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Abstract: Human mobility data are crucial for transportation planning and congestion management.
However, challenges persist in accessing and using raw mobility data due to privacy concerns and
data quality issues such as redundancy, missing values, and noise. This research introduces an
innovative GIS-based framework for creating individual-level long-term spatio-temporal mobility
data at a city scale. The methodology decomposes and represents individual mobility by identifying
key locations where activities take place and life patterns that describe transitions between these
locations. Then, we present methods for extracting, representing, and generating key locations and
life patterns from large-scale human mobility data. Using long-term mobility data from Shanghai,
we extract life patterns and key locations and successfully generate the mobility of 30,000 virtual
users over seven days in Shanghai. The high correlation (R² = 0.905) indicates a strong similarity
between the generated data and ground-truth data. By testing the combination of key locations and
life patterns from different areas, the model demonstrates strong transferability within and across
cities, with relatively low RMSE values across all scenarios, the highest being around 0.04. By testing
the representativeness of the generated mobility data, we find that using only about 0.25% of the
generated individuals’ mobility is sufficient to represent the dynamic changes of the entire urban
population on a daily and hourly resolution. The proposed methodology offers a novel tool for
generating long-term spatiotemporal mobility patterns at the individual level, thereby avoiding the
privacy concerns associated with releasing real data. This approach supports the broad application of
individual mobility data in urban planning, traffic management, and other related fields.

Keywords: individual mobility generation; life pattern; travel pattern; GIS; human mobility

1. Introduction

The widespread adoption of smartphones and the availability of signaling data from
these devices have provided detailed and accurate information on individual mobility char-
acteristics [1]. This type of data represents users’ daily travel behaviors, playing a crucial
role in aspects such as residential travel surveys and transportation demand forecasting [2].
Through the fusion and analysis of multisource data, the precise analysis of individual
travel characteristics can be achieved, facilitating multiscale spatio-temporal transportation
demand analysis and prediction [3,4]. Human mobility data are of significant importance
for applications in urban transportation planning, the prediction and simulation of infec-
tious disease spread, crime risk assessment, crowd gathering warnings, and evacuation
planning [5,6].

Despite the ease of collecting large-scale individual mobility positioning data facili-
tated by modern Information and Communication Technology (ICT) developments, the
availability and usability of raw mobility data, which often involve personal privacy and
contain redundancy, missing values, and noise, remain considerably limited [7]. Real-world
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human mobility data contain sensitive information, such as individuals’ workplaces, home
addresses, and even hospital visit records, which hinders their widespread use. Therefore,
it is necessary to develop a practical technique that addresses these privacy issues while
releasing mobility datasets. Additionally, large-scale mobility data are often difficult to
obtain. By generating synthetic mobility data, we can acquire extensive urban mobility data,
providing a crucial foundation for urban planning and management. Recent research found
that synthetic data could be better than real data, as real data come with issues beyond
privacy considerations, such as being expensive to produce and maintain, emphasizing
the potential of machine-generated datasets in protecting privacy and addressing data
skewness [8]. It advocates for the acceptance and embrace of data generation technologies
and their implications by researchers and the public.

Current mobility generation models primarily focus on predicting aggregated mobility
flows between regions (OD predictions) and pay insufficient attention to generating long-
term continuous mobility tasks at the individual level. Furthermore, these models often
lack sufficient spatial generalization and transfer capabilities, which presents challenges in
accurately simulating individual mobility across diverse contexts.

Some studies have discussed individual travel patterns, uncovering significant regu-
larities in personal mobility. Attempts have also been made to extract and categorize the
presence patterns from real-world mobility data. The discussion of individual character-
istics of the behavioral pattern in these studies can be leveraged to generate individual
mobility. The emergence of individual-level spatiotemporal data, alongside the develop-
ment of key technologies such as deep learning, multiagent simulation, and AI-generated
content (AIGC) models, provides reliable support and assistance in addressing the chal-
lenges and breaking through the bottlenecks in this field.

To address the aforementioned issues, this study introduces a GIS-based framework
for city-scale individual-level long-term spatiotemporal mobility generation. This novel
approach seeks to synthesize the regularities and variabilities in human mobility, harnessing
the power of advanced computational techniques to create more accurate and privacy-
preserving models of urban movement, thus contributing to the nuanced understanding
and prediction of transportation dynamics in urban environments.

2. Related Works

Recent research has investigated travel patterns by analyzing mobility data, which
incorporate various data types such as travel surveys [9], GPS [10], and mobile phone
data [11]. Conventional survey data collected through censuses or interviews typically
cover details such as origin destination, time, purpose, and mode of transportation. For
example, Lidbe et al. studied long-distance travel among the elderly in the United States
using NHTS data from 2001 and 2017, with a specific focus on sociodemographic factors
and travel influences [12]. However, these methods are expensive and come with a limited
sample size, leading scholars to look for alternatives such as GPS logs.

GPS logs containing time, location, altitude, direction, and speed play a vital role in
the analysis of travel behavior. Wang et al. utilized GPS information along with network
analysis to reveal patterns in human mobility [13]. It is important to note that social
demographic data might be lacking in this analysis. The data of smart cards, which provide
detailed transaction and travel information, are valuable for traffic modeling purposes.
Jiang et al. conducted a study on public transport behavior in Stockholm by applying
K-means and Gaussian models to data from three million smart card users, leading to the
identification of 10 distinct travel patterns [14].

Mobile phone data, which include location, call records, time, and dates, offer a
broader, more objective, and continuous source of travel information. This advantage has
led to their increased use in the analysis of both individual and collective mobility patterns.
González et al. conducted a study on regular human movement over a six-month period
using data from 100,000 phone users [15]. Furthermore, Kung et al. utilized mobile phone
call detail records (CDRs) to identify work and home locations, and by analyzing sleep
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times, investigated the distribution of the population and commuting patterns in Bangkok.
Individuals often demonstrate consistent patterns in their long-term travel behavior, and
extracting these patterns from mobility data is essential to predict human mobility and
generate travel routes [16].

Research on predicting individual mobility has traditionally been categorized into
two main approaches: traditional methods and deep learning models [17,18]. Traditional
models typically employ time-series techniques to capture temporal and spatial transitions;
however, they often fail to capture deep data, resulting in inconsistencies. On the other
hand, deep learning models, particularly recurrent neural networks (RNNs), have attracted
attention for their ability to handle intricate sequences [19]. For example, a standard RNN
architecture was utilized to model sparse user mobility [20]. Furthermore, the deep wide
space–time-based transformer network (DWSTTN) was developed to encode geographical
data from semantic locations, enabling the prediction of precise coordinates and the next
destination [21]. Moreover, the DeepJMT model, a context-aware deep learning approach,
integrates hierarchical RNNs, spatial and periodic context extraction mechanisms, and
social and time co-attention mechanisms to predict both the next location and arrival time
simultaneously [22].

In terms of generating individual mobility data, research encompasses mechanistic
models and machine learning approaches. Mechanistic models quantitatively analyze
spatiotemporal events, establishing models such as exploration and preference return
models [23–25]. Song et al. introduced a machine learning method that learns from real
data, overcoming the limitations seen in early methods such as Markov models [26]. Deep
learning techniques such as long short-term memory (LSTM) have been developed to
address issues like vanishing gradients. In addition, generative adversarial networks
(GANs), variational autoencoders (VAEs), and diffusion models have been introduced to
create realistic mobility data. For example, TrajGen uses GANs and Seq2Seq models to
produce artificial mobility datasets while maintaining essential statistical characteristics [27].
Long et al. proposed a mobility generator involving the VAE of the user and the VAE of the
mobility to collectively capture the distribution of the user and model intricate individual
movement patterns [28]. Zhu et al. applied the diffusion model to generate high-quality
mobility based on the spatio-temporal features of real data through forward and reverse
processes [29]. Although mobility generation effectively addresses data privacy concerns,
it faces challenges when implemented at the large-scale city level.

Although advances in mobility prediction technologies have shown considerable
research advancements and great potential for applications in traffic demand analysis,
there is still room for improvement in existing models. One key challenge lies in predicting
long-term spatio-temporal mobility. Present research primarily centers on forecasting
the subsequent location based on current individual spatiotemporal position information
sequences, thereby somewhat restricting its applicability. Furthermore, the practical im-
plementation of large-scale urban individual travel prediction and traffic demand analysis
encounters limitations. The intricate urban setting and fluctuating traffic conditions pose
notable challenges for prediction models when handling large datasets.

To bridge research gaps, our study aims to integrate multisource big data with ad-
vanced deep learning mobility prediction technology. This integration aims to accurately
forecast the spatiotemporal dynamic distribution of urban populations and individual
travel mobility. Subsequently, our focus is on providing detailed predictions and in-depth
analyses of traffic demand in key urban areas. The research seeks to offer fine-grained
real-time decision support for urban traffic planning and management.

3. Methodology
3.1. Framework of Long-Term Mobility Generation

The generation of long-term individual-level mobility data is a complex process in-
volving the continuity and complexity of both temporal and spatial dimensions. Currently,
there is limited research on the generation of long-term individual-level mobility, and
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existing studies exhibit significant disparities between model inputs and outputs, which
poses challenges for accurately generating mobility data. As a preliminary step, this paper
defines two primary application scenarios and analyzes their respective characteristics
and requirements:

Scenario One: mobility de-identification and data expansion
Original individual mobility data contain highly sensitive personal privacy informa-

tion and are highly regulated in most countries and regions. At the same time, due to
constraints such as data collection methods and the market share of mobile operators, it is
often challenging to obtain mobility data for all individuals in a city. Hence, there is a need
for mobility deidentification and data expansion from a subset of samples to the entire
population. In this application scenario, the purpose of mobility generation is to extract
non-sensitive information from real-world mobility data while preserving the core features
of mobility information, in order to closely approximate real data at both the temporal
and spatial aggregation levels. The generated mobility can be used to analyze the travel
demands and mobility behaviors of the real population, which are of significant importance
for urban planning and transportation management.

Scenario Two: Cross-regional transfer generation
Acquiring real-world individual mobility data can often be challenging. In areas where

original mobility data are not available, mobility generation models trained elsewhere
can be applied to produce data for these areas. Such tasks typically rely on inputs such
as infrastructure distribution, Points of Interest (POIs), land use, traffic surveys, and
population censuses to generate synthetic mobility. The quality and completeness of
these input data directly influence the spatio-temporal accuracy of the generated mobility.
Therefore, effectively utilizing these data and enhancing the model’s ability to handle them
are key aspects of cross-regional transfer generation tasks.

The model’s inputs vary depending on the two types of scenarios. The purpose of
this study is to propose a framework for long-term mobility generation that can adapt to
the resolution of these two scenarios. Within the proposed framework, the quality of the
generated mobility depends on the richness of the input data. When training the model
with real-world mobility input, the model is capable of producing synthetic mobility that
closely resembles real-world mobility at the aggregation level.

The core premise of the methodology posits that long-term individual mobility infor-
mation can be effectively represented by a combination of key locations (indicating where
an individual participates in various activities) and life patterns (indicating the transitions
between these activities).

Key locations are fundamental to understanding individual mobility, acting as pivotal
anchor points in daily life. This concept resonates with the “anchor point theory” pro-
posed in 1978, which explains the formation and mechanism of human activity spaces [30].
According to this theory, individuals in unfamiliar environments, such as a new city,
initially seek out primary nodes like housing and workplaces—these are their anchor
points. Subsequently, secondary nodes and the pathways connecting them, such as the
route to work or facilities around the home, are recognized and incorporated into their
activity space. This process gradually expands and enriches their activity space, ulti-
mately forming a hierarchical cognitive structure. Key locations, therefore, are not merely
isolated points but are central to the formation of an individual’s understanding and
navigation of their environment. They define the primary contexts of activities—such
as home, work, entertainment, business, etc.—and inherently possess a relational aspect
for each individual. For example, u represents the user index, and the identified key
locations are Hu = {H(1,u), H(2,u), H(3,u), . . . , H(j1,u)}, Wu = {W(1,u), W(2,u), . . . , W(j2,u)},
Ou = {O(1,u), O(2,u), . . . , O(j3,u)}, representing the key locations for user u.

Life patterns, on the other hand, delve into the fluid nature of daily routines, capturing
how individuals transition between key locations over time. These patterns are pivotal in
understanding personal mobility, as they encapsulate not just the physical movements but
also the underlying behaviors and decisions that guide these movements. Life patterns
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reflect the intricacies of personal routines, from the choice of routes and the timing of
movements to the frequency of visits to certain locations. For instance, the probability
of an individual moving from a type A location (e.g., home) to a type B location (e.g.,
work) at a given time illustrates the predictive aspect of life patterns in daily routines. For
instance, m represents the index of the day, and Nm represents the total number of days.
L(m,u) = {L0

m, L1
m, L2

m, . . . , L23
m | Lh

m ∈ {Hu, Wu, Ou}} indicates the locations of individual u
over 24 h on day m. The long-term life pattern of individual u over Nm days is represented
as Lu = {L(0,u), L(1,u), L(2,u), . . . , L(m,u) | m ∈ {0, . . . , Nm − 1}}. Lu ∈ L denotes the long-
term life patterns of multiple users.

The combination of key locations and life patterns offers a comprehensive expression
of individual long-term travel behavior patterns, encapsulating the essence of personal
mobility in urban contexts (see Figure 1). The generation of individual mobility involves
extracting key locations and life patterns from the large-scale mobility data of the city,
employing mobility generation algorithms, and ultimately generating mobility that does
not contain individual private data.

Figure 1. Concept of mobility generation based on individual key location and life pattern.

For the two scenarios mentioned earlier, we designed a long-term mobility generation
algorithm. The model of this study is divided into three modules:

1. Module 1, key location and life pattern extraction: Extracting real-world mobility
into structured representations of stay points (key locations) and activity patterns
(life patterns).

2. Module 2, key location and life pattern generation: Generating key locations and life
patterns of virtual individuals using a radiation model for key locations and sampling
through SVD dimensional reduction for life patterns.

3. Module 3, mobility reconstruction: Reconstructing a complete long-term virtual
mobility sequence from key locations and life patterns.

The general framework of the model is shown in Figure 2.
For Scenario 1, the process involves Module 1 + Module 3, where real key locations

and life patterns are extracted from real data, then sampled and combined to create virtual
mobility data. Key locations, such as work locations, residences, and other places, are
extracted from real trajectories. Life patterns represent the transition probabilities between
different locations for individuals, also derived from real trajectories. Using these key
locations and life patterns, large-scale urban mobility is generated based on the mobility
generation algorithm.
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Figure 2. Methodology framework.

As for Scenario 2, the process involves Module 2 + Module 3. Here, new key locations
and life patterns for the new city need to be regenerated and then sampled and combined
from the generated information to create virtual mobility data. Key locations are esti-
mated using regression models and the radiation model based on POI and other land-use
information. New life pattern matrices are generated using the life pattern generation
method. Urban mobility patterns are created based on the newly generated key locations
and life patterns.

Under this framework, the model structure is flexible and transferable, able to adjust
based on the quality of the input data, and has strong interpretability. Combining these
three modules allows mobility generation tasks to be effectively accomplished in two
different scenarios.

3.2. Key Location Representation and Generation
3.2.1. Extraction and Representation of Key Locations

As defined in the preceding section, key locations serve as the primary anchor points
in an individual’s daily life, delineating the primary contexts of activities. In this paper,
we define key locations as a combination of home, work, and others. Here, we introduce a
rule-based method for identifying an individual’s home, work, and other locations. The
identification process follows a well-established approach in the analysis of human mobility
data [31,32]. The identification method of home, work, and other is illustrated in Figure 3a,
determines these categories based on the duration and timing of the user’s stay at each
location. The identification process proceeds as follows:

1. Home (H): The location where the user stays nightly (from 20:00 to 08:00 the next
morning), on average, exceeds or equals 5 h in 2/3 days during the observation period.

2. Work (W): The location where the user stays on average during the daytime (from 08:00
to 20:00) on workdays exceeds 180 min, and the points are not within the residence.

3. Other (O): The location where the user stays for more than 30 min, apart from the
user’s home and workplace.

For example, in Figure 3b, the identification results of the home and work locations of
two mobile phone users are displayed based on their activities over a one-month period,
with each distinct color representing a unique location. It should be noted that this frame-
work also accommodates scenarios in which there may be multiple locations for residence,
work, and other areas. In the algorithm testing phase of this study, we maintain that users
may have up to 5 home locations, 5 work locations, and 10 other locations. When there is
more demand, the types and number of key locations can be expanded further.

The home and workplace identification algorithm is provided in the TransBigData
Python package [33].
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(a) Identification method of home, work, and other

(b) Identification results of the home and work locations

Figure 3. Identification of key locations.

3.2.2. Key Locations Generation

In the task of mobility generation, each generated individual can sample its key
locations at home, work, and other sites from this distribution.

Key location information involves the single probability and joint probability distri-
butions of home, work, and other locations. These probabilities can be estimated from
transportation surveys, Points of Interest (POIs), land use, road networks, traffic line net-
works, and other infrastructure and thermal data. The quality of key location estimates
varies with the underlying datasets used.

In this study, the generation of key locations is divided into two steps:
Single distribution probability generation: A regression method is used to estimate

the single distribution probability of being at home, work, or other. By analyzing basic data
such as the POI and thermal data in city grids, the distribution of home, work, and other
locations is estimated through a regression model.

Joint distribution probability generation: The joint probability distribution of home,
work, and other combinations is generated using a radiation model. This involves esti-
mating the pairwise joint distribution among home, work, and other locations through
the radiation model, thereby deducing the overall joint distribution from the individual
distributions of HW, HO, and WO.

The general method is shown in Figure 4.



ISPRS Int. J. Geo-Inf. 2024, 13, 261 8 of 20

Figure 4. Distribution estimation of key locations based on radiation model.

To estimate the probability of a single distribution for home, work, and others in a
given location, let X denote a characteristic feature vector (e.g., Points of Interest (POIs),
population density, land use, and road networks) at this location. The functions PH(i),
PW(i), and PO(i) represent the probabilities that a grid i is classified as home, work, and
other locations, respectively. The regression model can be expressed as:

FH(i) = fH(Xi; θH) (1)

FW(i) = fW(Xi; θW) (2)

FO(i) = fO(Xi; θO) (3)

Here, fH , fW , and fO are regression model functions, and θH , θW , and θO are model
parameters. Through this approach, we can predict the likelihood that any location is a
residence, workplace, or other location based on basic urban data.

For joint distribution probability generation, a radiation model is established for esti-
mation. The radiation model serves as a mathematical framework for predicting population
mobility, commuting patterns, and traffic flow (referenced in a Nature paper). The model
is based on the stochastic decision-making process of individuals moving between differ-
ent locations, considering factors such as population distribution, job opportunities, and
distances involved. The core equations of the model are as follows:

FHW(i, j) = Fi
FH(i)FW(j)

(FH(i) + sij)(FH(i) + FW(j) + sij)
(4)
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Among them, Fi represents the number of people in position i who need to go out to
work, which can be expressed as

Fi = FH(i)
∑j FW(j)

∑i FH(i)
(5)

In Equation (4), FHW(i, j) represents the commute flow from the home location i
to the work location j, respectively, and sij represents the total number of employment
opportunities within a circular area with radius rij centered at i, excluding the opportunity
at i and j.

In the radiation model, sij indicates the total population within the circular region
between grids i and j, with a radius of rij, excluding the opportunity at the source i and
the destination j. This term represents the potential employment opportunities available
within a certain distance from the source location i, which is assumed to affect commuting
flow FHW(i, j).

The radiation model’s fundamental concept lies in considering the employment oppor-
tunities in the surrounding areas by individuals when choosing commuting destinations.
The model assumes that the number of employment opportunities in each location is
proportional to the resident population. Individuals search for job opportunities from all
locations, including their own, and select the nearest location that offers better prospects. In
this context, “better” refers to job opportunities with attractiveness or benefits that surpass
the best opportunity available in the individual’s current location.

As we obtain FHW(i, j), we can further estimate the joint probability, which can be
represented as:

PHW(i, j) =
FHW(i, j)

∑i,j FHW(i, j)
(6)

Similarly, PHO(i, k) and PWO(j, k) can be estimated by the same structure.
Furthermore, we can proceed to estimate the joint probability distribution of home,

work, and others:

PHWO(i, j, k) =
FHO(i, k) + FWO(j, k)

∑i,k FHO(i, k) + ∑j,k FWO(j, k)
(7)

This equation represents the probability that the home location i, the work location
j, and the other location k occur simultaneously, given the population distribution and
employment opportunities.

Using this approach, we can estimate the joint distribution of key locations in a new
area, and then sample based on this distribution to generate the key location combinations
for each generated individual.

3.3. Life Pattern Representation and Generation
3.3.1. Extraction and Representation of Life Pattern

Life patterns can be conceptualized through various methodologies, such as matrix
representations, where the probabilities of transitioning between locations are quantified;
temporal networks, which emphasize the timing and sequence of movements; or even
more abstract models that capture the essence of mobility patterns through statistical or
machine learning techniques. Each of these approaches offers unique insights into the
structure and dynamics of life patterns, highlighting different aspects of how individuals
navigate their environments.

This paper adopts a probability-based approach to address the challenge of han-
dling large datasets. It involves analyzing the location data of each user during different
time intervals to calculate the transition probabilities between various locations, thereby
characterizing the life pattern of each user.
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Specifically, the day of a user is divided into multiple time intervals, each with a dura-
tion of ∆t, such as hours or half-hours. By examining the user’s location information during
these intervals and calculating the transition probabilities between different locations, the
following expression can be formulated:

p(l,k,d,t,u) =
N(l,k,d,t,u)

∑l,k N(l,k,d,t,u)
(8)

Here, N(l,k,d,t,u) represents the number of times user u transitions from location type
l to location type k within time window t on a day of type d (for example, weekday
and weekend).

Therefore, the life pattern of an individual u can be represented as a vector as:

LPu = [p(l,k,d,t,u)] (9)

After acquiring the vector LPu for each user, we can combine all user vectors to create
a matrix of life patterns LP that illustrates the life patterns of all users. If there are n users
and each user’s life pattern vector comprises m transition probabilities, the size of the
LP matrix would be n×m, with each row denoting a user’s lifestyle pattern vector. The
mathematical representation can be depicted as:

LP =


LP1
LP2

...
LPn


n×m

(10)

Through the LP matrix, we have recorded the long-term activity pattern information
of all individuals in the city.

3.3.2. Matrix Decomposition-Based Life Pattern Generation

When we need to generate individuals, we only need to generate the lifestyle pattern
vector of individuals according to the pattern of the LP matrix. However, in practical
applications, this matrix is usually very sparse. For example, the life pattern matrix
extracted from real mobile phone data consists of 100,000 rows and 3034 columns, where
the 100,000 rows represent individual users and the 3034 columns represent transition
probabilities. Notably, only 5.33% of the values in this matrix are non-zero. We can use
matrix-dimensionality reduction methods such as SVD, NMF, etc., to extract patterns and
generate individuals based on these patterns. For example, here, we use the SVD method
for decomposition. Performing SVD decomposition on the LP matrix can be represented
as follows:

LP = UΣVT = ∑
i

δiuivT
i (11)

The matrix LP can be decomposed into three main components: two orthogonal
matrices U and V, along with a diagonal matrix Σ. The elements on the diagonal of the
matrix Σ are singular values δi, arranged in descending order. These singular values reflect
the importance or “strength” of different patterns in the data. The matrix U and the matrix
V represent the “patterns” in the user and the transition mode, respectively.

In this decomposition, each term δiuivT
i represents a major pattern in the matrix LP,

where ui is the directional vector of that pattern in the user lifestyle space, and vT
i is the

directional vector of that pattern in the space of transition mode. The singular value δi
indicates the importance or contribution of that pattern. By selecting the first few largest
singular values and their corresponding ui and vT

i , we can approximate the reconstruction
of the LP matrix, capturing the most important patterns in the data while eliminating noise
and unimportant details.
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vT
i represents the basis for individual lifestyle patterns in the original data. These

bases can be seen as the “components” that make up all individual lifestyle patterns. When
generating new individuals, it is possible to keep the V matrix and the Σ matrix unchanged
and use the existing lifestyle pattern bases (i.e., vectors in VT) to construct or generate the
lifestyle patterns of new individuals.

The key to this method is that by adjusting the values in the matrix U, we can generate
new individuals with specific characteristics of the lifestyle pattern. By changing the
values in U, we can adjust the composition of the lifestyle patterns of new individuals
and generate lifestyle patterns with different characteristics. Specifically, when generating
new individuals, a new matrix U can be created as Ũ. The matrix Ũ can be determined by
random generation or specific rules, where each row represents the strength of association
between a new individual and each base vector in VT .

Here, we assume that each column of the matrix U follows a normal distribution.
By extracting the parameters of the normal distribution for each column (i.e., mean and
standard deviation), we can use these parameters to generate a new matrix Ũ and subse-
quently create new individual lifestyle pattern vectors. The following are the specific steps
and formulas:

1. Extract distribution parameters of columns in matrix U: For each column c in the
matrix U, calculate the mean µc and the standard deviation σc of that column. This can be
performed using the following formulas:

µc =
1
n

n

∑
i=1

uic (12)

σc =

√
1

n− 1

n

∑
i=1

(uic − µc)2 (13)

Here, uic represents the element in the i-th row and c-th column of matrix U, and n is
the number of rows in matrix U (i.e., the number of users).

2. Generate a new matrix Ũ: Using the mean and standard deviation calculated for
each column in Step 1, for each column in the new matrix Ũ, we can randomly generate
new elements from a normal distribution. Specifically, for each element ũic in Ũ, it can be
generated using the following formula:

ũic ∼ N (µc, σ2
c ) (14)

Here, N (µc, σ2
c ) denotes a normal distribution with mean µc and variance σ2

c .
Following the above steps, we can generate a new matrix Ũ containing new elements

generated based on the distribution of the original columns in the matrix U. This approach
allows us to generate new individuals with similar distribution characteristics while pre-
serving the original distribution of lifestyle patterns. The newly generated matrix Ũ can be
combined with the original matrices V and Σ to generate new individual lifestyle patterns
using the following formula:

L̃P = ŨΣVT (15)

3.4. Generation of Long-Term Individual Mobility from Key Location and Life Pattern

Reconstructing an individual’s mobility from the life pattern vector involves two
key elements: (1) transition probabilities between stay points, and (2) duration of stay at
each stay point. In this model, the transition probability from one stay point to another
is modeled using a Markov chain-based model, while the duration of staying in a state
is determined by the Gaussian Mixture probability distribution (GMM) fitted based on
individual data statistics.
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Here, the mobility generation model uses a Markov chain model to generate life pattern
sequences, thereby simulating users’ life patterns. The Markov chain model assumes that
the next state of a system depends only on the current state and is independent of previous
states [34]. This assumption simplifies the modeling process of complex systems, making
the model easier to understand and implement. In relevant studies, the Markov chain
model is widely used to simulate and predict individual travel behaviors [35–38].

The individual life pattern vector LPu that was extracted earlier actually records the
probabilities of a user moving from one location to another at different time periods, which
corresponds to the transition probability matrix in the Markov chain model.

For a user u where his or her home, work, and other location is

Hu = {H(1,u), H(2,u), H(3,u), . . . , H(j1,u)} (16)

Wu = {W(1,u), W(2,u), W(3,u), . . . , W(j2,u)} (17)

Ou = {O(1,u), O(2,u), O(3,u), . . . , O(j3,u)} (18)

which presents all key locations of the user u.
For the user states represented as si ∈ Ku = Hu ∪Wu ∪Ou with length m, the state

transition matrix of the individual u at time t on day d is

Mu =


p(s1,s1)

p(s1,s2)
· · · p(s1,sm)

p(s2,s1)
p(s2,s2)

· · · p(s2,sm)
...

...
. . .

...
p(sm ,s1)

p(sm ,s2)
· · · p(sm ,sm)

 (19)

where the transition probability is calculated by vector LPu:

p(i,j,u) =
p(i, j, d, t, u)

∑i,j p(i, j, d, t, u)
(20)

Next, an algorithm is designed to construct individual long-term mobility mobility
based on life pattern sequences and key locations.

In the algorithm, distinct transition matrices Mu are applied for commute and non-
commute days for each individual. Initially, the algorithm initializes the initial state,
including activity type and geographic coordinates. Subsequently, guided by the state
transition probability matrix Mu, the model determines the next state of the user, distin-
guishing between locations such as work, home, or other places. Following this, the model
computes the duration of each state based on its type, determining the start and end hours
of activities, and adding a random time deviation within [−30, 30] minutes to adjust the
start and end times to the minute level. These durations are then incorporated into the
sequence of activity patterns. This iterative process continues until the generated mobility
sequence reaches the specified period. Ultimately, this results in an individual’s travel
chain, encompassing activity types, durations, and geographic positions selected from Ku,
thus capturing the individual’s mobility pattern comprehensively. The overall process of
the algorithm is depicted in Algorithm 1.
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Algorithm 1 Generate long-term mobility

1: Input: Ku: user key location set, Mu: Markov transition matrix of user, StartDate: Start
date, D: Number of days

2: Output: Mobu: Long-term mobility set
3: Initialize user location Loc with location type selected from Mu and position selected

from Ku.
4: for Each day d in range(D) do
5: Determine if d is a workday and the user is a commuter.
6: if It is a commute day then
7: Select work place from Wu.
8: Determine work start and end times based on GMM.
9: Determine if a break is needed within work hours based on GMM.

10: Construct workday mobility with possible breaks.
11: Append segment of mobility into Mobu.
12: else
13: while Current time tc < end of d do
14: selected next location Locnext based on Mu.
15: Infer stay duration δt from GMM.
16: Append segment of mobility from Loc to Locnext into Mobu.
17: Loc← Locnext
18: tc ← tc + δt
19: end while
20: end if
21: end for
22: Output Mobu

4. Case Study and Result
4.1. Data and Study Area

For the research, anonymous data from mobile phone data from Shanghai and Bei-
jing were used for testing. The mobile signaling data used in this study were obtained
from mobile operators and originally gathered for billing and operational purposes. The
Shanghai dataset comprises information from over 27 million users with a daily volume of
approximately 80 million records, covering the period from 13 to 19 November 2023. From
these 27 million users, we randomly selected two groups of 30,000 regular users (those
who stayed more than two-thirds of the days in a month) for comparative validation in our
results. The Beijing dataset includes data of similar quality from November 2023. Each data
record includes various information, such as an encrypted user ID number, the timestamp
of the signal event, and the user’s location coordinates. The user’s location coordinates
were obtained from the latitude and longitude of the nearest connected base station to the
user.

4.2. Results
4.2.1. Mobility Generation from Individual- to City-Scale Dynamic

In this experiment, the model we propose was applied to generate the mobility pat-
terns of 30,000 virtual users over 7 days in Shanghai; the key location and the life pattern
information were sampled from the result identified and extracted from real-world mo-
bility data. The specific format of the generated mobility dataset is presented in Table 1,
which details the specifics of each data entry corresponding to the visit of a user to a
particular location.
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Table 1. Example of generated mobility.

ID Time Longitude Latitude Location Type

1 12 July 2023 00:06:00 121.628705 31.325641 Home
1 12 July 2023 10:24:00 121.651326 31.322228 Work
1 12 July 2023 22:36:19 121.628705 31.325641 Home
1 13 July 2023 08:56:29 121.651326 31.322228 Work
1 13 July 2023 23:52:02 121.628705 31.325641 Home

Figure 5 provides a comprehensive visualization of the generated mobility results,
offering insights into individual and collective mobility patterns within an urban context.

Figure 5a presents the GPS location distribution for a subset of 10,000 users, providing
a snapshot of spatial activity and highlighting high-density areas that often correspond to
residential, commercial, or industrial zones. This spatial distribution is crucial for under-
standing the geographical spread of activities and the interaction of individuals with the
urban environment. Figure 5b focuses on the OD patterns of travel of 100 users during
the same seven-day period, illustrating the diversity of travel behaviors between individu-
als. This component of the analysis reveals the complexity of urban mobility, with each
individual’s movements weaving a unique narrative of daily life and interactions with
the city. Figure 5c selects and details the seven-day OD distribution for four individuals,
showcasing the variability of life patterns between residents. The OD mappings form
polygonal shapes, representing each individual’s activity space, encompassing the residen-
tial, workplace and other locations frequented. This polygonal representation is a graphical
embodiment of the concept of a life pattern, highlighting the regularity and predictability
of individual mobility within the urban tapestry.

From a micro-perspective, the generated results encapsulate distinct life patterns, with
individuals routinely moving between their homes, workplaces, and other destinations in
a manner that reflects their personal routines and preferences, as shown in Figure 6. These
life patterns, manifested through the OD polygons, delineate each individual’s activity
space, offering a visual representation of their daily interactions with the city. On a macro-
scale, the aggregate data from all generated mobility align closely with the actual urban
activity patterns observed in Shanghai. The data show a concentration of activities in the
city center with a dispersal into the suburbs, mirroring the real-life dynamics of urban
sprawl and centralization. This congruence between the generated mobility patterns and
real-world observations validates the effectiveness of our model in capturing the essence
of urban mobility, from the routine movements of individuals to the broader patterns of
collective behavior.

Figure 5. Result of generated mobility.
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Figure 6. Example of generated spatial–temporal mobility.

To assess the precision and realism of the synthetic mobility generated by our frame-
work, we conducted a detailed comparison with actual mobility data. This involved
aggregating the generated mobility data into 1 km × 1 km grid cells and then comparing
the population densities within these cells. The population density was derived from
mobility data, aggregating the number of people within each grid at a specific time. The
grid-level population density was compared on an hourly basis over a period of 7 days.
However, it is essential to acknowledge the presence of natural fluctuations in real-world
mobility data. For example, sampling 30,000 individuals and their activities in a specific
grid cell will not yield exactly the same numbers if a different set of 30,000 individuals were
sampled, due to the inherent variability in human movement patterns. Recognizing this,
the closer the generated data align with these natural fluctuations, the more accurately they
can be said to reflect real-world conditions.

To facilitate a fair comparison under the same criteria, we virtually sampled 30,000 users
(generated group) and conducted two random samplings of 30,000 users each from the
actual mobility data (ground-truth group A and ground-truth group B). By aggregating
these samples into grid cells, we could directly compare the results.

Figure 7a–c display the population density calculated from real data group A (Figure 7a),
real data group B (Figure 7b), and the generated data group (Figure 7c), respectively. Figure
7d compares ground-truth group A with ground-truth group B, showing a R2 value of 0.92.
The scatterplot in Figure 7e illustrates the comparison of 24 h grid heatmaps between the
generated group and ground-truth group A, with each point representing the population
count of a grid at a specific time. The general high correlation (R2 = 0.905) indicates a
strong similarity between the generated and ground-truth data. The distribution of points
suggests that the population heatmap generated by our model closely mirrors the actual
population, demonstrating the effectiveness of our approach in replicating real-world
population distributions within urban grids.
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Figure 7. Comparison of generated mobility on grid-level population aggregate.

4.2.2. Transferability of Individual’s Life Pattern

In order to test the transferability of the individual life pattern proposed in this study,
several experiments were conducted.

To examine the transferability of life patterns within different areas of the same city, a
test was carried out by dividing Shanghai into two regions: Pudong and Puxi.

We tested scenarios where the life pattern from Puxi was combined with key locations
in Pudong to generate virtual mobility, as well as scenarios where Puxi’s life pattern was
combined with key locations across the entire city of Shanghai. Similarly, we tested the
life pattern from Pudong combined with key locations throughout Shanghai and finally a
scenario using Shanghai’s overall life pattern with citywide key locations.

In addition, we conducted experiments on the transferability of life patterns between
different cities. We extracted the life pattern information of 100,000 individuals from a
dataset in Beijing and combined these with key locations in Shanghai to generate 30,000 vir-
tual mobility. Then, these were compared against an actual set of 30,000 mobility to evaluate
the performance.

Figure 8a,b represent the results of experiments conducted to test the transferability
of individual life patterns in different scenarios using metrics R2 (Figure 8a) and the Root
Mean Square Error (RMSE) (Figure 8b), respectively.

All scenarios show relatively high R2 values, above 0.80, indicating good model
performance in different setups. The consistency across scenarios suggests that the model
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effectively captures the essential characteristics of life patterns for both intracity (Shanghai)
and intercity (Beijing to Shanghai) transfers. RMSE values are relatively low across all
scenarios, with the highest value around 0.04, which is still quite low, indicating minor
prediction errors. The “ground-truth group B” serves as a benchmark or control group,
showing how well the model performs relative to actual data.

The experiments demonstrate that the life patterns derived from one part of a city (e.g.,
Puxi) can effectively be transferred to predict behaviors in another part of the same city (e.g.,
Pudong) or even across cities (e.g., from Beijing to Shanghai). The models exhibit robustness
and reliability in using life patterns and key locations to generate virtual mobility that
closely mirrors the actual patterns observed in the data. This suggests a strong potential for
using these models in urban planning, traffic management, and similar applications where
understanding and predicting human mobility patterns is crucial.

Figure 8. Performance of generated mobility (population density comparing with ground-truth
group A).

4.2.3. Representative Performance of Generated Mobility

Generating precise individual mobility is a time- and computation-power-consuming
process. Therefore, it is necessary to reduce the number of individuals generated while
maintaining its ability to depict the mobility pattern in a city. For this purpose, a series of
experiments were conducted to investigate the adequacy of generated individual mobility
in representing the overall urban mobility patterns.

The experiments involved setting the range of synthetic individual mobility from 0
to 100,000, sampled at intervals of 1000 individuals. The individual mobility produced
was then aggregated at a spatial resolution of 1 km × 1 km grid scale, with hourly and
daily temporal resolutions. The aggregated results were then compared with the popula-
tion density aggregated at the same scale of real mobile phone signal data representing
8.08 million users. To ensure the consistency and comparability of statistical data, both sets
of data were normalized to a range of 0–1, eliminating differences in magnitudes that may
exist between different datasets and ensuring the precision of the data analysis.

Figure 9 illustrates the relationship between the number of synthetic individuals and
its representative performance described by two statistical metrics of R2 (Figure 9a) and
RMSE (Figure 9b) compared to the density of the real population. Illustrated in both figures,
as the number of synthetic individuals increases, the aggregated daily and hourly results
show a tendency to stabilize, with the daily performance generally exceeding that of the
hourly performance. When the results of the virtual individual generated reach around
10,000, the generated mobility can describe the population dynamics at the city level with
an R2 of over 0.8 for daily granularity and requires over 20,000 individuals for hourly
granularity. In fact, this result also demonstrates that the use of only about 0.25% of the
sampled individuals (20,000 out of 8.08 million) is sufficient to represent the dynamic
changes of the entire urban population, further proving the value of mobility generation
technology in this study.
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Figure 9. Representative performance of generated mobility comparing with real population density.

5. Conclusions

This study has developed and implemented a novel GIS-based framework for generat-
ing city-scale individual-level spatio-temporal mobility patterns. By integrating the concept
of key locations with dynamic life patterns, we have proposed a comprehensive approach
to model and simulate the complex movements of individuals within urban environments.
The main conclusions are as follows.

• Taking real long-term mobility data from Shanghai to extract the life patterns and
key locations, the proposed methodology was successfully applied to generate the
mobility of 30,000 virtual users over 7 days in Shanghai.

• By testing the combination of key locations and life patterns extracted from real-
world mobility data in different areas, the model demonstrated strong transferability
between various areas within cities and across different cities.

• By testing the representatives of the generated mobility data, we found that using
only about 0.25% of the generated individuals’ mobility is sufficient to represent the
dynamic changes of the entire urban population in daily and hourly resolution, at a
1 km × 1 km grid level, compared to real-world mobility datasets.

This study provides a new method to generate long-term spatiotemporal mobility
patterns at the individual level, offering valuable tools for city managers, planners, and pol-
icymakers to address the growing challenges of transportation in the urbanization process.
Real-world mobility data contain specific user travel patterns, work locations, home ad-
dresses, and daily activity locations, which involve privacy and sensitive information. This
makes the widespread use of real-world mobility data in urban planning and management
a challenge, limiting the intelligent management and sustainable development of cities.
Therefore, this study proposes an individual mobility generation method based on key
locations and life patterns, effectively enhancing the applicability of mobility for broader
use and providing support for urban planning. Additionally, by constructing key urban
information, this research generates large-scale urban travel mobility, transforming limited
mobility data into comprehensive city-wide travel patterns. This provides a foundation for
large-scale urban mobility analysis.
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