
Citation: Aprigliano, V.; Seriani, S.;

Toro, C.; Rojas, G.; Fukushi, M.;

Cardoso, M.; Silva, M.A.V.d.;

Cucumides, C.; de Oliveira, U.R.;

Henríquez, C.; et al. Built

Environment Effect on Metro

Ridership in Metropolitan Area of

Valparaíso, Chile, under Different

Influence Area Approaches. ISPRS Int.

J. Geo-Inf. 2024, 13, 266. https://

doi.org/10.3390/ijgi13080266

Academic Editor: Wolfgang Kainz

Received: 24 April 2024

Revised: 3 July 2024

Accepted: 23 July 2024

Published: 26 July 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of

Geo-Information

Article

Built Environment Effect on Metro Ridership in Metropolitan Area
of Valparaíso, Chile, under Different Influence Area Approaches
Vicente Aprigliano 1,* , Sebastian Seriani 1 , Catalina Toro 1 , Gonzalo Rojas 1, Mitsuyoshi Fukushi 1,
Marcus Cardoso 2 , Marcelino Aurelio Vieira da Silva 2 , Cristo Cucumides 1, Ualison Rébula de Oliveira 3 ,
Cristián Henríquez 4,5,6 , Andreas Braun 7 and Volker Hochschild 7

1 Escuela de Ingeniería de Construcción y Transporte, Pontificia Universidad Católica de Valparaíso,
Avda Brasil 2147, Valparaíso 2362804, Chile; sebastian.seriani@pucv.cl (S.S.); catalina.toro@pucv.cl (C.T.);
gonzalo.rojas.r@pucv.cl (G.R.); mitsuyoshi.fukushi@pucv.cl (M.F.); cristo.cucumides.m@mail.pucv.cl (C.C.)

2 Transport Engineering Program, Federal University of Rio de Janeiro, Av. Horácio Macedo 2030,
Rio de Janeiro 21941-914, RJ, Brazil; cardoso@pet.coppe.ufrj.br (M.C.);
marcelino@pet.coppe.ufrj.br (M.A.V.d.S.)

3 Departamento de Administração e Administração Pública de Volta Redonda, Universidade Federal
Fluminense (UFF)/MPA-ICHS, MSG-TCE and DSG-TCE, 783 Des. Ellis H. Figueira St Volta Redonda,
Rio de Janeiro 27213-145, RJ, Brazil; ualisonrebula@id.uff.br

4 Instituto de Geografía, Facultad de Historia, Geografía y Ciencia Política, Pontifcia Universidad Católica de
Chile, Avda. Vicuña Mackenna 4860, Macul, Santiago 8330015, Chile; cghenriq@uc.cl

5 Centro Interdisciplinario de Cambio Global, Pontificia Universidad Católica de Chile, Avda. Vicuña
Mackenna 4860, Macul, Santiago 8330015, Chile

6 Centro de Desarrollo Urbano Sustentable (CEDEUS), Pontificia Universidad Católica de Chile, Avda. Vicuña
Mackenna 4860, Macul, Santiago 8330015, Chile

7 Department of Geography, University of Tuebingen, Rümelinstr. 19-23, 72070 Tuebingen, Germany;
an.braun@uni-tuebingen.de (A.B.); volker.hochschild@uni-tuebingen.de (V.H.)

* Correspondence: vicente.aprigliano@pucv.cl

Abstract: The growing relevance of promoting a transition of urban mobility toward more sustainable
modes of transport is leading to efforts to understand the effects of the built environment on the
use of railway systems. In this direction, there are challenges regarding the creation of coherence
between the locations of metro stations and their surroundings, which has been explored extensively
in the academic community. This process is called Transit-Oriented Development (TOD). Within the
context of Latin America, this study seeks to assess the influence of the built environment on the
metro ridership in the metropolitan area of Valparaíso, Chile, testing two approaches of influence
area definition, one of which is a fixed distance from the stations, and the other is based on the origin
and destination survey of the study area. The analysis is based on Ordinary Least Squares regression
(OLS) to identify the factors from the built environment, which affects the metro’s ridership. Results
show that the models based on the area of influence defined through the use of the origin and
destination survey explain the metro ridership better. Moreover, this study reveals that the metro
system in Greater Valparaíso was not planned in harmony with urban development. The models
demonstrate an inverse effect of the built environment on ridership, contrasting with the expected
outcomes of a metro station designed following a Transit-Oriented Development approach.

Keywords: area of influence; built environment; metro ridership; Valparaíso; Chile

1. Introduction

The growing relevance of promoting a transition of urban mobility toward more
sustainable modes of transport is leading to efforts to understand the effects of the built
environment on the use of railway systems. These systems have been gaining significant
investments in varied countries, given their potential to significantly reduce the transport
sector’s carbon footprint and motorized private transport modes usage [1]. Besides these
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benefits, Lin et al. [2] add the possibility of transporting people with greater capacity and
more efficiently, thus promoting increased urban productivity.

In this direction, there are challenges regarding the creation of coherence between the
locations of the transit stations and their surroundings, which has been explored extensively
in the academic community [3–6]; this process is called Transit-Oriented Development
(TOD). According to Wey et al. [7], TOD planning is closely related to the transition of
cities toward sustainable mobility [7,8], in line with the United Nations’ effort to fulfill the
Sustainable Development Goals [9].

The TOD approach appears from the necessity to create functional and lively places
around public transport by promoting dense, compact, and walkable spaces [10] in order
to generate the benefits highlighted at the beginning of this section. Therefore, it is crucial
within the TOD approach to refer to the built environment. According to Cervero et al. [11],
the built environment consists of 5 D’s: density, diversity, distance to transit, destination
accessibility, and design. Moreover, studies have shown that these dimensions of the 5 D’s
may influence people’s choice of transport modes [11,12].

Within the context of Latin America, this study seeks to assess the influence of the built
environment on the metro ridership in the metropolitan area of Valparaíso, Chile, testing
two approaches of influence area definition. The first of them, based on a radius of 400 m,
corresponds to the walkable area as studied by different authors [13–18], while the second
area proposal corresponds to a population density method that addresses the influence
areas through kernel density estimation (KDE) hotspot [19] of walking trip origins of
people, which reaches a maximum distance of 250 m from the metro stations, using the data
available in the origin and destination survey. The definition of influencing areas of public
transport systems, based on people’s actual origin and destination, may deliver a better
understanding of modal choice for two reasons. Firstly, because the influence area will be
defined based on local particularities regarding mobility behavior and urban characteristics
and, secondly, when measuring the impact of these areas on the accessibility and ridership
of these modes, results of such analysis may lead to a higher success probability of policies
for promoting sustainable mobility.

The latest data show that around 2% of trips in the Metropolitan Area of Valparaíso
(also known as Greater Valparaíso) are made by metro, 27% by bus, 29% private transport,
and 27% by non-motorized modes [20]. On the other hand, the State Railway Company of
Valparaíso (Also known as EFE Valparaíso) has been implementing measures to increase the
capacity of the service [21] by increasing frequency in the peak hours. However, this study
seeks to understand the external factors of the metro stations that possibly are generating
influence on metro ridership and which, usually, are not taken into account by transport
planners in Greater Valparaíso.

According to Aprigliano et al. [22], there is a need to advance mobility studies, which
are applied to small and intermediate cities. The authors state that most studies within
the Latin American context are focused on large cities. In Chile, this is not different; most
mobility and transport studies are dedicated to Santiago and Concepción, both having
the largest metropolitan areas in this country. Regarding Valparaíso, it is the third-largest
metropolitan area in Chile, with approximately 1 million inhabitants, and composed of
five cities: Villa Alemana, Quilpué, Concon, Viña del Mar, and Valparaíso. Respectively,
they have 126,548 (13% of the population of Greater Valparaíso), 151,708 (16%), 42,152 (4%),
334,248 (35%), and 296,655 (31%) inhabitants. The metro system comprises one line with
43 km and 20 stations. Furthermore, four of the cities in the study area have metro stations,
which can be observed in Figure 1.
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Figure 1. Transportation context in the Metropolitan Area of Valparaíso. Observation: the names on 
the map refer to the cities in the Metropolitan Area of Valparaíso. Source: Elaborated by authors. 
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“planes reguladores comunales”. This instrument is relevant for urban development 
because it can be a barrier or an instrument that effectively leads to urban sustainability 
for Chilean cities [24]. 

These previously mentioned conditions can influence the promotion of sustainable 
mobility in Greater Valparaíso, given an incoherent relation between transport and land 
use development. In the case of the metro system in Greater Valparaíso, there is an 
expansion plan for the metro line [25]. A lack of understanding of the metro station’s 
surrounding influence area in relation to its ridership can lead to issues with the station’s 
attractiveness. Additionally, failing to leverage a system that could enhance urban 
productivity and accessibility through Transit-Oriented Development (TOD) planning 
represents a missed opportunity. This study is a contribution to studies related to 
intermediate cities and can shed some light on how to advance toward more sustainable 
intermediate cities in Chile and Latin America through efficient and attractive public 
transport systems. 

Besides this introduction, the literature review section is dedicated to reviewing case 
studies that relate to the built environment and metro ridership in a determined influence 
area. Then, there is the methodology section, which focuses on describing the case study, 
variables, and methods. The results section analyzes and interprets the outputs of the 
applied methods. Finally, the conclusion and final considerations section provides a 
general perspective of the results, limitations of the study, and future research 
opportunities. 

Figure 1. Transportation context in the Metropolitan Area of Valparaíso. Observation: the names on
the map refer to the cities in the Metropolitan Area of Valparaíso. Source: Elaborated by authors.

It is important to note that the current public transport systems in Greater Valparaíso
compete with each other in many cases, instead of having a synergy between feeder and
main public transport lines (see Figure 1). In addition to this, there is a slow process of
updating land use regulations in the cities of Greater Valparaíso [23], which are called
“planes reguladores comunales”. This instrument is relevant for urban development
because it can be a barrier or an instrument that effectively leads to urban sustainability for
Chilean cities [24].

These previously mentioned conditions can influence the promotion of sustainable
mobility in Greater Valparaíso, given an incoherent relation between transport and land use
development. In the case of the metro system in Greater Valparaíso, there is an expansion
plan for the metro line [25]. A lack of understanding of the metro station’s surrounding
influence area in relation to its ridership can lead to issues with the station’s attractiveness.
Additionally, failing to leverage a system that could enhance urban productivity and
accessibility through Transit-Oriented Development (TOD) planning represents a missed
opportunity. This study is a contribution to studies related to intermediate cities and can
shed some light on how to advance toward more sustainable intermediate cities in Chile
and Latin America through efficient and attractive public transport systems.

Besides this introduction, the literature review section is dedicated to reviewing case
studies that relate to the built environment and metro ridership in a determined influence
area. Then, there is the methodology section, which focuses on describing the case study,
variables, and methods. The results section analyzes and interprets the outputs of the
applied methods. Finally, the conclusion and final considerations section provides a general
perspective of the results, limitations of the study, and future research opportunities.
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2. Transit’s Influence Area and Metro Ridership: A Review

In this paper, the concept of the influence area of a given metro station is understood
as the catchment zone for both current users and potential users of the system. According
to Taylor & Fink [26], a multitude of factors impacts the usage of public transportation,
encompassing fares, routes, service frequency, accessibility of stops and stations, safety,
levels of private vehicle ownership, population density, land use and its availability, parking
cost, among various other considerations.

Different factors may contribute to the reduction in the number of passengers in
transit, such as increased car and bicycle ownership or even the lack of reliability in transit
services [27]. Many studies also associate travel behavior with weather factors [28–31]
and, therefore, would be directly linked to transit ridership. Furthermore, other studies
indicate that socioeconomic factors such as car ownership, income, gender, and age are
also associated with individuals’ choices regarding the use of public transportation [32,33].
Besides external factors beyond human control, transit ridership is also affected by a
broad spectrum of human factors, which can typically be classified into three groups:
individual-level, station-level, and system-level factors [34].

Generally, TOD entails establishing zones with moderate to high density that feature a
mix of land uses within a convenient walking distance, typically around 800 m, from public
transportation stations [35]. This section seeks to undertake a literature review of how
studies have been defining the influence area of metro stations and the factors influencing
their ridership, focused on non-motorized accessibility to these stations. On the other
hand, according to Sohn & Shim [36], in the metropolitan area of Seoul (Republic of Korea),
the catchment area of metro stations, considering pedestrian access by passengers, was
investigated, and a radius of 500 m was accepted as the standard for transportation studies.

Ramos-Santiago [37] conducted a study in the city of Los Angeles, aiming to investi-
gate the local multimodal transit network to explore whether the walkability quality around
feeder bus line stations could affect the number of station ridership at the metro system.
The study employed a multilevel generalized linear model using data on pedestrian acces-
sibility at bus stops, along with relevant variables, to identify the volume of trips between
feeder bus lines and metro stations and their potential correlation with land use and built
environment characteristics around feeder bus line stations. The findings indicated a weak
but statistically significant influence between the walkability quality around feeder bus line
stations and the number of passengers boarding at metro stations.

In order to explore the relationship between various independent variables and urban
rapid transit ridership at the station level and identify the influence of spatial heterogeneity
in a subway network in the city of Nanjing, China, Gan et al. [38] estimated four statistical
models separately. Initially, based on data from the built environment and station charac-
teristics, the results show evidence of the existence of spatial heterogeneity in station usage
for the analyzed subway network. Furthermore, the results demonstrate that population,
number of lines, number of feeder buses, number of exits, road density, and proportion of
residential area have a significant impact on station ridership.

With the aim of evaluating the land use characteristics around metro stations in the
Seoul metropolitan region (South Korea) and their influence on pedestrian catchment areas,
in terms of principles of TOD, Jun et al. [39] found that population and employment density,
land use diversity, as well as intermodal connectivity, have a positive impact on subway
usage. The study also demonstrated that, in Seoul, the most suitable catchment radius for a
metro station is 600 m.

In a study conducted in Beijing, China, using the metro system as a case study, Zhao
& Li [40] identified that travel distances between home and transit stations are the most
important factor influencing people’s decisions to cycle or not.
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To explore the relationship between public transportation ridership demand and TOD
indicators, Nyunt & Wongchavalidkul [41] conducted a study analyzing variables collected
within an 800-m buffer around public transportation stations, using the Bangkok metro
system in Thailand as a case study. The results revealed that high population density,
mixed land use, and the function of a station as a transfer point between different modes
and systems of transportation are some of the key factors impacting the catchment area
and, consequently, influencing the attractiveness of a particular metro station to users.

He et al. [42] investigated in Shenzhen, China, using a geographically weighted
regression-based direct demand model, the local relationships between passenger demand
at metro stations, and potential influencing factors. The influencing factors considered
included land use, local socioeconomic characteristics, transport network structure, and
access to intermodal transportation. The research indicates that there is a positive corre-
lation between betweenness centrality and station ridership volume, suggesting that the
significance of a station in facilitating the shortest routes within the metro network plays a
crucial role in attracting additional passengers.

In the study conducted by Gupta et al. [43], the impacts of various subjective and
objective factors of the built environment on users’ decisions regarding access mode to
metro stations were investigated. Through interviews with 600 metro users in the city of
Delhi, India, socioeconomic information and details about travel characteristics were col-
lected. The study’s findings revealed that neighborhood built environment characteristics,
along with population density and land use, play a significant and positive role in the
choice of metro transportation. Furthermore, it is suggested that improvements in the built
environment attributes within the catchment areas of metro stations will lead to an increase
in the proportion of users opting to access them on foot.

By utilizing large-scale data and non-parametric machine learning approaches, Liu
et al. [44] conducted a study in the city of Shanghai, China, aimed at conducting a sen-
sitivity analysis to examine the association between metro usage and built environment
factors within different sizes of radial buffers. As a result, the study suggests that a buffer
size of 600 m around the metro station provides the best fit for the predictive model of
station access.

Based on a modeling approach to explore the impact of land use, metro service
coverage, and station accessibility on metro ridership in six cities in the United States, Li
et al. [45] concluded that the optimal radius of the metro passenger capture buffer is not the
same across different cities. The study also demonstrated that the number of automobile
owners, the urban population, the number of workers, and income have a significantly
positive influence on the number of metro passengers.

The present study addresses two types of influence areas of metro stations, seeking to
compare built environment aspects and their effect on metro ridership. Additionally, this
research complements the literature presented by exploring an influence area determined
by origin and destination survey data and a fixed influence area, which avoids overlap-
ping between stations. Furthermore, considering that the case study combines different
intermediate cities in a metropolitan area of Chile that lacks studies that relate to the built
environment and mobility patterns, the results may shed light on future planning of cities
in Latin America with similar demographic and urban dimensions.

3. Materials and Methods

To meet the proposed objectives, a methodology was developed that included 5 stages,
which consisted of the following:

1 Collection of secondary information: information was obtained from the origin and
destination survey [20], Chile’s railway network [46], traffic accidents [47], and creation
of the vector layer of the subway stations.

2 Creation of surrounding influence areas of metro stations.

Areas of influence were defined in the surroundings of the metro stations in two ways,
which are detailed below.
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Firstly, influence areas were generated in QGIS through a 400 m radius buffer for each
station, resulting in 19 influence areas. Then, a cut was made to those areas of coastal
stations that exceeded the territorial limits and covered areas of the sea to obtain only the
area covered on dry land. Furthermore, this area was defined to avoid overlapping of
influence areas between stations.

Secondly, other areas were obtained from the spatial identification of people who go to
an area with a radius of 250 m from the metro stations, identified from a pair of coordinates
available in the origin and destination survey, obtaining the peoples’ points of origin and
destination. A kernel density estimation (KDE) was applied to peoples’ points to define
a new influence area. This method has been used to detect and analyze hotspots [19] of
events that can be represented as points, such as traffic accidents, street crimes, and crime
areas, among others [48]. This identification was achieved using the destination coordinates
of people and then obtaining the origin coordinates of those people, grouping them by
station. From the above, points were obtained from people who live and go to areas within
a 250-m radius of the stations. Once the points were identified, a kernel density estimation
(KDE) was carried out in those areas that have 5 or more points of origin, which results
in a raster with densities based on these points. Subsequently, the raster was reclassified
based on a selection of a pixel that was at the ends of the densest areas and thus generating
two classes, those pixels that are greater or less than the selected pixel, that is, outside or
within the densest area (See Table 1). These pixel values represent the density of people in
an area in square meters (m2) and are small because the sample used to generate the KDE
was small, so it represented few people. In this case, the area is 100 square meters because
the pixel is 10 m.

Table 1. Pixel values with which the new areas of influence were obtained. The reclassification was
carried out based on values equal to or greater than those described in the table. These areas will be
presented in the Results section. Source: elaborated by authors.

Municipality Station Name Pixel Value

Valparaíso
Puerto 1.77083 × 10−6

Francia 5.10379 × 10−7

Barón 1.29807 × 10−6

Viña del Mar

Recreo 4.381 × 10−7

Miramar 1.09325 × 10−6

Viña del Mar 6.37435 × 10−7

Hospital 5.64058 × 10−7

Quilpué Quilpué 7.15722 × 10−7

Villa Alemana Villa Alemana 6.71036 × 10−7

Depending on the number of points, there may be several results of dense areas,
so the area closest to the corresponding station was selected. Finally, a vectorization of
the reclassified raster was carried out to finally eliminate those polygons far from the
corresponding station and leave the closest and most representative one, which represents
the area of influence of the station, resulting in 9 areas of influence (see Table 2).
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Table 2. Methodologies applied to obtain influence areas of metro stations. Source: Elaborated
by authors.

ID Station Number of
Points Method 1 Method 2

1 Puerto >5

Buffer (400 m)

KDE- reclassified-vectorized

2 Bellavista <5

3 Francia >5 KDE- reclassified-vectorized

4 Barón =5 KDE- reclassified-vectorized

5 Portales <5

6 Recreo =5 KDE- reclassified-vectorized

7 Miramar >5 KDE- reclassified-vectorized

8 Viña del Mar >5 KDE- reclassified-vectorized

9 Hospital >5 KDE- reclassified-vectorized

10 Chorrillos <5

11 El Salto <5

12 Quilpué =5 KDE- reclassified-vectorized

13 El Sol <5

14 El Belloto <5

15 Las Américas <5

16 La Concepción <5

17 Villa Alemana >5 KDE- reclassified-vectorized

18 Sargento Aldea <5

19 Peñablanca <5

3.1. Urban Environment Indicators in the Area Surrounding Metro Stations

To understand the characteristics of the stations’ built environment in their influence
area, urban environment indicators were generated based on the 5 dimensions proposed
by Cervero et al. [11], which are density, design, destination, distance, and diversity.
Besides the explanation below, Table 3 presents details about the indicators and source
of information.

The “density” dimension consists of a proportion between the total number of house-
holds and the area of each influence zone. To obtain this indicator, the census block was
used, whose area in hectares was calculated, to subsequently cut it by the area of influence
of each station and recalculate the area of the blocks within the areas of influence. This is
in line with the objective of generating a proportion that allows for obtaining the number
of homes within the defined blocks in relation to the homes in the original blocks. To
perform this, a multiplication was generated between the area of the cut blocks and the
total number of homes and then divided by the area of the complete block. Finally, the
number of households within each area of influence was added, the result being divided
by the area of influence of each metro station.

The second dimension, “design”, contains two variables—street design and safety—which
consist of the number of nodes per number of streets in topological terms and the number
of accidents per hectare, respectively. The first variable (street design) was generated in
Python, using the geopandas and pandas libraries, where the Red Vial vector layer [46]
was used. It was cut to the surrounding area of each station to generate points or nodes of
the intersections of each street and finally, count and then divide the number of nodes by
the number of streets.
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On the other hand, for the safety design variable, the vector layers of traffic accidents
for the years 2018, 2019, 2020, and 2021 available in CONASET [47] were used for the
metropolitan area of Valparaíso. Using the geopandas and Python pandas libraries, the
accidents were filtered by those accidents identified as “Falls” and/or “Runovers”, that is,
accidents related to pedestrians. Subsequently, the result of this filter was cut to the area
surrounding the metro stations, obtaining a certain number of accidents within each area.
Finally, all the accidents present in each area were averaged and added (that is, accidents for
the years 2018, 2019, 2020, and 2021), and the resulting total was divided into the hectares
of each surrounding area of influence.

For the “destination” variable, the walking score provided by Walkscore was used,
which considers various services close to or non-existent from the address given, such as
restaurants, bars, supermarkets, commercial premises, services, parks, schools, and places
of culture and leisure [49]. Access to these scores was made through the Nominatim [50]
and Walkscore (free version) APIs using the Python libraries pandas, geopandas, requests,
json, and urllib.parse, along with the calculated areas. The process was based on extracting
the centroid of each area in QGIS 3.28, storing a pair of coordinates for each area. These
coordinates were used in the Nominatim API (respecting the limits of use), and the resulting
addresses were used in the WalkScore API (free version) in Python to obtain the walk score
of each area.

Fourth, the “distance” dimension was obtained from a Google Maps search of the
route from each station to its nearest bus stop. Finally, the “diversity” dimension consists
of identifying the proportion of residential land use in the different areas of influence of the
metro stations. To obtain this indicator, the Municipal Regulatory Plan (known as PRC in
Chile) of Valparaíso, Viña del Mar, Quilpué, and Villa Alemana was used [51]. The objective
was to identify the proportion of residential use over other permitted land uses. The PRCs,
provided in shapefile format, were processed in QGIS 3.28, where they were cropped to
coincide with the influence areas of the metro stations. Within each area of influence, the
residential areas (including residences, homes, hotels, etc.) were identified and filtered, and
the total residential area in hectares for each area of influence was calculated. Finally, this
surface was divided by the sum of all permitted areas (other uses) in the area of influence
of each metro station. See Table A1 in the Appendix A for more information on how each
indicator was calculated.

Table 3. Urban environment indicators with which the models will be executed. Source: elaborated
by authors.

Category Dimension Indicators Description Source Data References

U
rb

an
en

vi
ro

nm
en

t

Density Housing
Dwelling units per total

area, expressed in
hectares (Ha)

Block Census of
Gran Valparaíso [52]

Cervero et al.,
2009 [11]

Design

Street design
Number of Nodes per

Number of
topological Streets

Street network:
polylines of streets in

Chile [46]

Cervero et al.,
2009 [11];

Motieyan & Mesgari,
2017 [53]

Street safety:
Number of vehicular

accidents per area
expressed in hectares (Ha)

Traffic accidents,
Valparaiso Region,

Chile, 2018–2023 [47]

Cervero et al.,
2009 [11];

Motieyan & Mesgari,
2017 [53]
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Table 3. Cont.

Category Dimension Indicators Description Source Data References

U
rb

an
en

vi
ro

nm
en

t

Destination WalkScore

Find the centroid of each
zone and enter the

addresses into
Walkscore.com (accessed

on 17 January 2024),
which calculates this score

for each zone up to
0.6 miles away.

WalkScore API (free
version) [49] and

APIs
Nominatim [50]

Cervero et al.,
2009 [11];

Zhang et al.,
2023 [54]

Distance Distance to the
nearest bus stop

The distance from the
train station to the nearest

bus stop
Google Maps [55]

Cervero et al.,
2009 [11];

Zhang et al.,
2019 [56]

Diversity Mixed land Use:
The ratio of the residential

area to total area
expressed in hectares (Ha).

PRC from the
municipalities of

Valparaíso, Viña del
Mar, Quilpué, and
Villa Alemana [51]

Cervero et al.,
2009 [11];

Pongprasert &
Kubota, 2018 [57]

3.2. Regression Models Applied

Ordinary Least Squares (OLS) regression models are employed to analyze the factors
influencing ridership levels at metro stations. The model evaluates the relationship between
passenger flows and various attributes of the built environment surrounding the stations.
The selection of OLS regression is motivated by its capacity to handle both numerical and
categorical data types. The approach follows the precedent set by previous research that
highlights the model’s effectiveness in this field [58–60].

To conduct this analysis, the dependent variable is defined as the average passenger
boarding flow at each metro station. The independent variables encompass aspects of the
built environment, such as “density”, represented by the ratio of dwellings to the area of
each station’s influence zone; “design”, which includes urban design elements like street
layout and safety metrics (e.g., accident rates per hectare); “destination”, gauged by a
walkability index that reflects accessibility to essential services; “distance”, measured as
the proximity to the nearest bus stop; and “diversity”, which assesses the variety of land
use within the station’s influence zones. This array of variables provides a comprehensive
framework for exploring how environmental factors impact metro ridership. In addition,
the effect of seasonal variation in the flows is modeled using a categorical variable that
differentiates by seasonality into holiday and regular seasons.

The estimation of the OLS regression models was carried out using data collected
from two distinct methodologies to determine the areas of influence around metro stations.
The first method involved 19 stations, while the second method considered 9 stations.
Each method aimed to capture unique variations in spatial distribution and environmental
impacts on ridership levels. The timeframe for the study spanned from 2018 to 2023, and a
model was estimated for each year. The models that demonstrated the best performance
in terms of explanatory power are highlighted and analyzed in the subsequent sections.
This approach aims to provide an understanding of the built environment’s role in shaping
metro station ridership.

4. Description of Case Study

This study focuses on the Metropolitan Area of Valparaíso (Also known as Greater or
Gran Valparaíso), specifically on the EFE Valparaíso metro network present in this area,
which covers the cities of Valparaíso, Viña del Mar, Concón, Quilpué, and Villa Alemana,
with a population of 951,311 inhabitants [61]. In terms of population, it is relevant to high-
light that there are slightly higher numbers of women than men in these cities. Furthermore,
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Viña del Mar is the most populated municipality, with 334,248 inhabitants, while Concón
registers the smallest population, with 42,152 inhabitants, as detailed in Table 4.

Table 4. Number of inhabitants in the municipalities of Greater Valparaíso. Source: elaborated by
authors based on data from the National Institute of Statistics [61].

Municipality Male Female Total

Valparaíso 144,945 (48.9%) 151,710 (51.1%) 296,655

Viña del Mar 158,669 (47.5%) 175,579 (52.5%) 334,248

Concón 20,321 (48.2%) 21,831 (51.8%) 42,152

Quilpué 71,746 (47.3%) 79,962 (52.7%) 151,708

Villa Alemana 59,756 (47.2%) 66,792 (52.8%) 126,548

Total Gran Valparaíso 455,437 (47.9%) 495,874 (52.1%) 951,311

The EFE Valparaíso network extends along 43 km of double electrified railway track,
connecting a total of 20 stations in the cities of Valparaíso, Viña del Mar, Quilpué, Villa
Alemana, and Limache [62]. However, the municipality of Limache is located outside
Greater Valparaíso, so for this study, it was considered up to the Peñablanca station, which
is the last station of Villa Alemana (Figure 2). In relation to the aforementioned, the distance
between the first station (Puerto, Valparaíso) and the last station within Greater Valparaíso
(Peñablanca, Villa Alemana) is approximately 30 km. Of the 20 stations, 16 are at surface
level, and four are located underground: Hospital, Viña del Mar, Miramar, and Chorrillos,
all in the city of Viña del Mar [62].
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4.1. Socioeconomic Aspects for Municipalities of Greater Valparaiso

Regarding the sociodemographic characteristics of the municipalities in the Greater
Valparaiso area covered by the subway network, there are differences between the character-
istics. Firstly, in terms of the total population, Viña del Mar leads with 389,059 inhabitants,
followed by Valparaiso with 306,236, Quilpué with 174,203, and Villa Alemana with 126,583.
The proportion of the female population regarding the total population does not show
major differences, with Villa Alemana having the highest proportion of women with 0.51.
As for the average age, there are no major differences, ranging from 35 to 37 years old, with
Viña del Mar being the oldest at 36.27 and Villa Alemana the youngest at 35.73.

In terms of socioeconomic characteristics, household size is larger in Villa Alemana but
not much larger than in the rest of the municipalities, being between 2 and 3 persons per
house. Car ownership per household is most common in Viña del Mar, with 0.66 cars per
household. Household income is highest in Viña del Mar, with an average of 878,705 pesos
Chilenos (Chilean currency), followed by Valparaiso, Quilpué, and Villa Alemana. These
data provide a detailed view of the distinctive demographic and socioeconomic charac-
teristics of these Chilean cities (see Table 5). See Table A2 in the Appendix A for more
information on how each characteristic was calculated.

Table 5. Sociodemographic and Socioeconomic description of the cities covered by metro network
within Greater Valparaiso. Source: elaborated by authors.

Indicator Viña del Mar Valparaíso Quilpué Villa Alemana

Total Population 389,059 306,236 174,203 126,583

Ratio of women to total population 0.5 0.48 0.5 0.51

Average age 36.27 35.61 36.17 35.38

Houlsehold Size 2.31 2.15 2.47 2.9

Cars per household 0.66 0.56 0.61 0.56

Household income (Chilean currency) 878,705 745,679 700,923 635,133

Population in need of care 0.29 0.28 0.33 0.34

Primary education 0.07 0.09 0.09 0.1

Secundary education 0.34 0.39 0.4 0.42

Superior education 0.47 0.39 0.42 0.38

Workers per household 1.06 0.97 1.05 1.19

Car driving license per household 0.8 0.6 0.79 0.81

Households with bicycles 0.02 0.02 0.03 0.03

4.2. Concentration of Trips in Areas of Influence of 250, 500 and 750 m

Based on the information from the origin and destination survey [20], we obtained
the origin and destination coordinates of people going to the areas of influence of the
metro stations previously calculated from buffers of 250 m, 500 m, and 750 m. Once the
origin points of people going to these areas were identified, a kernel density estimation was
performed for the three areas. Then, the area was selected through a manual identification
of denser pixels to reclassify and finally vectorize the area to obtain the areas shown
in Figure 3.

According to this information, there is a prominent concentration area for metro
stations in the commune of Valparaíso between Puerto and Bellavista. On the other hand,
there are isolated areas for Francia and a more distant and smaller area around Barón station.
As the radius of influence is extended to 500 m, a continuous zone can be seen between
Puerto and Francia. In the area of influence of 750 m, the concentration between the Puerto
and Barón stations expands even further, generating areas near Barón and Portales.
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In the case of Viña del Mar, there is a main concentration between the Miramar
and Viña del Mar stations, which expands as the radius of influence increases, reach-
ing the Hospital stations in an area of 500 and 750 m. The Recreo station presents a
smaller and more isolated area, while Chorrillos and El Salto show very small and isolated
concentration areas.

For the network in Quilpué and Villa Alemana, two main concentration areas are
identified near the Quilpué and Villa Alemana stations, which increase in size with each
radius of influence.
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4.3. Concentration of Trip by Mode of Transport

The concentration of the origin of people who go toward an area of influence of
250 m around the metro stations shows that public transport (Figure 4c) has the greatest
coverage in the Metropolitan Area of Valparaíso. This is followed by a slightly more
dispersed concentration of private transportation (Figure 4d), while walking is observed
more punctually in the vicinity of the metro stations, with a greater concentration in
Valparaíso and Viña del Mar (Figure 4a). Regarding the origin of those who go to the area
of influence of the metro by bicycle, it is much more individualized and does not generate
significant concentrations (Figure 4b).

This analysis was possible thanks to the data provided by the origin and destination
survey [20] since it contains the georeferenced identification of the start and end point of
the trip of each person interviewed, as well as the modal split used to travel. From this
information, a kernel density estimate was generated with the points of origin of each
person by modal split.
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4.4. Passenger Flow between Puerto and Peñablanca Stations (2018–2023)

In the section of the Valparaíso metro between the Puerto and Peñablanca stations, the
upward flow of passengers averaged 10,163,094 trips between 2018 and 2019. However, this
number fell to an average of 4,802,914 trips in 2020 and 2021, which represents a decrease
of 52.7%, mainly attributed to the restrictions imposed by the SARS-CoV-2 health crisis.
In the period from 2022 to 2023, a recovery was observed with 9,885,774 trips, which is
equivalent to an increase of 105.8% compared to 2020–2021 and only 2.7% less than in
2018–2019, according to data provided by EFE [63].

To facilitate the flow analysis, the sample was divided into work months (March, April,
May, June, August, September, October, and November) and vacation months (January,
February, July, and December), guided mainly by the student calendar. Regarding the
distribution of trips in the mentioned periods, similar trends are maintained in both seasons,
as seen in Figure 5a.

Regarding the average number of passengers per station and season, consistent behav-
ior is evident between stations and seasons, with a lower flow of passengers during the
vacation period. Viña del Mar, Quilpué, and Puerto are the stations that present the highest
flow for both the vacation period and the work period, exceeding 400,000 boarding trips for
the vacation period and exceeding 721,760 boarding trips for the work period, particularly
the Viña del Mar station, reached 879,883 in work months and 537,873 in vacation months.
On the other hand, El Salto and Recreo present the lowest flows, with less than 70,000 for
the vacation period and 130,000 trips for the work period.
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Furthermore, a marked difference is observed for the Chorrillos and Francia stations,
with differences of 61.5% and 57.8% in relation to the Labor flow (Figure 5b). On the
contrary, it is the Puerto, Viña del Mar, and El Salto stations that present the smallest
differences between trips during the holiday season and the work season, being below 40%
regarding the work mobility flow.
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Figure 6 illustrates the monthly average of passengers between 2018 and 2023, high-
lighting October, March, and August (laboral months) with the highest flows, exceeding
one million boarding trips. In contrast, December, a holiday month, records the highest
average of the vacation season, with 1,202,445 boarding trips.
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5. Results
5.1. Areas of 400 m Radius

The first areas obtained using a 400-m radius buffer are presented in Figure 7. Each
of these areas corresponds to each of the 19 stations present in Greater Valparaíso. By
applying a buffer to each station, the result is the same for all areas, without taking into
account territorial or topographical limits. A clear example is the stations located on the
coast (Valparaíso stations and the first station in Viña del Mar), which cover areas through
which people do not commonly circulate, such as the sea. In other areas, it can also cover
areas where people do not live or circulate since this method generates a circumference
around a point without considering external factors. Another important point is that, in this
case, the 400-m areas may overlap in some stations, as can be seen on the map of Valparaíso
and Villa Alemana. However, as mentioned before, this defined area of 400 m was chosen
to avoid too much overlapping between stations.
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Observation: the names on the top of each part of the figure refer to the city on the map. Source:
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The urban indicators within these 19 areas show an average density of 26.69 house-
holds per hectare, with notable variability for density and housing with respect to the
standard deviation and the minimum and maximum values. In terms of road safety, design
street safety has a low average of 0.1 vehicle accidents per hectare but with significant
variability. Street design exhibits low variability, with an average of 1.75 Number of Nodes
per Number of Streets. Mixed land (diversity) shows high consistency in the proportion of
residential areas. In terms of accessibility, destination achieves an average walk score of
79.89, which is classified as “Very Walkable” [49]. Finally, the average distance to bus stops
from the station is 85.4 m, but with high variability, reaching up to 405.07 m between zones
(see Table 6). See Table A3 in the Appendix A for more information on the values of the
urban environment indicators of the 19 areas.
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Table 6. Statistical description of urban environment indicators within areas of 400 m radius. Source:
elaborated by authors.

Indicators Mean Std Min 25% 50% 75% Max

Density: Housing 26.69 20 0.99 16.53 20.8 26.55 81.21

Design: Street safety 0.1 0.09 0 0.03 0.08 0.16 0.31

Design: Street design 1.75 0.35 0.6 1.64 1.83 1.92 2.17

Diversity: Mixed land 0.89 0.08 0.73 0.84 0.91 0.95 1

Destination: WalkScore 79.89 18.15 37 70.5 84 95 100

Distance: to the nearest bus stop 85.4 87.81 16.4 41.86 59.33 89.35 405.07

5.2. Areas Reclassified and Vectorized Using KDE

Figure 8 shows the result of the areas obtained from hotspot identification using KDE
and subsequent reclassification and vectorization. In this case, areas more in line with the
territory are observed since they are built from points that represent the origin of people
who go to an area of 250 m radius from the stations. Therefore, they cover more habitable
areas and/or are passable by people, resulting in different areas for each station.
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The urban indicators of these nine areas show an average density of 39.64 housing
units per hectare, with notable variability for density and housing, much higher compared
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to the 19 areas. Street safety has a higher average of 0.27 vehicle accidents per hectare, with
significant variability. Street design exhibits low variability with a mean of 1.9, representing
a low comparison with the 19 areas. Mixed land (diversity) shows a higher proportion of
residential areas. In terms of accessibility, destination achieves an average walk score of
93.33, classified as “Walker’s Paradise” [49]. Finally, the average distance to bus stops is
much greater, reaching 106.31 m, and less variability, reaching up to 210 m between zones
(see Table 7). See Table A4 in the Appendix A for more information on the values of the
urban environment indicators of the nine areas.

Table 7. Statistical description of the urban environment indicators within the areas reclassified and
vectorized using KDE. Source: elaborated by authors.

Indicators Mean Std Min 25% 50% 75% Max

Density: Housing 39.64 34.33 8.34 14.02 29.32 68.5 106.84

Design: Street safety 0.27 0.11 0.03 0.25 0.28 0.31 0.42

Design: Street design 1.8 0.25 1.39 1.61 1.82 1.85 2.24

Diversity: Mixed land 0.95 0.08 0.76 0.94 0.98 1 1

Destination: WalkScore 93.33 5.89 84 89 95 99 99

Distance: to the nearest bus stop 106.31 58.78 16.4 79.71 110 128.32 210

5.3. Model Results

Ordinary Least Squares (OLS) regression models were employed to explore the rela-
tionship between metro station ridership and various built environment variables between
2018 and 2023, utilizing two different methodologies for defining the influence areas of
metro stations: one encompassing nine stations and another covering 19 stations. The
models aimed to gauge the impact of factors such as density, design, destination, distance,
and diversity on ridership numbers.

The analysis of the models’ fit over the years highlights a distinct pattern in relation
to the pandemic’s impact on metro ridership. Notably, the models for the pre-pandemic
year 2018 and the post-pandemic year 2023 demonstrate superior fits, indicating a strong
relationship between the built environment variables and ridership levels during these
periods. However, the model fits for the years 2019 and 2020 present a decline in the
statistical significance, suggesting that the disruptions caused by the pandemic likely
introduced anomalies in ridership behaviors. The years 2021 and 2022, while still impacted
by pandemic-related factors, show a marginal improvement in model fit compared to the
peak pandemic years, suggesting a gradual return toward normalcy in ridership patterns
as the effects of the pandemic began to wane. For these reasons, only the models for
2018 and 2023, which demonstrated the best performance in terms of explanatory power,
are analyzed.

Tables 8 and 9 present the results of the models estimated for the nine stations in 2018
and 2023. The 2018 model for the nine stations showed a strong fit with an R2 of 0.877
and an adjusted R2 of 0.792, indicating a high explanatory power level. The model had
10 degrees of freedom and an F-value of 10.27, significant at a p-value of 0.0007. Among
the variables, density and design related to street safety, as well as the distance from the
nearest bus stops, showed positive and significant effects. In contrast, the destination
accessibility (destination) variable was significant but negatively associated with ridership.
Variables like diversity of land use, street design, and seasonal variation (vacation) were
not statistically significant.
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Table 8. OLS regression for 9 stations in 2018. Source: elaborated by authors.

Estimate Std. Error t Value Pr (>|t|)

(Intercept) 725,711.3 171,493.5 4.232 0.00174 **

Density: Housing 1019.2 295.2 3.452 0.00621 **

Design: Street design −24,968.9 31,460.1 −0.794 0.44581

Design: Street safety 1,114,818.8 169,607.6 6.573 6.29 × 10−5 ***

Destination: WalkScore −9086.2 2490.6 −3.648 0.00448 **

Distance: to the nearest bus stop 1035.9 282.9 3.662 0.00438 **

Diversity: Mixed land −184,669.3 152,803.2 −1.209 0.25464

Vacation −11,852.1 9784.0 −1.211 0.25360

Signif. codes: 0 ‘***’ 0.001 ‘**’

Residual standard error: 20,760 on 10 degrees of freedom

Multiple R-squared: 0.8779

Adjusted R-squared: 0.7924

F-statistic: 10.27 on 7 and 10 DF

p-value: 0.0007319

Table 9. OLS regression for 9 stations in 2023. Source: elaborated by authors.

Estimate Std. Error t Value Pr (>|t|)

(Intercept) 4,975,442 1,693,043 2.939 0.01482 *

Density: Housing 7232 2915 2.481 0.03247 *

Design: Street design −53,602 310,585 −0.173 0.86642

Design: Street safety 6,948,977 1,674,425 4.150 0.00198 **

Destination: WalkScore −58,694 24,588 −2.387 0.03815 *

Distance: to the nearest bus stop 6719 2793 2.406 0.03695 *

Diversity: Mixed land −1,308,596 1,508,526 −0.867 0.40602

Vacation 664,720 96,591 −6.882 4.29 × 10−5 ***

Signif. codes 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’

Residual standard error 204,900 on 10 degrees of freedom

Multiple R-squared 0.8798

Adjusted R-squared 0.7957

F-statistic 10.46 on 7 and 10 DF

p-value 0.0006779

In 2023, the model exhibited a slight improvement in fit, with an R2 of 0.8798 and
an adjusted R2 of 0.7957. The model’s structure remained consistent with 10 degrees of
freedom and an F-value of 10.46, significant at a p-value of 0.00067. This model identified
an additional significant variable, vacation, which negatively affected ridership while
maintaining the significant impacts of the previously identified variables.

The estimation results of OLS regression for the 19 stations for 2018 and 2023 are
presented in Tables 10 and 11, respectively. The model representing the 19 stations in 2018
demonstrated a moderate explanatory power with an R2 of 0.5315 and an adjusted R2 of
0.4221. The only significant predictor was street safety, which had a positive impact on
ridership. Other variables, including density, street design, diversity, and vacation, did not
reach statistical significance.
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For the year 2023, the model’s fit improved, with an R2 of 0.658 and an adjusted R2

of 0.5782. Similar to 2018, the only statistically significant variable was street safety. The
improved fit suggests a better capture of ridership behavior over time, though the low
number of significant predictors indicates potential oversimplification in the model or
variation in data sensitivity.

Table 10. OLS regression for 19 stations in 2018. Source: elaborated by authors.

Estimate Std. Error t Value Pr (>|t|)

(Intercept) 52,668.46 83,702.17 0.629 0.5340

Density: Housing −412.42 302.14 −1.365 0.1824

Design: Street design −14,180.21 23,112.56 −0.614 0.5442

Design: Street safety 220,360.17 89,832.81 2.453 0.0202 *

Destination: WalkScore 938.20 652.43 1.438 0.1608

Distance: to the nearest bus stop 49.05 66.03 0.743 0.4634

Diversity: Mixed land −43,534.96 79,391.54 −0.548 0.5875

Vacation −11,119.69 10,211.97 −1.089 0.2849

Signif. codes: 0.01 ‘*’

Residual standard error: 31,480 on 30 degrees of freedom

Multiple R-squared: 0.5315

Adjusted R-squared: 0.4221

F-statistic: 4.861 on 7 and 30 DF

p-value: 0.0009393

Table 11. OLS regression for 19 stations in 2023. Source: elaborated by authors.

Estimate Std. Error t Value Pr (>|t|)

(Intercept) 471,026.3 671,305.6 0.702 0.488

Density: Housing −819.5 2423.2 −0.338 0.738

Design: Street design −139,185.4 185,366.7 −0.751 0.459

Design: Street safety 1,125,513.7 720,474.5 1.562 0.129

Destination: WalkScore 6667.1 5232.6 1.274 0.212

Distance: to the nearest bus stop 336.0 529.5 0.634 0.531

Diversity: Mixed land −122,558.1 636,733.6 −0.192 0.849

Vacation −519,165.9 81,901.7 −6.339 5.43 × 10−7 ***

Signif. codes: 0 ‘***’

Residual standard error: 252,400 on 30 degrees of freedom

Multiple R-squared: 0.658

Adjusted R-squared: 0.5782

F-statistic: 8.244 on 7 and 30 DF

p-value: 1.348 × 10−5

In addition to the previous models and to complement the comparison process be-
tween the two methodologies, a regression model using only the nine fixed-radius influence
areas corresponding to the set of OD-survey-based areas was estimated. This approach
allows for a direct comparison by maintaining a consistent number of areas between the
models. Table 12 presents the results of the models estimated for the equivalent 9 out
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of 19 fixed-radius influence areas. The results can be compared to the model of Table 9,
highlighting the differences in explanatory power and significance of the variables.

Table 12. OLS regression for 9 stations fixed-radius areas equivalent to the newly defined areas in
2023. Source: elaborated by authors.

Estimate Std. Error t Value Pr (>|t|)

(Intercept) 4,813,034 1,761,695 2.732 0.0211 *

Density: Housing −3874 2091 −1.853 0.0936

Design: Street design −553,042 282,516 −1.958 0.0936

Design: Street safety 3,521,673 1,137,268 3.097 0.0113 *

Destination: WalkScore −16,353 15,599 −1.048 0.3192

Distance: to the nearest bus stop 2360 2107 1.120 0.2889

Diversity: Mixed land −2,027,237 851,064 −2.382 0.0385 *

Vacation −664,720 94,561 −7.030 3.59 × 10−5 ***

Signif. codes: 0 ‘***’ 0.01 ‘*’

Residual standard error: 200,600 on 10 degrees of freedom

Multiple R-squared: 0.8848

Adjusted R-squared: 0.8042

F-statistic: 10.98 on 7 and 10 DF

p-value: 0.0005545

The model presented in Table 9, based on the nine fixed-radius influence areas, showed
a robust fit with an R2 of 0.8798 and an adjusted R2 of 0.7957, indicating a high level of
explanatory power. The model had ten degrees of freedom and an F-value of 10.46,
significant at a p-value of 0.0006779. Key findings from this model include a significant and
positive effect of density with a coefficient of 7232 (p = 0.03247), a non-significant effect of
street design with a coefficient of −53,602 (p = 0.86642), a significant and positive effect of
street safety with a coefficient of 6,948,977 (p = 0.00198), a significant and negative effect of
destination with a coefficient of −58,694 (p = 0.03815), a significant and positive effect of
distance with a coefficient of 6719 (p = 0.03695), a non-significant effect of diversity with
a coefficient of −1,308,596 (p = 0.40602), and a highly significant and negative effect of
vacation with a coefficient of −664,720 (p = 4.29 × 10−5).

The model presented in Table 12, using the same nine influence areas of Table 9 but
based on the fixed influence area, exhibited a slightly improved fit. This model had an
R2 of 0.8848 and an adjusted R2 of 0.8042. It also had ten degrees of freedom and an
F-value of 10.98, significant at a p-value of 0.0005545. In this model, density was not
significant, with a negative coefficient of −3874 (p = 0.0936), street design was approaching
significance with a coefficient of −553,042 (p = 0.0788), street safety was significant and
positive with a coefficient of 3,521,673 (p = 0.0113), destination was not significant with
a coefficient of −16,353 (p = 0.3192), distance was not significant with a coefficient of
2360 (p = 0.2889), diversity was significant and negative with a coefficient of −2,027,237
(p = 0.0385), and vacation was highly significant and negative with a coefficient of −664,720
(p = 3.59 × 10−5).

The comparison between the two models reveals differences. Table 9 model identifies
density, destination, design (street safety), and distance as significant variables. Conversely,
diversity is significant in Table 12 but not in Table 9. Both models agree on the significance of
street safety and vacation, with vacation being consistently highly significant and negative.
Table 12 demonstrates a slightly better overall fit, as indicated by the higher R2 and adjusted
R2 values, lower residual standard error (200,600 vs. 204,900), and higher F-statistic. These
differences highlight the impact of the number of areas of influence on the performance
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and explanatory power of the regression models. In conclusion, the choice between the two
models depends on the research priorities: the model from Table 9 may be preferred for its
number of significant variables, while the Table 12 model offers a slightly better overall fit
and explanatory power.

The comparative analysis of the two influence area methodologies reveals that the
models applied to the newly defined influence areas provided a consistent model and a
higher number of significant explanatory variables. This suggests that the model based on
the OD survey data for defining station influence areas may better represent the complexi-
ties of the built environment’s impact on metro ridership. This finding aligns with previous
research indicating that station-specific characteristics and surroundings can significantly
influence ridership levels.

6. Conclusions

Regarding the different influence area approaches, it is possible to note that an in-
fluence area defined by the “real” use of the metro station’s surroundings, based on an
origin and destination survey, generates better analytical conditions with respect to the
relation between the built environment and metro ridership. Therefore, it is relevant to
question whether a fixed distance radius from metro stations is adequate to evaluate the
impact of the urban and transport characteristics of its surroundings on its ridership.

Furthermore, the results show that the land use mix and street design did not present
a representative statistical explanation for the metro ridership, as expected from a TOD-
designed area, except for the density indicator. In addition, from the statistically relevant
indicators, there are some inverse results that would be expected from a TOD-planned
area. For example, the higher the number of accidents harming pedestrians leads to higher
metro ridership; the increased walkability at the influence area reduces the use of the metro
system; and longer distances to bus stops promote higher metro ridership.

In light of this analysis, it is possible to confirm that the metro and bus systems
in Greater Valparaíso are competing with each other instead of promoting intermodal
mobility. Also, the level of walkability to a diversity of services around metro stations
relates negatively to metro ridership, and people are conditioned to be exposed to accidents
around metro stations, meaning that there may not be alternatives to avoid this exposure.

In general, this study indicates that the metro system in Greater Valparaíso was not
planned in synergy with the urban development of this metropolitan area. This may
connect to the challenges regarding a change of transport planning perspective toward
a sustainable approach. As discussed by Banister [64], there is a need to confront two
traditional dilemmas of transport planning: (1) Transport as a derived demand or as a
valued activity; (2) Time minimization or reasonable travel time. These questions related
directly to the lack of consideration of the urban characteristics and necessities of people
regarding public transport projects.

In this direction, this study is an initial diagnostic of the relationship between the built
environment and metro ridership in the metropolitan area of Valparaíso and opens new
questions about specific aspects of the metro system and its relationship to its surroundings.
For future studies, it is recommended to explore the effects of sociodemographic factors
and more detailed built environment factors, such as conditions of public spaces and the
presence of universal accessibility infrastructure, on the system’s ridership and accessibility
to the metro stations.
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Appendix A

Table A1. Methodological summary for urban environment indicators. Source: elaborated by Authors.

Dimension Indicators Methodology Equations

Density Housing
Using the 2017 Census shapefile, the total number of
homes was calculated and divided into the area of

the municipality expressed in hectares (ha).

Total Housing unit
Total area (ha)

Design

Street design

Using the street network, the calculation of nodes
was carried out with a Qgis geoprocessing tool,

making a sum of their total. Dividing it into the total
number of streets, considering them topologically.

Total Number o f Nodes
Total Number o f Topological Streets

Street safety

The sum of the total number of vehicle accidents per
area was made, and then the proportion was

obtained by dividing it by the total area expressed
in hectares.

Total Number o f vehicular accidents
Total area (ha)

Destination Walkscore

Using Python and the pandas, geopandas, requests,
json, and urllib.parse libraries. Two functions were

generated. The first of them, called “address”,
receives a pair of geographical coordinates and, by
connecting to the Nominatum API, converts them
into the address format required by the Walkscore

API. The second function, called “walkscore”,
receives a polygon in shapefile format, extracts its

centroid and uses this pair of coordinates as input to
the “direct” function. This generates the URL

needed to enter the Walkscore API and obtain the
score provided by Walkscore.

Functions:
direc(lat,lon) = address in format

required by walkscore.
Walkscore(polygon) = Walkscore

Distance Distance to the
nearest bus stop

Google Maps was used to generate the shortest
route between the metro station and a bus stop

within the area.

Real distance calculation using
Google Maps

Diversity Mixed land

Using the PRC shapefile from the municipalities of
Valparaíso, Viña del Mar, Quilpué, and Villa

Alemana. It was filtered by the residential areas,
adding the total area of these to divide it into the

total area, expressed in hectares (ha).

Total Residential area (ha)
Total area (ha)
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Table A2. Methodological summary and formulas for calculating socioeconomic characteristics of the
municipalities. To calculate the characteristics described in the table, the data available in the origin
and destination survey were used. Source: elaborated by Authors.

Characteristics Methodology Equations Explanation

Total Population Sum of the expansion factor of each
person present in the municipality. ∑N

i=1 wi

N: Total number of people
wi: Expansion factor associated with
the unit of persons i

Ratio of women to
total population

Relationship of the sum of the
expansion factor of women in the
municipality and the sum of the

expansion factor of the population of
the municipality.

∑N
i=1 (w i∗ fi)

∑N
i=1 wi

N: Total number of people

fi:
{

1 : genderi = f emale
0 : genderi ̸= f emale

wi: Expansion factor associated with
the unit of persons i

Average age

Relationship of the sum of the age of
each person by their municipality

expansion value and the sum of the
total expansion factor of the
municipality’s population.

∑N
i=1 (w i∗xi)

∑N
i=1 wi

N: Total number of people
xi: Age of unit i
wi: Expansion factor associated with
the unit of persons i

Houlsehold Size

Relationship of the sum of the
expansion factor of people in the

municipality and the sum of the total
expansion factor of households in

the municipality.

∑N
i=1 wPerson

i

∑M
j=1 wHoulsehold

j

N: Total number of people
M: Total number of houlseholds
wPerson

i : Expansion factor associated
with the unit of persons i
wHoulsehold

j : Expansion factor
associated with the unit of
households j

Cars per household

Relationship of the sum of the
expansion factor of households with

cars and the sum of the expansion
factor of households in

the municipality.

∑N
j=1 (w j∗xj

)
∑M

j=1 wj

N: Total number of people
M: Total number of households

xj:
{

1 : Cars per householdi = True
0 : Cars per householdi = False

wj: Expansion factor associated with
the unit of households j

Household income

Relationship of the sum of the
product of the income of a household
j by the household expansion factor

and the sum of the household
expansion factor in the municipality.

∑N
j=1 (w j∗xj

)
∑N

j=1 wj

N: Total number of people
xj: Household income of unit j
wj: Expansion factor associated with
the unit of households j

Population in need
of care

Relationship of the sum of the person
expansion factor for those younger
than 14 years old and those older or
equal to 60 years old, and the sum of

the expansion factor of the
population of the municipality.

∑N
i=1 (w i∗xi)

∑N
i=1 wi

N: Total number of people

xi:
{

1 : agei ≤ 14or agei ≥ 60
0 : agei > 14 ∧ agei < 60

wi: Expansion factor associated with
the unit of persons i

Primary education

Relationship of the sum of the
product between those people over

18 years of age who do not study and
who have completed primary

education (x = 1) by their associated
expansion factor and the sum of the
expansion factor of the population

older than 18 years of
the municipality.

∑N
i=1 (w i∗xi)

∑N
i=1(wi ∗yi)

N: Total number of people
xi: If agei ≥ 18 ∧ activityi ̸= study ∧
educationi = Primary
yi: agei ≥ 18
wi: Expansion factor associated with
the unit of persons i
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Table A2. Cont.

Characteristics Methodology Equations Explanation

Secundary education

Relationship of the sum of the
product between those people over

18 years of age who do not study and
who have completed secondary

education (x = 1) by their associated
expansion factor and the sum of the

expansion factor of the equal and
older population than 18 years old

from the municipality.

∑N
i=1 (w i∗xi)

∑N
i=1(wi ∗yi)

N: Total number of people
xi: If agei ≥ 18 ∧ activityi ̸= study ∧
educationi = Secundary
yi: agei ≥ 18
wi: Expansion factor associated with
the unit of persons i

Superior education

Relationship of the sum of the
product between those people over

29 years of age who do not study and
who have completed higher

education (x = 1) by their associated
expansion factor and the sum of the

expansion factor of the equal and
older population than 29 years old

from the municipality.

∑N
i=1 (w i∗xi)

∑N
i=1(wi ∗yi)

N: Total number of people
xi: If agei ≥ 29 ∧ activityi ̸= study ∧
educationi = Superior
yi: agei ≥ 29
wi: Expansion factor associated with
the unit of persons i

Workers

Relationship of the sum of the
product of people over 15 years of

age who work and who are not under
18 years of age studying (x = 1) and

the sum of the household
expansion factor.

∑N
i=1(wPerson

i ∗xi)
∑M

j=1 wHoulsehold
j

N: Total number of people
M: Total number of houlsehold
xi: agei ≥ 15 ∧ activityi
= work ∧ (agei > 18 ∧ activityi! =
study)
wPerson

i : Expansion factor associated
with the unit of persons i
wHoulsehold

j : Expansion factor
associated with the unit of
households i

Car driving license

Relationship of the sum of the
product of people with a driver’s
license (x = 1) by their associated

expansion factor and the sum of the
household expansion factor.

∑N
i=1(wPerson

i ∗xi)
∑M

j=1 wHoulsehold
j

N: Total number of people
M: Total number of houlseholds
xi: driving licensei =
Cardrivinglicense
wPerson

i : Expansion factor associated
with the unit of persons i
wHoulsehold

j : Expansion factor
associated with the unit of
households i

Households with
bicycles

Relationship of the sum of the
product of households with at least
one bicycle (x = 1) by its associated
expansion factor and the sum of the

expansion factor of households.

∑N
j=1 (w j∗xj

)
∑M

j=1 wj

N: Total number of people
M: Total number of households
xj: Households with bicyclesi = True
wj: Expansion factor associated with
the unit of households j
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Table A3. Total score of urban environment indicators within areas of 400 m radius. Source: elaborated
by authors.

Stations Density:
Housing

Design: Street
Safety

Design: Street
Design

Diversity:
Mixed Land

Destination:
WalkScore

Distance: to the
Nearest Bus Stop

Puerto 20.12 0.19 2.07 0.75 99 39.84

Bellavista 26.91 0.31 2.13 0.87 100 52.18

Francia 20.80 0.24 2.17 1.00 97 79.71

Barón 24.60 0.10 1.75 0.92 93 33.00

Portales 23.65 0.08 1.40 0.73 82 100.00

Recreo 35.15 0.03 1.83 0.95 84 64.00

Miramar 75.16 0.13 1.85 0.81 98 99.00

Viña del Mar 40.11 0.24 1.62 0.93 99 120.00

Hospital 81.21 0.17 1.92 0.85 89 16.4

Chorrillos 26.20 0.05 1.66 0.82 73 43.87

El Salto 0.99 0.02 0.60 0.91 37 48.66

Quilpué 13.25 0.16 1.62 0.87 89 69.23

El Sol 16.63 0.00 1.79 0.84 63 405.07

El Belloto 15.77 0.06 1.92 0.90 68 79.7

Las Américas 21.13 0.03 1.56 0.96 53 196.85

La Concepción 18.49 0.01 1.83 0.95 76 39.77

Villa Alemana 13.28 0.11 2.07 0.93 86 57.67

Sargento Aldea 17.30 0.02 1.83 0.95 79 18.25

Peñablanca 16.43 0.01 1.67 1.00 53 59.33

Table A4. Total score of urban environment indicators within areas reclassified and vectorized using
KDE. Source: elaborated by authors.

Stations Density:
Housing

Design: Street
Safety

Design: Street
Design

Diversity:
Mixed Land

Destination:
WalkScore

Distance: to the
Nearest Bus Stop

Puerto 17.12 0.42 17.96 0.89 99 39.84

Francia 29.32 0.33 22.38 0.98 98 79.71

Barón 9.13 0.28 13.87 1 95 128.32

Recreo 34.36 0.03 16.09 0.98 84 210

Miramar 106.84 0.25 20.71 1 99 110

Viña del Mar 69.13 0.31 18.17 0.94 99 120

Hospital 68.5 0.24 18.35 0.76 89 16.4

Quilpué 14.02 0.28 15.94 1 90 159.4

Villa Alemana 8.34 0.25 18.48 0.98 87 93.12
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