Sensing the Environmental Inequality of PM2.5 Exposure Using Fine-Scale Measurements of Social Strata and Citizenship Identity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.2.1. Air Pollution Data
- The hourly station data were aggregated, and the daily PM2.5 concentrations during the entire day, daytime (9 a.m. to 6 p.m.), and nighttime (12 a.m. to 6 a.m.) were calculated for each station.
- The kriging method was used to generate daily PM2.5 concentrations throughout the entire day, daytime (9 a.m. to 6 p.m.), and nighttime (12 a.m. to 6 a.m.).
- The estimated daytime and nighttime surfaces were corrected with the daily gapless 1 km × 1 km global ground-level PM2.5 dataset. For each cell:
2.2.2. Spatially Referenced Mobile Phone Data
- The historical locations during the daytime (i.e., 9 a.m. to 6 p.m.) were spatially mapped onto the grid cells, and the population within each grid was computed.
- The historical locations during the nighttime (i.e., 12 a.m. to 6 a.m.) were spatially mapped onto the grid cells, and the population within each grid was computed.
- The daytime population and nighttime population within each grid were combined and integrated with hukou registration data. The percentage of nonlocal residents within each grid is then determined as the percentage of residents with hukou registered in cities other than Xi’an relative to the total population within that grid.
2.2.3. House Price Data
2.3. Dependent Variable and Independent Variables
- PM2.5 exposure is empirically quantified through the calculation of the mean PM2.5 concentration during both daytime and nighttime.
- Citizenship identity is measured by the percentage of the nonlocal population residing in a given grid.
- Social stratum is operationalized as socioeconomic status and measured by the mean price of secondhand houses within a particular grid.
2.4. Analytical Methods
2.4.1. Interpolation Techniques
2.4.2. Global and Local Spatial Autocorrelation
2.4.3. Geographically Weighted Regression
2.4.4. Sensitivity Analysis
3. Results
3.1. The Spatiotemporal Patterns of the PM2.5 Concentration
3.2. Environmental Inequality in Terms of PM2.5 Exposure
4. Discussion
4.1. Principal Findings
4.2. Comparison with Previous Work
4.3. Practical Implications
4.4. Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Explanation of Variables Selection
Appendix B. Explanation of Using House Price Data in 2023
Appendix C. Figures
References
- Fiordelisi, A.; Piscitelli, P.; Trimarco, B.; Coscioni, E.; Iaccarino, G.; Sorriento, D. The Mechanisms of Air Pollution and Particulate Matter in Cardiovascular Diseases. Heart Fail. Rev. 2017, 22, 337–347. [Google Scholar] [CrossRef]
- Hamra, G.B.; Guha, N.; Cohen, A.; Laden, F.; Raaschou-Nielsen, O.; Samet, J.M.; Vineis, P.; Forastiere, F.; Saldiva, P.; Yorifuji, T.; et al. Outdoor Particulate Matter Exposure and Lung Cancer: A Systematic Review and Meta-Analysis. Environ. Health Perspect. 2014, 122, 906–911. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Chen, R.; Sera, F.; Vicedo-Cabrera, A.M.; Guo, Y.; Tong, S.; Coelho, M.S.Z.S.; Saldiva, P.H.N.; Lavigne, E.; Matus, P.; et al. Ambient Particulate Air Pollution and Daily Mortality in 652 Cities. N. Engl. J. Med. 2019, 381, 705–715. [Google Scholar] [CrossRef] [PubMed]
- Pui, D.Y.H.; Chen, S.-C.; Zuo, Z. PM2.5 in China: Measurements, Sources, Visibility and Health Effects, and Mitigation. Particuology 2014, 13, 1–26. [Google Scholar] [CrossRef]
- Cao, J.; Xu, H.; Xu, Q.; Chen, B.; Kan, H. Fine Particulate Matter Constituents and Cardiopulmonary Mortality in a Heavily Polluted Chinese City. Environ. Health Perspect. 2012, 120, 373–378. [Google Scholar] [CrossRef]
- Crouse, D.L.; Peters, P.A.; van Donkelaar, A.; Goldberg, M.S.; Villeneuve, P.J.; Brion, O.; Khan, S.; Atari, D.O.; Jerrett, M.; Pope, C.A.; et al. Risk of Non Accidental and Cardiovascular Mortality in Relation to Long-Term Exposure to Low Concentrations of Fine Particulate Matter: A Canadian National-Level Cohort Study. Environ. Health Perspect. 2012, 120, 708–714. [Google Scholar] [CrossRef]
- Weuve, J.; Puett, R.C.; Schwartz, J.; Yanosky, J.D.; Laden, F.; Grodstein, F. Exposure to Particulate Air Pollution and Cognitive Decline in Older Women. Arch. Intern. Med. 2012, 172, 219–227. [Google Scholar] [CrossRef] [PubMed]
- Braithwaite, I.; Zhang, S.; Kirkbride, J.B.; Osborn, D.P.J.; Hayes, J.F. Air Pollution (Particulate Matter) Exposure and Associations with Depression, Anxiety, Bipolar, Psychosis and Suicide Risk: A Systematic Review and Meta-Analysis. Environ. Health Perspect. 2019, 127, 126002. [Google Scholar] [CrossRef]
- Asch, P.; Seneca, J.J. Some Evidence on the Distribution of Air Quality. Land Econ. 1978, 54, 278–297. [Google Scholar] [CrossRef]
- Shan, Z.; Li, H.; Pan, H.; Yuan, M.; Xu, S. Spatial Equity of PM2.5 Pollution Exposures in High-Density Metropolitan Areas Based on Remote Sensing, LBS and GIS Data: A Case Study in Wuhan, China. Int. J. Environ. Res. Public Health 2022, 19, 12671. [Google Scholar] [CrossRef]
- Gouveia, N.; Slovic, A.D.; Kanai, C.M.; Soriano, L. Air Pollution and Environmental Justice in Latin America: Where Are We and How Can We Move Forward? Curr. Environ. Health Rep. 2022, 9, 152–164. [Google Scholar] [CrossRef] [PubMed]
- Jerrett, M.; Burnett, R.T.; Kanaroglou, P.; Eyles, J.; Finkelstein, N.; Giovis, C.; Brook, J.R. A GIS—Environmental Justice Analysis of Particulate Air Pollution in Hamilton, Canada. Environ. Plan. A 2001, 33, 955–973. [Google Scholar] [CrossRef]
- Chakraborty, J. Cancer Risk from Exposure to Hazardous Air Pollutants: Spatial and Social Inequities in Tampa Bay, Florida. Int. J. Environ. Health Res. 2012, 22, 165–183. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Zhang, X.; Chen, J.; Zhang, Y. Do Double-Edged Swords Cut Both Ways? Housing Inequality and Haze Pollution in Chinese Cities. Sci. Total Environ. 2020, 719, 137404. [Google Scholar] [CrossRef] [PubMed]
- Abel, T.D.; White, J. Skewed Riskscapes and Gentrified Inequities: Environmental Exposure Disparities in Seattle, Washington. Am. J. Public Health 2011, 101, S246–S254. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Yang, Y. Environmental Justice in Greater Los Angeles: Impacts of Spatial and Ethnic Factors on Residents’ Socioeconomic and Health Status. Int. J. Environ. Res. Public Health 2022, 19, 5311. [Google Scholar] [CrossRef] [PubMed]
- Maantay, J. Asthma and Air Pollution in the Bronx: Methodological and Data Considerations in Using GIS for Environmental Justice and Health Research. Health Place 2007, 13, 32–56. [Google Scholar] [CrossRef]
- Stuart, A.L.; Mudhasakul, S.; Sriwatanapongse, W. The Social Distribution of Neighborhood-Scale Air Pollution and Monitoring Protection. J. Air Waste Manag. Assoc. 2009, 59, 591–602. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, J.; Green, D. Australia’s First National Level Quantitative Environmental Justice Assessment of Industrial Air Pollution. Environ. Res. Lett. 2014, 9, 044010. [Google Scholar] [CrossRef]
- Ghorbani, S.; Salehi, E.; Faryadi, S.; Jafari, H.R. Geospatial Analysis of the Distribution of Air Pollutant Emissions in Tehran with a Focus on Environmental Justice. Int. J. Ecosyst. Ecol. Sci. 2020, 10, 235–248. [Google Scholar] [CrossRef]
- Chaix, B.; Gustafsson, S.; Jerrett, M.; Kristersson, H.; Lithman, T.; Boalt, A.; Merlo, J. Children’s Exposure to Nitrogen Dioxide in Sweden: Investigating Environmental Injustice in an Egalitarian Country. J. Epidemiol. Community Health 2006, 60, 234–241. [Google Scholar] [CrossRef] [PubMed]
- Gu, L.; Rosenberg, M.; Zeng, J. The impacts of socioeconomic and environmental factors on self-rated health status among different income groups in China. Geogr. Res. 2017, 36, 1257–1270. [Google Scholar] [CrossRef]
- Chen, X.; Feng, J. Health effects of built environment based on a comparison of walkability and air pollution:A case study of Nanjing City. Prog. Geogr. 2019, 38, 296–304. [Google Scholar] [CrossRef]
- Fotheringham, A.S.; Yue, H.; Li, Z. Examining the Influences of Air Quality in China’s Cities Using Multi-scale Geographically Weighted Regression. Trans. GIS 2019, 23, 1444–1464. [Google Scholar] [CrossRef]
- Long, Y.; Wang, J.; Wu, K.; Zhang, J. Population Exposure to Ambient PM2.5 at the Subdistrict Level in China. Int. J. Environ. Res. Public Health 2018, 15, 2683. [Google Scholar] [CrossRef] [PubMed]
- Crols, T.; Malleson, N. Quantifying the Ambient Population Using Hourly Population Footfall Data and an Agent-Based Model of Daily Mobility. Geoinformatica 2019, 23, 201–220. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Liu, J.; Li, M.; Gou, P.; Cheng, Y. Assessing the Evolution of PM2.5 and Related Health Impacts Resulting from Air Quality Policies in China. Environ. Impact Assess. Rev. 2022, 93, 106727. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, J.; Hart, J.E.; Laden, F.; Zhao, C.; Li, T.; Zheng, P.; Li, D.; Ye, Z.; Chen, K. National Scale Spatiotemporal Land-Use Regression Model for PM2.5, PM10 and NO2 Concentration in China. Atmos. Environ. 2018, 192, 48–54. [Google Scholar] [CrossRef]
- Xu, Y.; Wei, M.; Zou, B.; Guo, Z.; Li, S. Spatial-Temporal Variation and Spatial Differentiation Geographic Detection of PM2.5 Concentration in Shandong Province Based on Spatial Scale Effect. Environ. Sci. 2023. Online First. [Google Scholar] [CrossRef]
- Chen, B.; Song, Y.; Jiang, T.; Chen, Z.; Huang, B.; Xu, B. Real-Time Estimation of Population Exposure to PM2.5 Using Mobile- and Station-Based Big Data. Int. J. Environ. Res. Public Health 2018, 15, 573. [Google Scholar] [CrossRef]
- He, L.; Páez, A.; Liu, D. Built Environment and Violent Crime: An Environmental Audit Approach Using Google Street View. Comput. Environ. Urban Syst. 2017, 66, 83–95. [Google Scholar] [CrossRef]
- He, L.; Páez, A.; Jiao, J.; An, P.; Lu, C.; Mao, W.; Long, D. Ambient Population and Larceny-Theft: A Spatial Analysis Using Mobile Phone Data. ISPRS Int. J. Geo-Inf. 2020, 9, 342. [Google Scholar] [CrossRef]
- Lai, S.; Bogoch, I.I.; Ruktanonchai, N.W.; Watts, A.; Lu, X.; Yang, W.; Yu, H.; Khan, K.; Tatem, A.J. Assessing Spread Risk of COVID-19 in Early 2020. Data Sci. Manag. 2022, 5, 212–218. [Google Scholar] [CrossRef]
- Panigutti, C.; Tizzoni, M.; Bajardi, P.; Smoreda, Z.; Colizza, V. Assessing the Use of Mobile Phone Data to Describe Recurrent Mobility Patterns in Spatial Epidemic Models. R. Soc. Open Sci. 2017, 4, 160950. [Google Scholar] [CrossRef] [PubMed]
- Reades, J.; Calabrese, F.; Ratti, C. Eigenplaces: Analysing Cities Using the Space—Time Structure of the Mobile Phone Network. Environ. Plann. B 2009, 36, 824–836. [Google Scholar] [CrossRef]
- Sun, L.; Zhang, H.; Fang, C. Data Security Governance in the Era of Big Data: Status, Challenges, and Prospects. Data Sci. Manag. 2021, 2, 41–44. [Google Scholar] [CrossRef]
- Abitbol, J.L.; Karsai, M. Interpretable Socioeconomic Status Inference from Aerial Imagery through Urban Patterns. Nat. Mach. Intell. 2020, 2, 684–692. [Google Scholar] [CrossRef]
- Guo, S.; Fang, F.; Zhou, T.; Zhang, W.; Guo, Q.; Zeng, R.; Chen, X.; Liu, J.; Lu, X. Improving Google Flu Trends for COVID-19 Estimates Using Weibo Posts. Data Sci. Manag. 2021, 3, 13–21. [Google Scholar] [CrossRef]
- Llorente, A.; Garcia-Herranz, M.; Cebrian, M.; Moro, E. Social Media Fingerprints of Unemployment. PLoS ONE 2015, 10, e0128692. [Google Scholar] [CrossRef] [PubMed]
- Suel, E.; Bhatt, S.; Brauer, M.; Flaxman, S.; Ezzati, M. Multimodal Deep Learning from Satellite and Street-Level Imagery for Measuring Income, Overcrowding, and Environmental Deprivation in Urban Areas. Remote Sens. Environ. 2021, 257, 112339. [Google Scholar] [CrossRef]
- Wang, L.; He, S.; Su, S.; Li, Y.; Hu, L.; Li, G. Urban Neighborhood Socioeconomic Status (SES) Inference: A Machine Learning Approach Based on Semantic and Sentimental Analysis of Online Housing Advertisements. Habitat Int. 2022, 124, 102572. [Google Scholar] [CrossRef]
- Wei, J.; Li, Z.; Lyapustin, A.; Wang, J.; Dubovik, O.; Schwartz, J.; Sun, L.; Li, C.; Liu, S.; Zhu, T. First Close Insight into Global Daily Gapless 1 Km PM2.5 Pollution, Variability, and Health Impact. Nat. Commun. 2023, 14, 8349. [Google Scholar] [CrossRef] [PubMed]
- Wang, X. Historical Data of Air Quality in China. Available online: https://quotsoft.net/air/ (accessed on 7 June 2022).
- He, G.; Pan, Y.; Tanaka, T. The Short-Term Impacts of COVID-19 Lockdown on Urban Air Pollution in China. Nat. Sustain. 2020, 3, 1005–1011. [Google Scholar] [CrossRef]
- Kumari, P.; Toshniwal, D. Impact of Lockdown on Air Quality over Major Cities across the Globe during COVID-19 Pandemic. Urban Clim. 2020, 34, 100719. [Google Scholar] [CrossRef] [PubMed]
- Romanillos, G.; García-Palomares, J.C.; Moya-Gómez, B.; Gutiérrez, J.; Torres, J.; López, M.; Cantú-Ros, O.G.; Herranz, R. The City Turned off: Urban Dynamics during the COVID-19 Pandemic Based on Mobile Phone Data. Appl. Geogr. 2021, 134, 102524. [Google Scholar] [CrossRef] [PubMed]
- Chan, K.W.; Zhang, L. The Hukou System and Rural-Urban Migration in China: Processes and Changes. China Q. 1999, 160, 818–855. [Google Scholar] [CrossRef] [PubMed]
- Coffee, N.T.; Lockwood, T.; Hugo, G.; Paquet, C.; Howard, N.J.; Daniel, M. Relative Residential Property Value as a Socio-Economic Status Indicator for Health Research. Int. J. Health Geogr. 2013, 12, 22. [Google Scholar] [CrossRef] [PubMed]
- Tomba, L. The Government Next Door: Neighborhood Politics in Urban China; Cornell University Press: Ithaca, NY, USA, 2014. [Google Scholar]
- Páez, A.; Farber, S.; Wheeler, D. A Simulation-Based Study of Geographically Weighted Regression as a Method for Investigating Spatially Varying Relationships. Environ. Plan. A 2011, 43, 2992–3010. [Google Scholar] [CrossRef]
- Lu, B.; Hu, Y.; Yang, D.; Liu, Y.; Liao, L.; Yin, Z.; Xia, T.; Dong, Z.; Harris, P.; Brunsdon, C.; et al. GWmodelS: A Software for Geographically Weighted Models. SoftwareX 2023, 21, 101291. [Google Scholar] [CrossRef]
- Bivand, R.; Yu, D.; Nakaya, T.; Garcia-Lopez, M.-A. Spgwr: Geographically Weighted Regression. Available online: https://CRAN.R-project.org/package=spgwr (accessed on 25 March 2023).
- World Health Organization. WHO Global Air Quality Guidelines: Particulate Matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide; World Health Organization: Geneva, Switzerland, 2021; ISBN 978-92-4-003422-8. [Google Scholar]
- Ministry of Ecology and Environment of the People’s Republic of China. Ambient Air Quality Standards. Available online: https://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/dqhjbh/dqhjzlbz/201203/t20120302_224165.shtml (accessed on 22 June 2024).
- Wittwer, J. Calendar Heat Map Template. Available online: https://www.vertex42.com/ExcelTemplates/calendar-chart.html (accessed on 12 April 2022).
- Lu, D.; Xu, J.; Yue, W.; Mao, W.; Yang, D.; Wang, J. Response of PM2.5 Pollution to Land Use in China. J. Clean. Prod. 2020, 244, 118741. [Google Scholar] [CrossRef]
- Ma, J.; Liu, B.; Mitchell, G.; Dong, G. A Spatial Analysis of Air Pollution and Environmental Inequality in Beijing, 2000–2010. J. Environ. Plan. Manag. 2019, 62, 2437–2458. [Google Scholar] [CrossRef]
- Chen, J.; Chen, S.; Landry, P.F. Migration, Environmental Hazards, and Health Outcomes in China. Soc. Sci. Med. 2013, 80, 85–95. [Google Scholar] [CrossRef] [PubMed]
- Xi’an Municipal People’s Government Xi An Cheng Shi Zong Ti Gui Hua 2008–2020. Available online: http://zygh.xa.gov.cn/ywpd/cxghgsgb/ghgsgb/62876060f8fd1c0bdc995ed3.html (accessed on 26 October 2023).
- Xi’an Natural Resources and Planning Bureau Xi An Shi Guo Tu Kong Jian Gui Hua 2021–2035 Cao An Gong Shi. Available online: http://www.xa.gov.cn/index/tttp/636a2fa2f8fd1c4c21276937.html (accessed on 3 March 2023).
- Solinger, D.J. Contesting Citizenship in Urban China: Peasant Migrants, the State, and the Logic of the Market; University of California Press: Berkeley, CA, USA, 1999. [Google Scholar]
- Somers, M.R.; Gibson, G.D. Reclaiming the Epistemological “Other”: Narrative and the Social Constitution of Identity. In Social Theory and the Politics of Identity; Craig, C., Ed.; Blackwell: Oxford, UK; Cambridge, MA, USA, 1994; pp. 37–99. [Google Scholar]
- Li, Y.; Zhu, D.; Zhao, J.; Zheng, X.; Zhang, L. Effect of the Housing Purchase Restriction Policy on the Real Estate Market: Evidence from a Typical Suburb of Beijing, China. Land Use Policy 2020, 94, 104528. [Google Scholar] [CrossRef]
- Liu, Y. Introduction to Land Use and Rural Sustainability in China. Land Use Policy 2018, 74, 1–4. [Google Scholar] [CrossRef]
- Yu, Q.; Hui, E.C.-M.; Shen, J. Do Local Governments Capitalise on the Spillover Effect in the Housing Market? Quasi-Experimental Evidence from House Purchase Restrictions in China. Land Use Policy 2023, 133, 106851. [Google Scholar] [CrossRef]
- The People’s Bank of China. Notice of the People’s Bank of China on Adjusting the Policy on Personal Housing Loans. Available online: http://www.pbc.gov.cn/goutongjiaoliu/113456/113469/3014377/index.html (accessed on 28 February 2024).
- The People’s Government of Beijing. Municipality Notice on Adjusting and Optimizing the Standards for Ordinary Housing and Personal Housing Loan Policies in Beijing. Available online: https://www.beijing.gov.cn/zhengce/zhengcefagui/202312/t20231214_3500672.html (accessed on 28 February 2024).
Variable | Moran’s I | Z Score | p Value |
---|---|---|---|
Estimated housing price in 2021 | 0.751 | 62.665 | 0.000 |
Percentage of nonlocal residents in year 2021 | 0.652 | 58.688 | 0.000 |
Percentage of nonlocal residents in 2021 quarter 1 | 0.600 | 50.443 | 0.000 |
Percentage of nonlocal residents in 2021 quarter 2 | 0.628 | 52.484 | 0.000 |
Percentage of nonlocal residents in 2021 quarter 3 | 0.730 | 65.472 | 0.000 |
Percentage of nonlocal residents in 2021 quarter 4 | 0.650 | 58.252 | 0.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, L.; He, L.; Lin, Z.; Lu, Y.; Chen, C.; Wang, Z.; An, P.; Liu, M.; Xu, J.; Gao, S. Sensing the Environmental Inequality of PM2.5 Exposure Using Fine-Scale Measurements of Social Strata and Citizenship Identity. ISPRS Int. J. Geo-Inf. 2024, 13, 257. https://doi.org/10.3390/ijgi13070257
He L, He L, Lin Z, Lu Y, Chen C, Wang Z, An P, Liu M, Xu J, Gao S. Sensing the Environmental Inequality of PM2.5 Exposure Using Fine-Scale Measurements of Social Strata and Citizenship Identity. ISPRS International Journal of Geo-Information. 2024; 13(7):257. https://doi.org/10.3390/ijgi13070257
Chicago/Turabian StyleHe, Li, Lingfeng He, Zezheng Lin, Yao Lu, Chen Chen, Zhongmin Wang, Ping An, Min Liu, Jie Xu, and Shurui Gao. 2024. "Sensing the Environmental Inequality of PM2.5 Exposure Using Fine-Scale Measurements of Social Strata and Citizenship Identity" ISPRS International Journal of Geo-Information 13, no. 7: 257. https://doi.org/10.3390/ijgi13070257
APA StyleHe, L., He, L., Lin, Z., Lu, Y., Chen, C., Wang, Z., An, P., Liu, M., Xu, J., & Gao, S. (2024). Sensing the Environmental Inequality of PM2.5 Exposure Using Fine-Scale Measurements of Social Strata and Citizenship Identity. ISPRS International Journal of Geo-Information, 13(7), 257. https://doi.org/10.3390/ijgi13070257