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Abstract: Exposure to PM; 5 pollution poses substantial health risks, with the precise quantification
of exposure being fundamental to understanding the environmental inequalities therein. However,
the absence of high-resolution spatiotemporal ambient population data, coupled with an insufficiency
of attribute data, impedes a comprehension of the environmental inequality of exposure risks at a
fine scale. Within the purview of a conceptual framework that interlinks social strata and citizenship
identity with environmental inequality, this study examines the environmental inequality of PM; 5
exposure with a focus on the city of Xi’an. Quantitative metrics of the social strata and citizenship
identities of the ambient population are derived from housing price data and mobile phone big data.
The fine-scale estimation of PM; 5 concentrations is predicated on the kriging interpolation method
and refined by leveraging an advanced dataset. Employing geographically weighted regression
models, we examine the environmental inequality pattern at a fine spatial scale. The key findings are
threefold: (1) the manifestation of environmental inequality in PM; 5 exposure is pronounced among
individuals of varying social strata and citizenship identities within our study area, Xi’an; (2) nonlocal
residents situated in the northwestern precincts of Xi’an are subject to the most pronounced PM; 5
exposure; and (3) an elevated socioeconomic status is identified as an attenuating factor, capable of
averting the deleterious impacts of PMj; 5 exposure among nonlocal residents. These findings proffer
substantial practical implications for the orchestration of air pollution mitigation strategies and urban
planning initiatives. They suggest that addressing the wellbeing of the marginalized underprivileged
cohorts, who are environmentally and politically segregated under the extant urban planning policies
in China, is of critical importance.

Keywords: PM; 5 exposure; environmental inequality; social stratum; citizenship identity; spatial
analysis

1. Introduction

Air pollution exposure is recognized as a complex and multifaceted challenge that
intersects the disciplines of geography, public health, environmental science, and the social
sciences. The exposure to air pollutants, both short-term and long-term, whether acute
or chronic, has been consistently associated with an array of adverse health outcomes,
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including an elevated risk of cardiopulmonary and respiratory diseases [1-4], as well as
increased mortality rates [1,5,6]. Moreover, emerging evidence suggests that air pollution
may induce cognitive decline [7] and depressive disorder [8]. A substantial body of
research has demonstrated that the health risks associated with air pollution are not
evenly distributed across the population, with disparities often linked to socioeconomic
status and ethnicity, a phenomenon that reflects the spatial distribution of pollution and is
encapsulated by the concept of environmental inequality [9,10].

Environmental inequality has risen as a critical issue in air pollution exposure re-
search [10]. A substantial body of research has furnished compelling evidence highlighting
the disproportionate impact on vulnerable populations characterized by low socioeco-
nomic status, including limited education, low occupational status, unemployment, and
poverty [11,12]. Additionally, the lack of housing ownership [13,14] and racial or ethnic-
based social exclusion, particularly affecting Black, Latinx, and Indigenous communi-
ties [15-17], have been identified as significant factors contributing to disparities in air
pollution exposure and the ensuing health consequences. These patterns of disparity have
been extensively studied from the 1970s to the present, transcending geographical bound-
aries and manifesting in both urban and rural settings [12,14,16,18], across developing and
developed nations [12,16,19,20], and even in societies considered to be more egalitarian [21].

In recent years, fruitful advancements have been made in understanding environmen-
tal inequality in air pollution exposure in China [10,22]. However, the reliance on static
population data sourced from censuses and yearbooks at the administrative division level
presents limitations, as it does not account for the dynamic nature of human activities and
the daily spatial distribution of the ambient population [23-25]. It is important to recognize
two key limitations when working with static data such as census records. First, residents’
daily activities are not confined by the boundaries of blocks, census tracts, or administra-
tive districts. Analyzing spatial patterns using a regular grid as the unit of assessment,
instead of administrative divisions, mitigates the issue of arbitrarily assigning demographic
and socioeconomic indicators based on artificial boundaries, further ensuring the validity
of pollution exposure assessments. Second, static data such as census population data
fail to account for residents’ characteristics of travel activities, making it unconducive to
accurately depicting the daily average spatial distribution of the population.

To address these limitations, there has been a shift towards utilizing high-resolution
global population data represented through regular grids, such as footfall data [26], Land-
Scan [27,28], and WorldPop [29]. These data offer enhanced spatial resolution, but are
limited by the absence of attribute data that characterize the ambient population (i.e., spa-
tiotemporally dynamic population) [30]. This ongoing gap constrains scholars’ capacity to
fully comprehend the risks associated with pollution exposure and environmental equality
at the fine scale.

Advancements in data collection technology present an opportune avenue for over-
coming the aforementioned challenges [31,32]. In this regard, spatially referenced mobile
phone data have emerged as a promising data source because of their extensive coverage,
high penetration rate, and remarkable spatial-temporal continuity [33,34]. They adeptly
capture the spatial distribution, mobility patterns, and social activities of the ambient
population. Furthermore, mobile phone data have proven to be particularly efficacious
in quantifying multifaceted attributes of the ambient population at finer spatiotemporal
resolutions [32,35]. Although early research focused predominantly on estimating the
number of ambient populations, recent methodological developments have broadened
the scope of analysis to include multidimensional attributes of the ambient population,
while ensuring the preservation of anonymity and desensitizing sensitive information to
protect privacy [36]. In the domain of spatial equity evaluation, the identification of high-
resolution proxies for socioeconomic status is paramount. To this end, a diverse array of
data sources have been harnessed, including remote sensing [37], social media [38,39], and
street view data [40]. The most recent research has leveraged machine learning methods
to predict spatial variations in socioeconomic status at the neighborhood level, predicated
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on online housing advertising text [41]. These endeavors demonstrate the feasibility of
employing housing-related information as a metric for estimating the spatial distribution
of socioeconomic status.

The primary objective of this study is to investigate the environmental inequality of
PM, 5 pollution exposure among residents. Our goal is to delineate the spatial distribution
patterns of PM, 5 concentrations and their association with the social strata and citizenship
identities at a fine-scale level (1 km x 1 km). Xi’an, a representative industrial city in
northern China, was selected as our study area. The technical route of this study is
shown in Figure 1. Leveraging the kriging method, we generated the spatiotemporal
distribution of PM; 5 concentration from daily air pollution monitoring data over a one-
year period, from 1 January 2021 to 31 December 2021. Subsequently, we conducted an
analysis of the spatiotemporal patterns of the environmental inequality of PM, 5 exposure,
integrating data on the distribution of citizenship identities derived from mobile phone
data with the distribution of social strata estimated though secondhand housing prices.
The empirical findings highlight significant environmental inequality in PM, 5 exposure in
Xi’an, with pronounced disparities observed among individuals of different social strata
and citizenship identities.

Daily PM, ¢
concentrations

Aggregated

Quarterly % of the : Spatial pattern with
nonlocal population robustness of

Grid-level layers environmental inequality

(annually / quarterly)

Secondhanded
housing price surface

Figure 1. The flowchart of the study.

2. Materials and Methods
2.1. Study Area

The study area is the main urban area of Xi’an, situated within the Shaanxi Province
of China. The region is located in the central Shaanxi Plain, nestled in the middle Yellow
River Basin. As a quintessential industrial city, Xi’an boasts a diverse economic landscape,
featuring key sectors such as infrastructure development, energy and chemical industries,
and equipment manufacturing. Figure 2 shows the location of the study area in China.



ISPRS Int. ]. Geo-Inf. 2024, 13, 257 4 0f22
X
X
! Wweir!
saThyars !
1 X X
|
F! f
X X X g
Ty
I o ®
S
X
Sis o
¥ Selected Stations (23)
[~ _|Study Area
o 10 20
(:’ _oea ‘1°:°°| 20381 " Prefecture |—.—o—.—o—.—o—.—|5 Kilometer

Figure 2. The location of the study area and selected air pollution monitoring stations.

2.2. Data
2.2.1. Air Pollution Data

In this investigation, we acknowledge the diurnal and seasonal fluctuations in human
activities; accordingly, we employ a geostatistical method that leverages hourly real-time
monitoring station data. To mitigate the constraints inherent in geostatistical analyses, we
integrate a refined daily gapless 1 km x 1 km global ground-level PM; 5 dataset to enhance
the accuracy of our estimates [42].

The air quality data were procured from the National Urban Air Quality Real-Time
Release Platform of China (www.cnemc.cn) [43]. This dataset compiles hourly PM; 5
concentrations, reading from an extensive network of 2024 monitoring stations in China.
Considering proximity and topographical factors (as depicted in Figure 2), this study se-
lected a subset of 23 monitoring stations situated within the study area and their immediate
environs. Considering the significant perturbations in human behavior and atmospheric qual-
ity induced by the COVID-19 outbreak and consequent lockdown protocols in 2020 [44—46],
our analysis is focused on the timeframe from 1 January 2021 to 31 December 2021.

The process of calculating the PM, 5 dataset in this study is delineated as follows:

1.  The hourly station data were aggregated, and the daily PM; 5 concentrations during
the entire day, daytime (9 a.m. to 6 p.m.), and nighttime (12 a.m. to 6 a.m.) were
calculated for each station.

2. The kriging method was used to generate daily PM, 5 concentrations throughout the
entire day, daytime (9 a.m. to 6 p.m.), and nighttime (12 a.m. to 6 a.m.).

3. The estimated daytime and nighttime surfaces were corrected with the daily gapless
1 km x 1 km global ground-level PM; 5 dataset. For each cell:

GHPM; 4

ey
where CPM,; ;; is the corrected PM; 5 concentration for cell i during time ¢ (daytime or
nighttime) on day d, UPM,; 4 ; is the uncorrected PM, 5 concentration for cell i during time
t (daytime or nighttime) on day d, GHPM, 4 is the daily PM, 5 concentration for cell i on
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day d according to the daily gapless 1 km global ground-level PM, 5 dataset, and UPME,; 4
is the uncorrected entire day PM; 5 concentration for cell i during day 4.

2.2.2. Spatially Referenced Mobile Phone Data

In the sociopolitical fabric of China, the possession of a local hukou serves as a de-
terminant of urban citizenship, fundamentally influencing an individual’s eligibility for
municipal public services [47]. Consequently, the hukou system is venerated as a pivotal
metric for delineating citizenship identities. To attain precise measurements of hukou at
a fine scale, this study employs spatially referenced mobile phone data, amalgamated
with demographic and social activity data extracted from an anonymized cohort of users.
This data consortium is procured through a collaborative endeavor with the Xi’an Public
Security Bureau, which manages the data of all mobile phone users in Xi’an. Subjected to a
stringent protocol of anonymization and aggregation, the data are distilled into a matrix of
1km x 1 km grid cells for analysis. The dataset encompasses key variables, including the
percentage of nonlocal residents within the municipal confines of Xi’an, which is calculated
as follows:

1. The historical locations during the daytime (i.e., 9 a.m. to 6 p.m.) were spatially
mapped onto the grid cells, and the population within each grid was computed.

2. The historical locations during the nighttime (i.e., 12 a.m. to 6 a.m.) were spatially
mapped onto the grid cells, and the population within each grid was computed.

3. The daytime population and nighttime population within each grid were combined
and integrated with hukou registration data. The percentage of nonlocal residents
within each grid is then determined as the percentage of residents with hukou regis-
tered in cities other than Xi’an relative to the total population within that grid.

Given the onerous computational demands of processing an entire annum of mobile
phone data, a judicious balance was struck between computational complexity and analyti-
cal precision. To this end, we opted to focus on eight discrete and specific dates from the
year 2021, selected to capture a spectrum of seasonal variations and weekly intervals. The
chosen dates include 17 March (Wednesday), 20 March (Saturday), 16 June (Wednesday),
19 June (Saturday), 15 September (Wednesday), 18 September (Saturday), 24 November
(Wednesday), and 27 November (Saturday). The selection of these dates is predicated
on their representation of both weekdays and weekends, unencumbered by traditional
Chinese festivals, which are known to induce aberrations in the typical spatial mobility
patterns of individuals.

2.2.3. House Price Data

Relative residential property value, or housing price, is regarded as a socioeconomic
status (SES) measure in geographical research [48]. Hence, this study uses the secondhand
housing price per unit area as an indicator of neighborhood SES. The data were acquired
from KE Holdings Inc., Beijing, China (also known as Beike), China’s leading online and
offline real estate brokerage and portal company, accessible via www.ke.com. Acknowledg-
ing the dynamic nature of real estate data subject to real-time market oscillations, this study
meticulously selected housing price data that reflect the prevailing market conditions as
of the 11th day of March in the year 2023, thereby ensuring the temporal relevance and
accuracy of the SES indicators utilized in the analysis.

The house price data are stratified across two spatial hierarchical dimensions: (1) sub-
districts, represented as polygon geometries; and (2) microdistricts, denoted as points.
The term “subdistricts” refers to designated areas under the jurisdiction of local suburban
governments. The term “microdistricts” alludes to enclosed areas with essential services
provided within these gated communities and has been employed as a mechanism for
smaller-scale administration by the Chinese government, as elucidated by Tomba [49].
These dual classifications provide critical stratigraphic signifiers for the spatially variable
socioeconomic status and the segmentation of social collectives along the spectrum of social
strata. Employing geostatistical interpolation techniques, this study harnesses subdistrict
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boundaries as natural barriers and microdistricts as anchor points for the spatial modeling
process. Consequently, the resultant house price surface is collapsed into a homogenized
grid system, with each cell measuring 1 km X 1 km, thereby rendering the data amenable
to subsequent analytical endeavors. This aggregation not only streamlines the dataset for
tractable analysis but also preserves the nuanced spatial dynamics that are intrinsic to the
socioeconomic landscape under investigation.

2.3. Dependent Variable and Independent Variables

In geographically weighted regression analysis (see Section 2.4.3), the dependent
variable at the grid level is determined as follows:

e  PM,; 5 exposure is empirically quantified through the calculation of the mean PM; 5
concentration during both daytime and nighttime.

The independent variables include:

o  (Citizenship identity is measured by the percentage of the nonlocal population residing
in a given grid.

e  Social stratum is operationalized as socioeconomic status and measured by the mean
price of secondhand houses within a particular grid.

2.4. Analytical Methods
2.4.1. Interpolation Techniques

The daily PM, 5 concentrations, in their unadjusted form, were estimated using the
general kriging method. The kriging operations were executed within the ArcGIS Pro® 3.2
environment, with default parameter settings.

To establish the secondhand housing price surface, a diffusion interpolation with
barriers was employed, wherein the boundaries of subdistricts function as barriers to the
interpolation process. This computational procedure was also performed using ArcGIS
Pro®3.2.

2.4.2. Global and Local Spatial Autocorrelation

The Global Moran’s I index is used as a diagnostic tool to assess the presence and
strength of spatial autocorrelation. This metric quantifies the linear correlation between
the values of a given variable within a specific geographic unit and the spatially weighted
mean values of the same variable across neighboring geographic units. In our analysis,
Global Moran’s I was applied to quantify the degree of spatial autocorrelation observed in
several important variables, including the percentage of nonlocal residents and housing
prices. Furthermore, it was employed in the measurement of spatial autocorrelation within
the residuals of the GWR (geographically weighted regression) model. To gain deeper
insight into pinpointing clusters with high or low values, as well as identifying spatial
outliers, we further employed Anselin Local Moran’s I, also known as cluster and outlier
analysis. The global Moran’s I and Anselin Local Moran’s I were calculated using ArcGIS
Pro®3.2.

2.4.3. Geographically Weighted Regression

The primary aim of this paper is to uncover spatial inequities in PMj, 5 exposure, with
a particular focus on identifying areas where there exists a positive correlation between
the percentage of the nonlocal residents (a proxy for citizenship identity) and PM; 5 con-
centration levels, and, conversely, areas where there is a negative correlation between the
average housing price (a proxy for social stratum) and PM; 5 concentration. To achieve
this, it is imperative to employ an algorithm capable of detecting localized patterns among
these variables.

Geographically weighted regression (GWR) facilitates the exploration of varying
relationships between independent and dependent variables across locales [50,51]. In this
study, we employed GWR to elucidate the spatially varying relationships between PM 5
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exposure and two key independent variables: the percentage of the nonlocal population
and the average housing price. The GWR model computes localized estimates of 5, at each
location i by utilizing the centroids associated with the grid data. The construction of three
models are as follows.

Model 1: The mathematical representation of the model regarding daytime PM; 5
concentrations and the nonlocal population is as follows:

Yi = Bio+ BnXin + & (2)

where y; denotes the daytime PM; 5 concentration at grid i in 2021, X;; denotes the percent-
age of the nonlocal population at grid i in 2021, §;y denotes the localized realization of the
constant at grid i, B;; denotes the localized realization of the coefficient of the percentage of
the nonlocal population at grid i, and ¢; denotes the localized realization of the error item
at grid i.

Model 2: The mathematical representation of the model regarding nighttime PMj 5
concentrations and the nonlocal population is the same as Equation (2), but y; denotes the
nighttime PMj 5 concentrations at grid i in 2021.

Model 3: The mathematical representation of the model for nighttime PM, 5 concen-
trations and the housing price follows Equation (2), where y; denotes the nighttime PM; 5
concentration at grid 7 in 2021, and X;; denotes the average housing price at grid i in 2021.

Given that the urban population typically gravitates towards the city center for employ-
ment and leisure activities during daytime hours, giving rise to an inconsistency between
the population and their residences, the model regarding daytime PM, 5 concentrations
and the housing price is not applicable and will not be fitted.

To estimate the models, we leveraged the package “spgwr” in the R programming
environment (version 4.1.3), as detailed by Bivand [52]. The “gwr.sel” function from
the “spgwr” package is invoked to ascertain the optimal bandwidth selection for the
GWR models.

2.4.4. Sensitivity Analysis

Given that the estimation of the nonlocal residents at each grid for the year 2021 is
predicated on a mere eight-day sample, it is important to apply a sensitivity analysis to
determine whether the choice of which days to select has an impact on the results. Hence,
we fit the following quarter-specific models:

Model 4: The mathematical representation of the quarter-specific relationship between
daytime PM; 5 concentrations and the nonlocal population is as follows:

Yig = Biog + BingXirg + €ig (3)

where y; , denotes the daytime PM, 5 concentration at grid i in quarter g, X;; ; denotes
the percentage of the nonlocal population at grid i in quarter g, 8o, denotes the localized
realization of the constant at grid i in quarter g, B;; ; denotes the localized realization of
the coefficient of the percentage of the nonlocal population at grid i in quarter g, and ¢, ;
denotes the localized realization of the error item at grid i in quarter 4.

Model 5: The mathematical representation of the quarter-specific relationship between
nighttime PM, 5 concentrations and the nonlocal population is formed in the same way as
Equation (3), but where y; ; denotes the nighttime PM; 5 concentrations at grid i in quarter
g; the others remain the same as in Model 4.

Finally, we construct a pattern robustness indicator to describe the robustness of the
detected inequality pattern regarding the citizenship identities in each grid, given as

4
Rt,i = Z Sigt,q,i (4)
=1
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where R;; refers to the pattern robustness of grid i for timespan ¢ (daytime or nighttime),
and Sig; . ; is defined as

, _ | 1, bygi > 0and is significant
S181q1 = { 0, otherwise ©)

where b; ;; refers to the localized realization of the coefficient of the percentage of the
nonlocal population at grid 7 in quarter g for timespan ¢ (i.e., daytime or nighttime, coming
from Model 4 and Model 5, respectively). The level of significance was set to 0.05.

The sensitivity analysis was also performed in the R programming environment
(version 4.1.3), with the “spgwr” package.

3. Results
3.1. The Spatiotemporal Patterns of the PM, 5 Concentration

As illustrated in Figure A1, by 2021, the prevailing conditions in Xi’an had largely
returned to prepandemic norms. Hence, it is reasonable to examine the PM; 5 concentration
in 2021 in this study.

Figure 3 presents the daily estimated PM, 5 concentration in Xi’an throughout 2021,
subdivided into three panels representing the entire day, daytime, and nighttime. Notably,
Friday exhibits the peak PM; 5 concentration levels, whereas Monday exhibits the lowest
concentration (excluding during the daytime) over the course of the week. Figure 3 further
signifies a progressive increase in concentrations from Monday to Friday, followed by a
subsequent decrease from Friday to the ensuing Monday.

In terms of seasonal fluctuations, PM; 5 concentrations typically increase from late
fall through early spring, encompassing a five-month period from November to March.
During this interval, the recorded concentrations predominantly align with the Interim
Target 2, with values ranging from 37.5 to 50 ug/m?> and even more severe concentrations.
These values are juxtaposed against the “recommended long- and short-term AQG levels
and interim targets” as stipulated by the World Health Organization [53]. Conversely,
from mid-May to mid-October, concentrations tend to be relatively lower, primarily falling
within the range of the AQG level (0 to 15 pg/m?) and Interim Target 3 (25 to 37.5 pg/m?).
Figure A2 presents the corresponding results according to the ambient air quality standards
issued by the Ministry of Ecology and Environment of the People’s Republic of China [54].

Figure 4 shows the spatial distribution of the PM; 5 concentration in Xi’an for the year
2021. It visualizes both annual data and quarterly variations. With respect to the annual
tendencies, heightened PM; 5 concentrations are noted in the northwestern sectors of the
city, whereas comparatively diminished levels are observed in the southeastern reaches.
During the nighttime, PM, 5 concentrations are higher in the northwest and lower in the
southeast of the city, while PM; 5 concentrations are higher in the center of the city in
the daytime. In the southeast, the daytime and nighttime concentrations are relatively
similar. Conversely, the daytime concentrations are significantly lower than the nighttime
concentrations in the northwest.

Quarterly fluctuations in the spatial distribution patterns of the PM; 5 concentration
are observed. In the first quarter, the distribution pattern shows higher concentrations
in the west and lower concentrations in the east. In the second and third quarters, a
southward dip in concentrations is observed, with concentrations radiating outward to
the surrounding areas. In the fourth quarter, the distribution pattern aligns with the
annual trend, exhibiting lower concentrations in the southeast and higher concentrations
in the northwest. According to the analysis of diurnal variations, significant differences
existed between daytime and nighttime concentrations in the first and fourth quarters.
In the second and third quarters, the daytime and nighttime concentrations exhibit less
pronounced differences; however, the nighttime concentrations in the southern part of
the city are surprisingly lower than the daytime concentrations, which is contrary to the
observed annual pattern. Furthermore, the daytime PM; 5 concentrations are greater than
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the nighttime PM, 5 concentrations in the third quarter, which is also contrary to the
observed annual pattern.

Estimated PM, ; Concentration (ug/m?)

Entire day (pg/m>) Daytime (pg/m’) Nighttime (pg/m’®)
60 60 60
40 40 40
20 20 I 20
o o o
Su M Tu W Th F Sa Su M Tu W Th F Sa Su M Tu W Th F Sa
AVg 45 45 47 49 51 52 46 44 42 47 48 51 50 44 44 48 47 50 51 53 50
2021 2021 2021
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o AQGlevel 15 Interim Target4 25 Interim Target3 37.5 Interim Target2 50 Interim Target1 75 Worse (pg/m?)

Figure 3. Temporal distribution of the PM; 5 concentration across 2021, depicting the daily, weekly,
and weekly mean variations in the PMj 5 concentration. The breaks and labels of PM; 5 concentration
adhere to the guidelines established by the World Health Organization [53]. The “entire day”
corresponds to 00:00 to 23:59; “daytime” spans from 9 a.m. to 6 p.m.; and “nighttime” encompasses
the hours from 12 a.m. to 6 a.m. The definitions of daytime and nighttime align with those used for
mobile phone data. This chart was created using the Calendar Chart Template from Vertex42.com [55].
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Figure 4. Spatial distribution of the PM; 5 concentration in Xi’an in 2021. To account for the significant
differences among quarters, the color bar ranges are consistent within each quarter (or for annual
subplots). Q1 to Q4 refer to quarters 1 to 4, respectively. The “entire day” corresponds to 00:00 to
23:59; “daytime” spans from 9 a.m. to 6 p.m.; and “nighttime” encompasses the hours from 12 a.m.
to 6 a.m. The definitions of daytime and nighttime align with those used for mobile phone data.

3.2. Environmental Inequality in Terms of PM, 5 Exposure

Figure 5 illustrates the spatial distribution of the percentage of nonlocal residents
in the four quarters of 2021 and housing price (CNY/m?) for the same year. The spatial
distribution of the percentage of nonlocal residents reveals a distinct pattern, with elevated
values in the northwestern sector and diminished values in the southeastern sector. Housing
prices display a characteristic centralized distribution pattern. Notably, three clusters with
low values are observed in the northwestern, northern, and eastern sections of the urban
area, while the southern and northeastern parts of the city exhibit three clusters with
high-value concentrations.
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Figure 5. Spatial distributions of the independent variables. (A) The estimated housing price in 2021
(using data from 11 March 2023); (B) the percentage of nonlocal residents in 2021; (C) the percentage
of nonlocal residents in 2021 quarter 1; (D) the percentage of nonlocal residents in 2021 quarter 2;
(E) the percentage of nonlocal residents in 2021 quarter 3; (F) the percentage of nonlocal residents in
2021 quarter 4.

As indicated in Table 1 and Figure 6, the percentage of nonlocal residents and the
housing price both exhibit significant global and local spatial autocorrelation, suggesting
the reasonableness of using GWR models. Figure A3 displays the bivariate relationship
between independent and dependent variables, suggesting the potential for both linear
and polynomial relationships. In response to this, an exhaustive enumeration of parameter
combinations was conducted, encompassing variable relationships (linear, quadratic, or
cubic) and bandwidth parameters (including bandwidth adaptivity, optimization method,
and geographical weighting function). A comparative assessment of their goodness of
fit was executed, with the findings presented in Table S1. The results reveal that the
incorporation of polynomial relationships does not confer a superior fit for the models.
Consequently, linear models, specifically Models 1, 2, and 3, as per Equation (2), were
selected for their optimal balance of fit and interpretability. The parameters of these chosen
models are presented in Table S2.
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Spatial Lag

Table 1. Global Moran’s I of independent variables.

Variable Moran’s I Z Score p Value
Estimated housing price in 2021 0.751 62.665 0.000
Percentage of nonlocal residents in 0.652 58.688 0.000
year 2021
Percentage of nonlocal residents in 0.600 50.443 0.000
2021 quarter 1
Percentage of nonlocal residents in 0.628 52 484 0.000
2021 quarter 2
Percentage of nonlocal residents in
2021 quarter 3 0.730 65.472 0.000
Percentage of nonlocal residents in 0.650 58.252 0.000

2021 quarter 4
Parameters used in ArcGIS Pro tool Spatial Autocorrelation (Global Moran’s I) (Spatial Statistics Tools): Concep-
tualization of Spatial Relationships: FIXED_DISTANCE_BAND; Distance Method: EUCLIDEAN_DISTANCE;

Standardization: ROW; Distance Band or Threshold Distance: 2341.
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Figure 6. Moran’s scatterplots and Anselin Local Moran’s I for the independent variables. (A) The
estimated housing price in 2021 (using data from 11 March 2023); (B) the percentage of nonlocal
residents in 2021; (C) the percentage of nonlocal residents in 2021 quarter 1; (D) the percentage of
nonlocal residents in 2021 quarter 2; (E) the percentage of nonlocal residents in 2021 quarter 3; (F) the

percentage of nonlocal residents in 2021 quarter 4.

Figure 7A—C present the results of GWR models investigating spatiotemporal patterns
of inequality in PM; 5 exposure, regarding the percentage of nonlocal residents and housing
prices, across the city. Positive significance indicates greater PM; 5 exposure in areas with a
greater percentage of nonlocal residents, as shown in Figure 7A,B. Conversely, negative
significance denotes areas with reduced housing prices correlating with increased PM; 5
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exposure, as shown in Figure 7C. The inequality related to the percentage of nonlocal
residents is particularly pronounced in the northwestern and southern sectors of the city,
which are characterized by lower housing prices, as identified in Figure 5. The inequality
related to housing prices is observed in various urban regions, indicating a more complex
spatial dynamic. Figure 7D,E graphically represent the robustness of the inequality pattern
(i.e., significant outcomes observed in quarterly regressions), particularly focusing on the
daytime and nighttime percentages of nonlocal residents exposed to PM; 5, respectively.
The consistency of spatial distributions of daytime and nighttime PM, 5 exposure inequality
patterns across different quarters suggests the robustness of the observed trends. Notably,
nighttime patterns display more enhanced robustness than daytime patterns. Hence,
Figure 7D,E illustrate that the choice of which days to select has a slight impact on the
results presented in Figure 7A,B.
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Figure 7. Localized PM; 5 exposure inequality pattern and sensitivity analysis. (A) Results of Model
1, regarding daytime PM; 5 concentration and the percentage of nonlocal population. (B) Results
of Model 2, regarding nighttime PM; 5 concentration and the percentage of nonlocal population.
(C) Results of Model 3, regarding nighttime PM, 5 concentration and the secondhand housing price.
(D) Sensitivity analysis based on Model 4, regarding daytime PM, 5 concentration and the percentage
of nonlocal population in quarterly data. (E) Sensitivity analysis based on Model 5, regarding
nighttime PM, 5 concentration and the percentage of nonlocal population in quarterly data.

4. Discussion
4.1. Principal Findings

This study conducted a microscale analysis of PM; 5 exposure variability within
Xi'an city, leveraging housing price and mobile phone data to explore the correlation
between PMj, 5 concentrations and pivotal social determinants: citizenship identity and
socioeconomic status. The findings indicate that residents lacking local registration exhibit
increased exposure to PM;, 5. Additionally, the research uncovers a mitigating effect of
elevated socioeconomic status, which may afford individuals the agency to select residences
in areas with reduced PMj; 5 concentrations. This suggests a social gradient in air pollution
exposure, with implications for environmental justice and urban planning.
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4.2. Comparison with Previous Work

This research augments the burgeoning literature on environmental inequality in
the context of air pollution exposure. A number of recent studies have endeavored to
elucidate the environmental inequality in air pollution exposure in China [10,22-25,30].
At the macroscale (e.g., national scale), existing studies have predominantly discovered
correlations between spatial distribution of PM; 5 concentration and regional population
density and land cover types, among several others [28,56].

At the urban scale, research (e.g., studies focused on Beijing, Nanjing and Wuhan) has
found the association between PM, 5 concentration and walkability of streets, land uses, and
found that air pollution exposure risks for children and the elderly are uneven [10,23,57].
Studies in China found that the risk of PM; 5 exposure varies with age, income, gender,
etc. [22,57]. Notably, the elderly, who experience higher risk of air pollution exposure, are
mainly located in the central and peripheral urban zones [10]. ]. Chen et al. [58] found that
risk of environmental pollution exposure of residents varies with migration status, and
migrants from rural places have higher risk of environmental pollution exposure. However,
the study was aimed at the national scale, and there is a lack of understanding of the
microscale variation within the city.

Our study bridges this gap by dissecting the environmental inequality in PM; 5 expo-
sure at grid scale. We have unveiled the spatial distribution of PMj 5 concentration and their
associations with social strata and citizenship identity of the ambient population at a grid
scale. This microscale analysis complements the national-level studies by extending the
discourse to include the intricate relationship between an individual’s socioeconomic status
and citizenship, and their exposure to air pollution risks. This approach provides a more
nuanced understanding of environmental inequality, transitioning from a macroscopic
perspective to a more localized scale.

4.3. Practical Implications

Our findings suggest that the observed environmental inequality in PM; 5 exposure in
Xi’an can be partly attributed to historical and ongoing disparities in urban planning. While
the specific reasons behind these disparities require further investigation, our analysis of
the city’s general master plan (2008-2035) reveals a persistent neglect of the northwestern
sector, characterized by an absence of environmental amenities, such as green belts, and
a dearth of access to vital public services [59,60]. This neglect has rendered the area’s
residents susceptible to the adverse effects of air pollution, reflecting a broader pattern of
environmental injustice where marginalized communities are disproportionately affected
by environmental hazards.

The spatial distribution of PM, 5 exposure may also be influenced by social dynamics,
with nonlocal residents potentially forming residential clusters due to weaker social ties
or cultural integration with the local community [61,62]. The concentration of nonlocal
residents in the northwestern district, exacerbated by limited policy focus and economic
development, further contributes to the environmental inequality.

To address these intertwined issues, a comprehensive and multifaceted strategy
is warranted:

Housing affordability issue in less polluted areas. Introduce financial assistance
programs and subsidies aimed at making housing in less polluted areas accessible to
low-income nonlocal residents. Additionally, invest in affordable housing development
in less polluted areas to alleviate the concentration of vulnerable populations near pollu-
tion sources.

Mitigating pollution sources in the northwestern district. Implement stricter envi-
ronmental regulations for industries in the northwestern district to curtail PM; 5 emissions.
Promote sustainable development through investment in clean technologies and alterna-
tive energy sources, and consider the strategic relocation of polluting industries to less
populated industrial zones.
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Enhancing public services in less developed areas. Direct investment towards
infrastructure improvements in underdeveloped areas, with an emphasis on public trans-
portation, healthcare facilities, and educational opportunities. The development of green
spaces and parks can simultaneously enhance air quality and offer residents access to
recreational spaces.

Promoting social integration and reducing discrimination. Enact antidiscrimina-
tion policies to protect nonlocal residents from biased housing practices, and ensuring
equitable access to opportunities regardless of their citizenship status. Encourage social
integration programs to build a cohesive community with a collective commitment to
environmental health.

Utilizing environmental justice frameworks in urban planning. Embed principles of
environmental justice into urban planning frameworks to ensure a just distribution of envi-
ronmental resources and to mitigate the disparate impacts of environmental hazards across
different socioeconomic and citizenship groups. Mandate comprehensive environmental
impact assessments for new developments to evaluate and balance air quality implications
and environmental benefits equitably.

These policy recommendations, grounded in the study’s findings, necessitate a nu-
anced understanding of local contexts, collaborative efforts among diverse stakeholders,
and vigilant monitoring to ensure their efficacy in redressing environmental inequalities.

4.4. Strengths and Limitations

This study presents a useful attempt to quantitatively evaluate the fine-scale disparities
in air pollution exposure predicated on social strata and citizenship identity. Our empirical
study affirms the viability of examining the spatial variation of air pollution exposure at grid
scale. Two important measures, citizenship identity and social stratum, can be quantified
using mobile phone big data. To be specific, the citizenship identity can be quantified
using the percentage of nonlocal population residing in a grid, and social stratum can be
operationalized as socioeconomic status and measured by the average price of secondhand
houses within in a grid.

Despite the study’s contributions, it is circumscribed by limitations that set the stage
for future research. The findings are limited to the grid scale, which warrants exploration
of more discrete geographical entities such as subdistricts and microdistricts to attain a
heightened level of granularity. Additionally, the research’s scope did not encompass
occupational-based inequalities due to an absence of professional data on residents, under-
scoring the need for multifaceted data sources in subsequent studies.

The utilization of housing prices as an index of socioeconomic status is not without
its challenges, particularly given the constraints in procuring data for the year 2021. The
COVID-19 pandemic’s variegated effects on housing prices further complicate the use
of 2023 data as a proxy for the preceding year. While the robust correlation coefficient
of 0.7449 between the average housing prices of 2021 and March 2023 at the subdistrict
level substantiates the study’s data strategy (as detailed in Appendix B), the acquisition of
historical data remains an imperative for future research endeavors.

Furthermore, the calculation of the nonlocal resident ratio is currently anchored in
data from a mere eight days, casting uncertainty over the established weekday-weekend
pattern. Although sensitivity analysis indicates minimal impact from the specific days
selected, a more expansive temporal framework is advisable for future research to solidify
this metric. Lastly, the potential influence of unaccounted confounding factors on PM; 5
exposure cannot be discounted, necessitating the integration of a wider array of variables
in forthcoming studies to deepen our comprehension of this intricate phenomenon.

5. Conclusions

This study elucidates the environmental inequality pertaining to PM; 5 exposure in
Xi’an, with a particular focus on the inordinate burden shouldered by nonlocal residents in
the city’s northwestern quadrant. A stark contrast is observed in the PM; 5 concentrations



ISPRS Int. ]. Geo-Inf. 2024, 13, 257

16 of 22

experienced by these residents as opposed to those inhabiting the southern regions, who are
generally characterized by higher socioeconomic status and are favored with improved air
quality. Our paper identifies citizenship identity and social strata as key factors contributing
to the observed inequality. Furthermore, we explored potential underlying causes related to
historical and ongoing disparities in urban planning and the hukou system, which can limit
access to opportunities and resources based on residency status. This research contributes to
a growing body of knowledge on environmental justice, highlighting the complex interplay
between social and spatial factors in shaping environmental exposure risks.

In sum, this research provides a spatial lens through which to view the social inequali-
ties engendered by identity, power, and economic factors, as reflected in PM, 5 exposure
levels in Xi’an. By acknowledging the limitations and identifying areas for future research,
this study sets the stage for the advancement of efficacious strategies aimed at redressing
environmental inequalities and promoting a more just and equitable urban milieu that is
sensitive to the environmental rights and wellbeing of all its inhabitants.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijgi13070257 /s1, Figure S1: Bivariate relationship between PM; 5
concentration and the percentage of nonlocal population; Table S1: Parameter and goodness of fit of
all models; Table S2: Parameter and goodness of fit of selected models.
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Appendix A. Explanation of Variables Selection

For residents in China’s big cities, whether they hold a household registration system
is an important factor in whether they can buy a home and in which geographical area they
can buy a home. The hukou system pointed out in this paper as a phenomenon of social
strata division in China’s big cities has been proved by many existing studies (e.g., [63—65]).
The impact on the purchase of housing is mainly reflected in the following aspects:

Whether residents have local hukou directly affects the eligibility of residents to buy a
house. Since the 2010s, all major cities have had limited home purchase policies. Most big
cities have restrictions on who can buy a home, and one of the most important restrictions
is household registration. Nonresidents usually need to meet certain conditions to buy a
home, such as paying local social security or personal income taxes for a certain number of
years. The vast majority of mainstream cities only allow qualified nonresident residents to
settle down and, thus, qualify for a house purchase.
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In addition, even for some urban residential areas which can allow nonregistered
people to buy homes, they still bear higher loan rates and down payments than registered
residents. For example, Notice of the People’s Bank of China on Adjusting the Policy on Personal
Housing Loans [66] stipulates that the down payment ratio of nonregistered residents to
buy a first home shall not be less than 35%, and the loan interest rate shall not be less than
1.1 times the benchmark interest rate. Another example is Notice on Adjusting and Optimizing
the Standards for Ordinary Housing and Personal Housing Loan Policies in Beijing [67], which
stipulates that nonhousehold resident families must pay social security or personal income
tax for five consecutive years when purchasing a house in Beijing.

Another example is that in the same city, different residents enjoy completely different
public services. Registered residents can enjoy more public services, such as children’s
education and medical security. For example, the Compulsory Education Law of the People’s
Republic of China stipulates that school-age children and adolescents at the stage of com-
pulsory education shall only receive education in schools where their “hukou registration
is located”. In addition, in many mainstream cities, many benefits, including pension
insurance and unemployment insurance, are also highly tied to household registration.

Finally, the segregation of economic and social status caused by the household reg-
istration system causes the different economic status of different groups, and also affects
the economic ability of more nonlocal residents to buy property in areas with better public
services. The first is the barrier to migration: the household registration system restricts
the freedom of migrant workers. Many are unable to move to higher-paying areas and
attain better-paying formal jobs. Forced to perform more manual labor in big cities, they
are confined to the primary labor market, known as “migrant workers”, and are destined
to struggle to buy better-served property. The existing high housing prices may cause the
labor force to be unable to find long-term stable employment in the place of employment,
and further aggravate the differentiation of social strata.

Appendix B. Explanation of Using House Price Data in 2023

Currently there are two methods to obtain the house price data: (1) online map services
(e.g., API of Ke.com), and (2) the list of house sales (e.g., Web Pages of Anjuke.com). The
advantage of Method 1 is that the collected data contain spatially referenced information
that can be spatially matched with other spatial data used in this analysis, whereas the
disadvantage is that we can only obtain real-time house prices; the historical house price
data are not available. Method 2, on the contrary, is characterized by its capacity to yield his-
torical data. However, this method is encumbered by the limitation that the data procured
lack spatial referencing, a critical component for spatial analysis. Moreover, despite the
inclusion of geographic textual descriptors within the dataset obtained through Method 2,
the nonstandardized structure of this textual information poses significant challenges. The
alignment of such data with that derived from Method 1 is rendered infeasible owing
to these structural discrepancies. Additionally, the prevalent challenges associated with
geocoding in the context of Chinese-based geospatial data are widely acknowledged within
both industrial and academic spheres. Consequently, after a thorough evaluation of the
methodological constraints and data integrity considerations, the utilization of data sourced
via Method 2 was deliberately eschewed in favor of alternative datasets that better align
with the spatial analysis requirements of our research.

As supplementary support for adopting Method 1, we conducted a correlation analysis
on the historical data obtained through Method 2. These are subdistrict-level data, and
after removing missing values, a total of N = 118 subdistricts located in the study area were
taken into analysis. In the correlation analysis, X is the housing price of the subdistrict in
March 2023, and Y is the average housing price of the subdistrict in 2021. We find that
the correlation between X and Y is 0.7449. The high degree of linear correlation ensures
the validity of the direction and significance of the GWR coefficients, as we only focus on
the relative size of the coefficients rather than absolute size. This can serve as proof of the
rationality of our data collection method.
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Appendix C. Figures

Annual Electricity Consumption (2007-2021)
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Figure A1l. The annual electricity consumption and its year-on-year annual change from 2007 to 2021.
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Figure A2. Temporal distribution of the PM; 5 concentration across 2021, depicting the daily, weekly,

and weekly mean variations in the PMj 5 concentration. The breaks and labels of PM; 5 concentration

adhere to the guidelines established by the Ministry of Ecology and Environment of the People’s

Republic of China [54]. The “entire day” corresponds to 00:00 to 23:59; “daytime” spans from 9 a.m.

to 6 p.m.; and “nighttime” encompasses the hours from 12 a.m. to 6 a.m. The definitions of daytime

and nighttime align with those used for mobile phone data. This chart was created using the Calendar
Chart Template from Vertex42.com [55].
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Figure A3. Bivariate relationship between PM; 5 concentration and the percentage of nonlocal
population and house price. (A) The daytime PM; 5 concentration~the percentage of nonlocal.
(B) The nighttime PM, 5 concentration~the percentage of nonlocal population. (C) The daytime
PM, 5 concentration~housing price. Smooth lines are fitted using linear regression and polynomial
regression, respectively. The “daytime” spans from 9 a.m. to 6 p.m.; and the “nighttime” encompasses
the hours from 12 a.m. to 6 a.m.
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