ignored the knowledge of geoscientific models, while research on model
knowledge or intelligent modeling has neglected the construction of GeoKGs [61–64]. Thus,
further studies of GeoKGs regarding the knowledge representation of geoscientific models
would be worthwhile.

(3) Construction of multi-modal GeoKGs.

Multi-modal knowledge graph (MMKG) is a key step towards the realization of
human-level machine intelligence [65]. The search of the term “multi-modal knowledge
graph*” in WoSCC from 2020 to 2023 returned 225 publications, reflecting the research
enthusiasm for this topic in the field of KG. Geoscience knowledge is inherently multi-
modal. For example, both text and maps are essential for understanding, representing, and
propagating geospatial information [66]. The systematization, completeness, and richness
of geoscience knowledge vary significantly between different modalities [2]. In addition,
learning from multi-modal sources, including the correspondences between modalities,
makes it possible for AI to gain an in-depth understanding of natural phenomena, i.e., it
improves the robustness and performance of deep learning models [67]. Thus, geoscience
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data in different modalities such as text, images, maps, schematic diagrams, data tables,
and videos are important sources for constructing and updating GeoKG [2,3,68]. However,
most of the existing GeoKGs focus on representing textual geoscience knowledge, while
paying little attention to the proliferation of multi-modal geoscience data. This weakens the
capability of machines to describe and understand the real world [65]. Thus, more efforts
are required in the future to construct multi-modal GeoKGs, i.e., to associate symbolic
knowledge in a traditional GeoKG, including entities, concepts, relations, etc., to their
corresponding entities in other modalities [65].

(4) Integration of Large Language Models (LLMs) and GeoKGs.

Large language models (LLMs) have achieved huge success in recent years for their
great performance in the field of AI, especially in NLP tasks such as question answering
and text generation. A total of 1117 related articles published in 2023 were retrieved from
WoSCC using the search term “Large Language Model* or LLM*”, indicating the huge im-
pact of LLMs on the research of AI. LLMs and KGs can mutually enhance each other. LLMs
can be applied to augment various KG-related tasks, e.g., KG construction, KG embedding,
KG completion, and KG-based question answering, to improve the performance and fa-
cilitate the applications, while KGs can be used to augment LLMs for, e.g., training and
prompt learning, or providing explicit domain knowledge, so as to mitigate hallucination
and improve interpretability [69,70]. However, while integrating LLMs into geoscience is
currently a hot topic [71,72], no research has been found that investigated the integration of
LLMs and GeoKGs. Therefore, it is strongly recommended to unify LLMs and GeoKGs
in the future. This may not only change the trend in GeoKG research, but also delay the
predicted maturity year (i.e., 2028).

5. Conclusions and Limitations

The purpose of this study is to analyze the current state and future trends in GeoKG
research from a quantitative perspective using bibliometric techniques. A total of 294 papers
concerning GeoKG research published from 2012 to 2023 were collected from the WoSCC
database and analyzed using the bibliometrix R package and VOSviewer software. Results
of the bibliometric analysis show that there has been an ongoing increase in GeoKG research
over the past 12 years, particularly since 2019. This trend will be sustained until 2028, as
predicted by the Logistic Growth Model. ISPRS International Journal of Geo-Information and
Computers & Geosciences were the most productive and most cited journals in this field,
respectively. The research areas of most publications were concentrated in computer science
and the sub-disciplines of earth science, including remote sensing, geology, and geography.
Moreover, researchers including Janowicz Krzysztof, Ma Xiaogang, Mai Gengchen, and
Qiu Qinjun have been highly active in GeoKG research. China has contributed most of
the publications in this field, and the Chinese Academy of Sciences has been the most
productive institution. Scientific collaboration on GeoKG research is frequent, but still
needs to be enhanced, especially for international and inter-institutional collaboration. This
analysis also detected that geoscience knowledge representation, information extraction,
GeoKG construction, and GeoKG-based multi-source data integration were currently the
hot spots in the field. More studies are required for the application of GeoKG. Four research
directions, including the representation of procedural knowledge and geoscientific model
knowledge in GeoKGs, the construction of multi-modal GeoKGs, and the integration of
LLMs and GeoKGs are worthy of attention, and they are expected to become the major
research directions in the future.

The major contributions of this review include the following aspects. First, it provides
researchers, policymakers, and practitioners with systematic information on the study of
GeoKG, helping them to better understand the current state and trends in research in this
field or to evaluate the effects of fundings and policies on GeoKG. Second, findings of influ-
ential publications and prolific sources provide suggestions about sources to which scholars,
especially newcomers to the field, can track the research frontiers and publish their work.
Additionally, the results provide valuable information for scientists and institutions to find
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potential collaborators. More importantly, findings from the review remind researchers of
the key research methods and topics in the field as well as the future directions.

However, several limitations of this study need to be acknowledged. First, only
English publications from the WoSCC database were collected. Papers written in other
languages and distributed in other databases have not been included in this study, and
may result in deviation in the results. Adding more data sources such as Scopus and
arXiv could make the review more comprehensive. It is the same with papers written in
other languages, e.g., Chinese. Second, the time is limited to 2012–2023. Thus, papers
published before 2012 and after 2023 were excluded from the study. Expanding the time
may provide a more historic view of the field. Third, the growth trend in the publications
may last longer than the model predicts, since it could be affected by many factors such
as emerging AI techniques and new big science programs. Finally, while bibliometric
analysis has its advantages, it is difficult for this quantitative approach to form a deep
and thorough conclusion for this interdisciplinary field adequately. Therefore, qualitative
review methods that incorporate expert opinions could be employed in the future to enrich
our understanding of this evolving and complex research area.
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