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Abstract: Assessing healthy cities is a crucial strategy for realizing the concept of “health in all poli-
cies”. However, most current quantitative assessment methods for healthy cities are predominantly
city-level and often overlook intra-urban evaluations. Building on the concept of geographic spatial
case-based reasoning (CBR), we present an innovative healthy city spatial case-based reasoning
(HCSCBR) model. This model comprehensively integrates spatial relationships and attribute charac-
teristics that impact urban health. We conducted experiments using a detailed multi-source dataset
of health environment determinants for middle-layer super output areas (MSOAs) in Birmingham,
England. The results demonstrate that our method surpasses traditional data mining techniques in
classification performance, offering greater accuracy and efficiency than conventional CBR models.
The flexibility of this method permits its application not only in intra-city health evaluations but
also in extending to inter-city assessments. Our research concludes that the HCSCBR model signif-
icantly improves the precision and reliability of healthy city assessments by incorporating spatial
relationships. Additionally, the model’s adaptability and efficiency render it a valuable tool for
urban planners and public health researchers. Future research will focus on integrating the temporal
dimension to further enhance and refine the healthy city evaluation model, thereby increasing its
dynamism and predictive accuracy.

Keywords: healthy city assessment; spatial case-based reasoning (CBR); urban health; middle-layer
super output areas (MSOAs); Birmingham

1. Introduction

Health impact assessment (HIA) is a predictive decision-making tool aimed at en-
hancing the quality of policies, plans, or projects by proposing health-promoting sug-
gestions [1,2]. HIA is considered a key instrument for implementing the “health in all
policies” guiding principle of healthy cities. However, in pilot healthy cities, only a few
have conducted health assessments. The lack of HIA theory and empirical research is one
of the main obstacles hindering its introduction and implementation [3]. Furthermore,
most existing healthy city evaluation frameworks rely on a city-wide scope and focus on
inter-city comparisons [4]. In reality, intra-city (community-level) comparisons are essential
for maximizing urban planning potential to highlight and alleviate local urban health
inequalities [5,6].

In urban planning, there are three main types of healthy city assessment methods: qualita-
tive, quantitative, and composite. Qualitative methods include expert systems [7–10]. Quanti-
tative methods include fuzzy evaluation approaches [9,11], entropy weight methods [12],
multivariate statistical methods [13–15], random forests (RF) [16], and linear regression [17].
Comprehensive methods include geographically weighted regression, neural networks,
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and deep learning [18,19] along with other mathematical statistical and machine learning
methods. Particularly, machine learning, with its powerful nonlinear processing ability and
robustness, surpasses heuristic models and mathematical statistical models. However, it
still faces issues such as low analysis precision, prolonged time consumption when dealing
with large data sets, high data dependency, and poor model transferability [20,21].

Cities exhibit high complexity, uncertainties in both structured and unstructured
data, and subjectivity in evaluating built environments. These factors make traditional
objective and subjective methods difficult to reuse and validate, leading to considerable
variation in assessment outcomes [22]. A deep integration is needed between health impact
assessments and urban planning, which places high demands on machine learning, such
as domain knowledge, algorithm selection, and parameter setting. This also leads to
extended resolution cycles, complex processes, and results that are difficult for ordinary
users to understand. Healthy city assessment is a comprehensive evaluation involving
multiple dimensions, levels, and stakeholders. It needs to consider factors affecting the
city’s environment, economy, society, population, services, and space while also recognizing
the variability among different research areas. The lack of a unified spatial scale for multi-
source and heterogeneous environmental and health indicators makes it challenging to
construct a comprehensive, reliable evaluation indicator system [23,24].

Case-based reasoning (CBR) is a significant branch of artificial intelligence, employing
a problem-solving method that leverages historical experiences or knowledge from a case
library to address practical issues [25]. The mainstream CBR model, known as the 4R
life cycle reasoning model, was introduced by Aamodt and Plaza in 1994. This model
encompasses four phases: case retrieval, case reuse or replication, case correction or adjust-
ment, and case retention [26]. CBR offers natural advantages, including easy knowledge
acquisition, a straightforward problem-solving process, high efficiency, and incremental
learning, rendering the solutions more readily accepted by users [27]. In the realm of urban
and rural planning, CBR has seen extensive research and application in various areas like
urban growth [28,29], low-carbon city development [30], smart city planning, planning
support systems [31–33], and urban disaster emergency management [34–36].

Currently, most CBR research is centered on optimizing case library representation
and retrieval to enhance CBR’s accuracy and computational efficiency. However, it faces
significant limitations and low robustness in complex and dynamic environments. As a
future development direction, the geographical environment is integrated as a set of spatial
driving factors in case retrieval, case revision, and case reuse operations. Nevertheless,
spatial cases and case revision remain challenging in practical applications [37,38]. The
application of CBR in healthy city assessment is relatively under-researched within urban
planning. The focus tends primarily towards common attributes like residents’ health,
socio-economic status, access to medical and educational services, environmental hygiene,
and traffic conditions, with less emphasis on the spatial characteristics among urban
environmental elements. This oversight limits innovative applications in urban planning.

Based on a multi-source granular dataset encompassing environmental determinants
and health outcomes, we propose an innovative spatial case-based reasoning (HCSCBR)
model for the evaluation of healthy cities, operating at the scale of middle-layer super
output areas (MSOAs) in Birmingham, England as the spatial unit for geographic research.
The model is designed to perform joint reasoning by integrating spatial relationships and
attribute similarity. The results demonstrate that our method has higher classification per-
formance compared to traditional machine learning methods and offers greater accuracy
and efficiency than typical CBR models. This method is not only applicable to intra-city
health assessments but can also be extended to inter-city scale evaluations, providing inno-
vative technical support for public health researchers and urban planners in formulating
more effective health policies and intervention measures.

The paper is structured as follows: Section 2 outlines the research framework and
explicates the construction of the HCSCBR method. Section 3 offers a detailed case study
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with result analysis to validate the efficacy of our approach. The concluding section
articulates our findings and underscores the imperative for ongoing research in this domain.

2. Materials and Methods
2.1. Research Framework

The use of case-based reasoning (CBR) for the assessment of healthy cities necessitates
the consideration of the representation of historical cases, the retrieval of similar cases,
and the reuse and revision of cases, reflecting the logical and creative thought processes of
the CBR model. To enhance the precision, robustness, and efficiency of CBR, we propose
the Health City Spatial Case-Based Reasoning (HCSCBR) model. This model incorporates
spatial geographic features in the assessment of healthy cities, pre-organizes cases, reduces
attributes, assigns weights prior to case retrieval, and considers multiple spatial driving
factors. Our research is divided into four stages: (a) representation of cases with spatial
features; (b) pre-organization of the case library, attribute reduction, and weight allocation
for retrieval optimization before case retrieval; (c) case retrieval considering both global
and local similarity inferences; and (d) case reuse and revision. The proposed HCSCBR
framework is illustrated in Figure 1.

ISPRS Int. J. Geo-Inf. 2024, 13, x FOR PEER REVIEW 3 of 19 
 

 

The paper is structured as follows: Section 2 outlines the research framework and 
explicates the construction of the HCSCBR method. Section 3 offers a detailed case study 
with result analysis to validate the efficacy of our approach. The concluding section artic-
ulates our findings and underscores the imperative for ongoing research in this domain. 

2. Materials and Methods 
2.1. Research Framework 

The use of case-based reasoning (CBR) for the assessment of healthy cities necessi-
tates the consideration of the representation of historical cases, the retrieval of similar 
cases, and the reuse and revision of cases, reflecting the logical and creative thought pro-
cesses of the CBR model. To enhance the precision, robustness, and efficiency of CBR, we 
propose the Health City Spatial Case-Based Reasoning (HCSCBR) model. This model in-
corporates spatial geographic features in the assessment of healthy cities, pre-organizes 
cases, reduces attributes, assigns weights prior to case retrieval, and considers multiple 
spatial driving factors. Our research is divided into four stages: (a) representation of cases 
with spatial features; (b) pre-organization of the case library, attribute reduction, and 
weight allocation for retrieval optimization before case retrieval; (c) case retrieval consid-
ering both global and local similarity inferences; and (d) case reuse and revision. The pro-
posed HCSCBR framework is illustrated in Figure 1. 

 
Figure 1. Research Framework of HCSCBR. 

2.2. Establishment of a Case Database 
To retrieve similar cases using the HCSCBR method, we have established a case da-

tabase, which serves as the foundational unit of case-based reasoning. The content and 
structure of the case database are critical factors influencing the success of case reasoning. 

  

Figure 1. Research Framework of HCSCBR.

2.2. Establishment of a Case Database

To retrieve similar cases using the HCSCBR method, we have established a case
database, which serves as the foundational unit of case-based reasoning. The content and
structure of the case database are critical factors influencing the success of case reasoning.

2.2.1. Data Sources

The evaluation of healthy cities is a comprehensive assessment involving multiple
dimensions, levels, and stakeholders. It requires consideration of factors such as environ-
ment, economy, society, population, services, and space as well as the expectations and
needs of different stakeholders. Therefore, the characteristic attribute variables of the case
database should comprehensively reflect the impact factors and behavioral factors affecting
the health status of cities. However, due to regional differences in the assessment of healthy
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cities, data formats are often messy, spatial resolutions vary, and it is challenging to unify
multi-source heterogeneous data at the same spatial scale. There is a need to bridge the
data gap between urban environments and citizens’ health outcomes, as well as the social
gap between data sources and researchers. To ensure the rationality and validity of the
data, this study uses a fine-grained health dataset of health environmental determinants
provided by the literature [24], which integrates different data sources into two unified
spatial scales: middle-layer super output areas (MSOAs) and the city level. This dataset
covers 1039 MSOAs in 29 cities in England, with a time range from 2019 to 2022 (Figure 2).
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The dataset consists of two major parts: citizens’ health outcomes and the correspond-
ing environmental determinants. Specifically, health outcome data reflect the expected
lifespan, physical health, and mental health of each region. Basic statistical data, including
the population, area, boundaries, and centroid of the selected areas, provide necessary
information to understand the spatial composition of cities. Behavioral environment data,
such as the availability of tobacco, alcohol, physical exercise, and healthcare services in
communities, are considered important health-related behavioral factors, gathered through
point of interest (POI) data. The built environment of a city, a significant determinant of
health, influences the physical activities and mental health of citizens; architectural density,
road network density, street view features, satellite features, and walkability together de-
scribe the built environment of urban space. Exposure to polluted air and climate issues
have always been seen as major health challenges. Natural environmental data mainly
include daily average records of nitrogen oxides such as nitrogen dioxide, PM2.5, and PM10
particles, serving as air pollution indicators in our dataset. Temperature, precipitation,
relative humidity, sunshine duration, snow days, and wind speed serve as weather charac-
teristic indicators. All data have been quantitatively described and are openly available
through the GitHub repository [24].

2.2.2. Spatial Case Representation

Case representation is a collection of features and attributes that directly affects the
precision and efficiency of case-based reasoning. Unlike traditional CBR, which focuses
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primarily on attribute features, HCSCBR considers both attributes and spatial features.
Spatial features enhance the accuracy and efficiency of case retrieval and reuse, addressing
complex, heterogeneous geographic problems.

Our applied case structure model is a top-level design for application cases, developed
after extensive abstraction. Each middle-layer super output area (MSOA) serves as an eval-
uation unit. This case representation includes attribute features related to physical health,
mental health, life expectancy, basic statistics, behavioral environment, built environment,
and natural environment. Among these attributes, boundary data and centroid data rep-
resent information at different spatial scales, articulating geographic boundaries for each
MSOA or city, and highlighting spatial distribution and regional differences. Geographic
spatial features are fully integrated into the regional health risk assessment model, with
boundary data and centroid data chosen as spatial features. For city-level case representa-
tion, data from MSOA levels are aggregated following city boundaries, supporting health
assessments on a city scale.

To effectively describe healthy city evaluation cases, we abstract the cases into a tripar-
tite representation based on the regional differentiation characteristics of the geographic
space where the geoscience problem is located. This representation includes three parts:
“problem space”, “environment space”, and “solution space”. The “problem space” pri-
marily comprises basic statistical data, natural environment indicators, and behavioral
environment indicators. The “environment space” quantitatively expresses the impact
of the built environment on the problem space, incorporating spatial morphology and
various attribute features such as road density, street view features, MSOA boundaries, and
centroids. The “solution space” encompasses attributes related to citizens’ physical health,
mental health, and life expectancy. The mathematical expression for case representation is
defined as follows:

Ck: <Ak; Sk; R>, k = 1, 2, . . ., n (1)

Here, k represents the number of source cases, and Ak, Sk, and Rk represent the problem
space, environment space, and solution space of the case, respectively.

Ak = {a1,k, a2,k, . . ., ai,k, . . ., aj,k} (2)

where ai,k represents the description value of the ith attribute feature in the kth case and
j is the number of attribute features. Major attribute features include city environmental
determinants, such as population and area attributes in basic statistics; attributes in the
behavioral environment like tobacco availability, alcohol availability, health service avail-
ability, and physical exercise availability; and attributes in the natural environment, like
NOx, PM2.5, PM10, minimum and maximum temperature, rainfall, and relative humidity.

Sk = {s1,k, s2,k,. . ., si,k,. . ., sl,k} (3)

where si,k represents the description value of the ith spatial feature attribute in the kth case
and l is the number of spatial relation attributes. Spatial attribute features include the
MSOA boundary and centroid data in the built environment.

Rk = {r1,i, r2,i, . . ., ri,k, . . ., rm,k} (4)

where ri,k represents the description value of the ith result attribute in the kth case and m is
the number of result attributes. Outcome attributes include physical health attributes such
as the number of confirmed COVID-19 cases, asthma medication expenditure, and obesity
rates, as well as mental health attributes such as mental health medication expenditure and
mental health services utilization rates.

2.3. Case Pre-Organization

A large number of effective cases ensure the success of case retrieval. However, as the
number of cases in the case base increases, and each case has its spatial element, retrieving
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them consumes a considerable amount of computational resources. If only conventional
retrieval and matching algorithms are used, the efficiency of retrieval will be significantly
reduced, and it may even be challenging to achieve satisfactory results [39]. In the case
of organization and maintenance, many studies have adopted clustering methods and
data mining techniques to divide the case base into sub-libraries to improve retrieval
efficiency [39–42]. Although these traditional clustering algorithms meet some specific
applications, they still have various degrees of shortcomings, such as the need for prior
knowledge and preset parameters, inability to discover clusters of arbitrary shapes, dif-
ficulty in dealing with clusters of varying internal density, and issues with outliers and
noise [43].

According to Tobler’s First Law of Geography [44], “entities that are closer in space
are more similar than those that are further apart”. If the distance between two points
is sufficiently small, they are considered to be similar points. Therefore, before case
retrieval, it is possible to perform spatial clustering on the centroids of MSOAs to pre-
organize cases, thereby forming highly similar sub-cases to optimize retrieval efficiency
and localization accuracy.

We adopt an adaptive spatial clustering algorithm based on Gestalt theory and scan-
ning circle technology, referred to as ASC [43]. This algorithm is capable of discovering
clusters of any shape based on centroids and does not depend on modifying the initial
model (such as the minimum spanning tree, Delaunay triangulation, Voronoi diagram, etc.).
The algorithm is straightforward to understand and implement, scalable, and not limited
by the size of the dataset, achieving good results in clustering tasks.

2.4. Attribute Reduction and Weight Assignment

Attribute reduction and weight assignment involve identifying representative features
and their weights, eliminating redundant features, and exploring decisive key factors and
weights. These processes are crucial for improving the accuracy and efficiency of case-based
reasoning (CBR) matching [45]. Rough set theory (RST) has proven to be an effective tool
for subset selection of features. The rough set algorithm can handle some indiscernible
phenomena using incomplete information or knowledge. By reflecting the inaccuracy and
uncertainty of the objective world, it can mine the patterns implied in the data without
relying on expert knowledge, ensuring objectivity in determining the weights of evaluation
factors. Additionally, it can find the minimum data set through data reduction, assess the
value of data, and provide a clear and easy-to-understand explanation of the results. Thus,
it is widely used in feature selection and weight determination [38,40,46].

As the size of the case base increases and the significant non-spatial attribute features
multiply, the complexity of using rough set reduction and weight assignment directly
increases exponentially. Meanwhile, genetic algorithms can globally optimize the problem
with advantages like implicit parallelism. Therefore, given the characteristics of large data
volumes and high attribute redundancy in the case base, this study adopts an HGARSTAR
algorithm that combines rough set and genetic algorithms for feature extraction [47], used
for case attribute reduction. The HGARSTAR algorithm embeds a local search operation of
rough sets to enhance the reinforcement capability of the genetic algorithm. All candidate
objects generated during the evolutionary process are forced to include core features to
accelerate convergence. Various reduced features have different importances. According
to the definition and dependency degree of rough sets, the weights of various indicators
in the decision table can be constructed. For example, in the information system S =
(U, C, D, A, f )—where C = {c1, c2, c3, . . . , cn}—the importance of condition ci, S(ci), is
given by:

S(ci) =
POSC(D)− POSC−ci (D)

| U | (5)

Therefore, the weight of ci is:

w(ci) =
S(ci)

∑n
j=1 S

(
cj
) (6)
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2.5. Integrated Reasoning of Attribute and Spatial Similarity

In the CBR cycle, case retrieval is the most crucial step as it usually determines the
performance of the CBR system [48]. Traditional CBR reasoning methods include inductive
retrieval methods, knowledge-based retrieval methods, and the nearest neighbor algorithm.
The Euclidean distance nearest neighbor algorithm (K-NN) is widely used as a case retrieval
method [49]. Case retrieval is the core of case reasoning. The health city evaluation case
similarity retrieval consists of two parts: attribute similarity calculation and spatial feature
similarity calculation. Based on the integrated reasoning of attribute and spatial similarity,
the solution of the known case with the highest similarity is taken as the solution of the
unknown case.

2.5.1. Calculation of Attribute Feature Similarity

For case retrieval, traditional CBR reasoning methods include inductive retrieval
methods, knowledge-based retrieval methods, and the nearest neighbor algorithms. Among
these, the nearest neighbor algorithm is widely adopted for case retrieval. This study uses
the traditional nearest neighbor method for attribute similarity retrieval [49]. According to
the nearest neighbor retrieval method, the attribute similarity Sa(A, B) between the target
case A and the source case B is calculated as:

Sa(A, B) = 1 −
√

∑m
i=1 wi(ai − ai,k)2 (7)

where wi is the weight of the ith feature attribute and satisfies:{
∑m

i=1 wi
wi ≥ 0

(8)

2.5.2. Calculation of Spatial Feature Similarity

The computation of similarity in geographic spatial data is one of the key techniques
in case-based reasoning. The similar spatial characteristics of a geographical space target
refer to geometric similarity, such as location and dimension, and similarities in spatial
relationships, such as topology, direction, and distance. All these aspects must be included
in the calculation of spatial similarity [50]. The evaluation results of healthy cities are
easily affected by the adjacent geographical environment, which is manifested in spatial
relationship dependencies or constraining relationships among cases. Therefore, in case
retrieval, the calculation of the similarity of spatial characteristics must also be considered.
In this research, we adopt the distance between the source case and the target case, as well
as the similarity in spatial form and size between the source case and the target case for
matching calculations.

1. Calculation of Similarity for Spatial Point Targets

Suppose that the topology relationship, distance relationship, direction relationship,
distribution range, and density are represented by a five-dimensional vector. We can
calculate the spatial similarity using the weighted Euclidean distance, which is:

Sp(A, B) =
1

1 + aD(A, B)
(9)

The spatial similarity Sp(A, B) in the source case is calculated between the city or
MSOA centroid (mass point) and the city or MSOA centroid (mass point) in the historical
case, where α\alphaα is a positive constant that adjusts the distance, affecting the similarity.
Sp(A, B) is a number between 0 and 1. D(A, B) is their weighted Euclidean distance,
defined as:
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D(A, B) =

√
∑5

i=1 (
Ak − Bk

wk
)2 (10)

Here, A and B are three-dimensional vectors representing the spatial features of two
points. Ak and Bk are the kth components of vectors A and B, respectively, representing
topological relationships, distance relationships, and directional relationships. wk is the
variance or weight of the kth dimension, indicating the degree of influence of that feature
on spatial distance.

2. Calculation of Spatial Relationship Morphology Similarity

The calculation of spatial relationship morphology similarity for MSOAs or cities
primarily includes the computation of spatial relationships and geometric features of
spatial face group targets. The equation is as follows:

S f (A, B) =
D(A, B)

D(A, A) + D(B, B) + D(A, B)
(11)

where S f (A, B) represents the spatial similarity between spatial forms A and B, D(A, B) is
the degree of spatial difference between spatial forms A and B, and D(A, A) and D(B, B)
are the self-differences of spatial forms A and B, respectively. The method for calculating
spatial difference is as follows:

(A, B) = ∑n
i=1 ∑m

j=1

wiwj

n × m

∣∣∣∣ fi (si)− f j
(
sj
)∣∣∣∣ (12)

where n and m are the number of faces in spatial forms A and B, respectively; si and sj
are the areas of the ith and jth faces, respectively; wi and wj are the weight coefficients for
the ith and jth faces, respectively (which can be set according to different objectives); and
fi(si) and f j

(
sj
)

are the geometric feature functions for the ith and jth faces, respectively
(which can be total area, total perimeter, compactness, face density, etc.). The overall spatial
similarity is:

Ss(A, B) =
Sp(A, B)Wp + S f (A, B)W f

Wp + W f
(13)

where Wp and W f are the weights for spatial proximity and spatial form, respectively. Sp
and S f are the similarities of spatial proximity and spatial form between the source case A
and the target case B, respectively. Ss(A, B) is the comprehensive spatial similarity. The
weights Sp and S f are determined according to reference [51].

3. Comprehensive Similarity

The comprehensive reasoning of attribute and spatial similarity combines Equations
(7) and (13) to calculate the overall similarity as follows:

Sk =
Sa(A, B)Wa + Ss(A, B)Ws

Wa + Ws
(14)

where Wa and Ws are the weight coefficients for attribute similarity reasoning and spatial
feature similarity reasoning, respectively. Sa(A, B) and Ss(A, B) represent the similarities
of attribute features and spatial features, respectively. Sk is the set of similar cases obtained
according to a predefined threshold 0.85.

Therefore, the maximum similarity can be obtained as:

Smax = max
(

Sk, Sk(i)

)
, i = 1, 2, · · · , p (15)
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2.6. Case Reuse

Considering that the retrieved target cases are seldom identical to the source cases, it
is necessary to obtain proposed solutions for the target cases from similar cases with the
highest similarity through case reuse. A two-layer random forest model [42] is employed to
enhance the accuracy and stability of case reuse. If the highest similarity Smax corresponds
to q case records, then the record most similar to the target case Ck is:

Reuq =
(
Cp; Rq

)
(16)

where Reuq represents the record of the case with the highest similarity, Cp represents the
problem description, and Rq represents the proposed solution for the target case. When the
proposed solution completely contradicts the actual situation, case revision is required.

2.7. Case Revision

Case revision is a process of modification or update of existing cases during case-based
reasoning (CBR), aimed at enhancing the efficiency and accuracy of reasoning. It not only
reflects the logical and creative thinking of the CBR model but also presents its challenges
and critical aspects [52]. Consequently, an effective case revision method can not only
enhance the performance of CBR but also has significant importance for artificial intelli-
gence in addressing actual engineering problems. Currently, manual correction by domain
experts and machine learning methods are the primary methods for case revision [53]. In
recent years, to overcome the drawbacks of these methods, the academic community has
adopted techniques such as genetic algorithms [54], multivariate regression [55], decision
groups [56], etc., enhancing the degree of automation in CBR case reuse and revision stages.
In health city evaluation, considering the importance of spatial information increases the
difficulty of case revision.

Our research adopts the case revision method for spatial similarity and relationships
proposed by [20], which includes two steps: case evaluation and case revision. Case
evaluation is done by defining the compatibility of similar cases with the target case,
computing the degree of conformity for each feature, and identifying the differential
characteristics that need revision. Case revision is based on differential characteristics, for
non-spatial attributes and spatial attributes. Non-spatial attribute revision employs genetic
algorithms, using binary coding, fitness functions, selection, crossover, mutation, and other
operations to optimize the solution of similar cases to better meet the requirements of the
target case. Spatial attribute revision uses GIS grid mapping technology, leveraging spatial
position information to map the geographical environment attributes of similar cases to
the corresponding layers or partition layers in the health city spatial database, checking its
consistency with the actual situation, and making necessary modifications.

3. Case Study and Results Analysis
3.1. Construction of the Case Base

For the construction of the historic case base in this study, we used data from 1039
MSOAs (middle-layer super output areas) covering 29 cities in England as experimental
data, utilizing mathematical expressions in the process of establishing the source case
base. The MSOA data span from 2019 to 2022. For computational convenience, we take
cross-sectional data averages of median/mean house price, NOx, PM2.5, PM10 indices
(µg/m3), lowest/highest temperatures (◦C), rainfall (mm), relative humidity (%), snowfall
days (days per month), sunlight hours (hours per month), and wind speed (knots) as
feature attribute values.

Regarding the four environmental spatial attribute features, involving MSOA centroid
points and boundary coordinate spatial proximity, we calculate the spatial proximity among
different MSOAs using a spatial weight matrix. The topological relationships of MSOAs
are defined and checked through topological rules, such as zones must not overlap, must
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be adjacent, and borders must match. These can be accomplished using the “Spatial
Relationship Analysis” tool in ArcGIS.

The solution space selects the four diseases with higher incidence rates in physical
health in England: cancer, dementia, diabetes, and asthma along with mental health and
life expectancy, which include mental health, life expectancy, and healthy life expectancy,
totaling seven attribute features. For cancer, dementia, diabetes, asthma, and mental health,
we use the average of cross-sectional data representing actual medical expenses to measure,
as shown in Table 1 for the case base’s attribute features.

Table 1. Attributes of the Case Library.

Category Attribute Code Feature Attributes

Basic Statistics

A1 Population
A2 Area
A3 Population Density
S1 Geographical Centroid
S2 Boundary

Behavior Environment

A4 Tobacco Availability
A5 Alcohol Availability
A6 Health Service Availability
A7 Physical Exercise Availability

A8 Building Density
A9 Median/Mean House Price
A10 Driving/Cycling/Walking Road Density
A11 Street View Features
A12 Satellite View Features
A13 Walkability

Natural Environment

A14 NOx/PM2.5/PM10
A15 Min/Max Temperature
A16 Rainfall
A17 Relative Humidity
A18 Snow Lying Days
A19 Sunshine Hours
A20 Wind Speed

Physical Health

R1 Asthma
R2 Cancer
R3 Dementia
R4 Diabetes

Mental Health R5 Mental Health

Life Expectancy R6 Life Expectancy
R7 Healthy Life Expectancy

3.2. Spatial Clustering Organization of Case Library

The ASC spatial clustering algorithm, as mentioned in Section 2.3, is used to perform
primary spatial clustering on the centroids of the 29 cities, followed by secondary spatial
clustering within each city’s MSOAs. As shown in Figure 3, the 29 cities are divided
into 3 primary clusters. Within these clusters, for instance, Birmingham’s 135 MSOAs are
further divided into five sub-clusters, with each sub-cluster representing a secondary index.
During the retrieval of source cases, prioritizing adjacent clusters enhances the precision
and efficiency of retrieving target cases. In this process, cases with disorganized spatial
positions are considered outliers and are disregarded.
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3.3. Feature Extraction and Weight Allocation

Before calculating the feature extraction and weight allocation of attribute data, it is
important to consider that case attributes can have different dimensions, which can affect
the results of data analysis. To eliminate the impact of these varying dimensions, we need
to normalize the data. For the ith attribute value of each case, normalization can be carried
out using the following formula:

Fi =
xi − min(xi)

max(xi)− min(xi)
(17)

Here, Fi represents the standardized value, where each feature attribute’s data is
uniformly mapped onto an interval. According to the HGARSTAR method [47], the main
attribute features and weights are extracted, as shown in Table 2.

Table 2. Selection of non-spatial feature attributes and weight allocation.

Attribute Code Feature Indicator Weight

A3 Population Density 0.0619
A4 Tobacco Availability 0.0370
A5 Alcohol Availability 0.0595
A6 Health Service Availability 0.1618
A7 Physical Exercise Availability 0.0822
A8 Building Density 0.0545
A9 Median/Mean House Price 0.0676
A10 Driving/Cycling/Walking Road Density 0.1425
A11 Street View Features 0.0602
A12 Satellite View Features 0.0188
A13 Walkability 0.1009
A14 NOx/PM2.5/PM10 0.1457
A15 Min/Max Temperature 0.0074

3.4. Case Retrieval and Revision

Case retrieval refers to the method of similarity reasoning according to Formulas (14) and (15),
involving the setting of weight coefficients for 16 attribute feature variables based on
the experimental results in Table 2. For the weights of spatial relationship morphology
similarity calculations in Formulas (11)–(13), since there are fewer feature factors involved
in spatial morphology similarity calculations, the weights are assigned a 1:1 value. In
Formula (14), wa and ws are the weight coefficients for attribute features and spatial
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features, respectively. Based on their importance, and referring to the literature [38], the
sum of the weight coefficients for each attribute feature and spatial feature is obtained as
wa = 0.6859, ws = 0.3141. The maximum target case similarity is obtained from Formula (15),
and the suggested solution is derived according to the same formula. This study adopts the
spatial similarity and case revision method for spatial relationships from the literature [20],
involving parameter settings in the genetic algorithm. The recommended values according
to the literature [47] are shown in Table 3.

Table 3. Parameter settings in genetic algorithm.

Parameter Description Value Range

M Population Size 5
Pc Crossover Probability 0.8
Pm Mutation Probability 0.1
T Termination Generation 100

3.5. Experiment and Result Analysis

To validate the effectiveness and practicality of the proposed method in this paper,
two experiments, Experiment One and Experiment Two, were designed using the case-
based cross-validation method (a 10-fold cross-validation) as described by [57]. The ap-
proach involves dividing 1039 historical cases into 10 different groups of samples, labeled
1–10. Of these, 1 group is taken as the test cases, and the other 9 groups are used as source
cases; 10 similar cross-validation checks are carried out, respectively. Experiment Three
is an application in the real world. To meet the experimental requirements, all the above
experiments were carried out on the Windows 11 operating system using Python imple-
mentations based on open-source libraries such as NumPy, pandas, SciPy, sklearn, and
Keras. The hardware environment used is as follows: CPU is 13th Gen Intel(R) Core(TM)
i7-13700 with a frequency of 2.10 GHz, and the RAM is 32.0 GB.

3.5.1. Experiment One: Comparison with Traditional Evaluation Methods

To test the accuracy of this study compared with traditional data mining evaluations,
the HCSCBR method proposed in this study was used. We selected methods such as
support vector machine (SVM), traditional KNN method, Bayesian network (BN), and
artificial neural network (ANN) for comparison. Table 4 shows the comparison results.

Table 4. Comparison of accuracy with different data mining methods.

Experiment 1 2 3 4 5 6 7 8 9 10 Average

HCSCBR 94.32 89.78 96.57 93.12 86.98 85.43 92.27 89.14 90.16 87.42 90.52
SVW 82.56 89.31 87.10 90.76 86.75 84.43 91.34 88.91 83.60 86.15 87.09
KNN 69.43 72.12 58.24 65.78 72.12 60.87 63.76 73.11 54.04 67.45 65.69
BN 81.27 80.49 77.23 81.45 82.59 78.37 75.60 78.12 70.19 73.67 77.90

ANN 72.68 75.57 70.13 72.60 75.78 74.29 70.27 79.15 73.28 80.17 74.39

The results of the 10 experiments show that, compared with conventional data mining
methods, the mean values of evaluation accuracy are as follows: SVM at 87.09%, KNN
at 65.69%, BN at 77.90%, and ANN at 74.39%. The accuracy of HCSCBR is the highest,
reaching 90.52%. This demonstrates that the proposed algorithm significantly enhances the
accuracy of health city evaluations, outperforming other traditional data mining methods.

3.5.2. Experiment Two: Comparison with Other Case-Based Reasoning Methods

To verify the performance of the HCSCBR model proposed in this study in terms of
accuracy and effectiveness, we selected the traditional CBR model, which does not consider
spatial features, retrieval optimization, or case revision. Given the limited application
of CBR in health city research, we selected the model from the literature [38], referred
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to as SCBR, which also employs the “case question-case attribute-case result” triplet and
introduces geographical characteristics. Case retrieval and case modification (reuse) are
core parts of case-based reasoning (CBR). The Hybrid_CBR (HCBR) model proposed in
the literature [39] not only considers the adoption of fuzzy c-means clustering (FCM) and
mutual information to optimize weights for higher retrieval efficiency, but it also establishes
an optic regression model for case modification. Therefore, we selected these models for
experimental comparison to establish specificity. Given that we introduced clustering
analysis to improve CBR performance, the efficiency of CBR is influenced as the case
base grows. This experiment compares relative error rate and runtime efficiency, with the
expression for the relative error rate being as follows:

RER =

∣∣∣∣ Actval − Preval
Actval

∣∣∣∣×100% (18)

where Actval represents the test case, Preval represents the retrieved case, and RER repre-
sents the relative error rate. The actual calculation results are shown in Table 5.

Table 5. Comparison of different CBR methods.

Ten-Fold
CBR HCBR SCBR HCSCBR

RER (%) Time (s) RER (%) Time (s) RER (%) Time (s) RER (%) Time (s)

1 20.37 0.2164 16.40 0.4765 15.36 0.6350 6.64 0.5560
2 26.60 0.2081 19.08 0.4870 10.11 0.6274 3.26 0.5590
3 22.94 0.2155 17.32 0.4833 14.56 0.6287 6.01 0.5574
4 23.41 0.2057 16.91 0.3965 15.99 0.7295 9.78 0.5599
5 25.42 0.3104 17.20 0.3806 13.74 0.6281 10.3 0.5599
6 22.74 0.2128 18.65 0.4757 16.21 0.6286 4.15 0.5511
7 24.34 0.2125 19.26 0.3957 12.54 0.6336 7.84 0.5602
8 25.79 0.2255 18.68 0.3918 13.47 0.7260 7.24 0.5552
9 21.79 0.3089 16.32 0.3838 15.69 0.6277 9.38 0.6513

10 23.68 0.3123 18.78 0.3915 12.93 0.7355 9.65 0.5641
Average 23.71 0.2428 17.86 0.4262 14.06 0.6600 7.43 0.5674

The experimental data in Table 5 show that in the 10 tests, the relative error rate of
the HCSCBR model was the lowest at 7.43%, followed by the SCBR model at 14.06%. The
error rates of the CBR and HCBR models were relatively high, reaching 23.71% and 17.86%,
respectively. This significant lead in error rate is mainly because the CBR and HCBR models
do not consider the role of spatial factors in case-based reasoning, which can easily lead
to a high error rate. Although both SCBR and HCSCBR are spatial case-based reasoning
models, the error rate of the HCSCBR model, which has been spatially corrected, is much
lower than that of the SCBR model, which has not been corrected. This difference further
emphasizes the importance of case modification in spatial case-based reasoning. Figure 4
shows the comparison results of error rates of different methods in a more intuitive form.

In terms of time efficiency, the CBR and HCBR models outperformed the HCSCBR
model, with processing times of 0.2428 s and 0.4262 s, respectively, compared to the
HCSCBR’s 0.5674 s and SCBR’s 0.6600 s. This indicates that models that do not involve
spatial case-based reasoning are relatively more efficient in terms of processing time.
However, the HCSCBR model not only uses genetic algorithms and rough set algorithms
for weight reduction, but it also divides cases into sub-cases and eliminates noise cases in
advance, effectively improving the accuracy and efficiency of retrieval. Compared to the
adaptive spatial clustering method used by the SCBR model, although it sacrifices some
time efficiency to improve accuracy by adopting case revision methods, the HCSCBR model
can still meet the requirements of practical applications overall.
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3.5.3. Experiment Three: Real-World Application

This experiment utilized a real set of MSOAs as the target case T to be solved. Case T
includes multiple attributes and their corresponding data values, specifically: Population
(A1)—7325, Area (A2)—1.52, Population Density (A3)—3729, Geographical Centroid (S1)—
(−87.595030, 41.709360), Boundary (S2)—(−86.485210, 41.707250, −86.48679, 41.709340,
. . .), Tobacco Availability (A4)—0.000532, Alcohol Availability (A5)—0.00189, Health Service
Availability (A6)—0.00432, Physical Exercise Availability (A7)—0.000635, Building Density
(A8)—803, Median/Mean House Price (A9)—172600/192312, Driving/Cycling/Walking
Road Density (A10)—15.4/17.2/35.6, Street View Features (A11)—0.0752/0.0429/. . ., Satel-
lite View Features (A12): 0.138/0.0564/. . ., Walkability (A13)—0.314, NOx/PM2.5/PM10
(A14)—37/8/11, Min/Max Temperature (A15)—2.5/35, Rainfall (A16)—0.0324, Relative
Humidity (A17)—78.3, Snow Lying Days (A18)—7.2, Sunshine Hours (A19)—56.4, Wind
Speed (A20)—4.80. Geographical Centroid and Boundary are provided in WGS84 format.

After performing attribute reduction and standardization, the method proposed in this
study was used for similarity reasoning. The similarity of variables within each historical
case to the new case was calculated. Setting the retrieval threshold to 0.85, the similarity of
problem space and solution space for five historical cases is presented in Table 6.

Before case revision, the primary step involves the evaluation of problem attributes.
The value range for feature k in target element T, such as k(A3), k(A4), k(A5), . . ., k(S2), can
be set to Vj (0.75, 1). Accordingly, for the retrieved similar case set {C1, C2, C3, C4, C5},
the satisfaction problem evaluation P calculates the compatibility k(P) of each similar case.
Table 7 indicates that all retrieved case sets are incompatible with target T, such as case C1,
which differs from the target problem with difference features at k(A8), k(A12). Similarly,
case C2 has difference features at k(A4), k(A13) with the target problem, and C3,C4,C5 have
difference features corresponding to the bold, highlighted numbers in the problem space in
Table 7. Therefore, it is necessary to apply the revision method proposed in this research to
optimize the solution of the above five similar cases.

During the process of case revision, we first normalize the similar case set {C1, C2, C3, C4, C5}
and consider its solutions as the initial population M. Following the recommendations by
Jing (2014) [47], we set values for the crossover probability Pc, mutation probability Pm,
and the termination number of generations T, as detailed in Table 3. We use MATLAB to
solve the genetic algorithm, storing the optimal individual of each generation. Finally, we
decode the stable individuals to obtain the solution values: R1 (Asthma)—13,215.08544,
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R2 (Cancer)—121.31286, R3 (Dementia)—101.54656, R4 (Diabetes)—104.118744, R5 (Mental
Health)—6359.91314, R6 (Life Expectancy)—80.3, R7 (Healthy Life Expectancy)—65.7. The
solution results match with reality. For spatial geometric feature attributes, such as the
MSOA center position, area, etc., we use ArcGIS 10.4 software’s spatial analysis and
management module to map and adjust the corresponding spatial attributes.

Table 6. Similarity between retrieval problem attributes and solution attributes.

Similarity
Variable

Similar Cases

C1 C2 C3 C4 C5

A3 0.8282 0.8311 0.8462 0.8841 0.8712
A4 0.7161 0.9804 0.8316 0.8565 0.8301
A5 0.8806 0.9602 0.9276 0.9293 0.9595
A6 0.9028 0.8947 0.8435 0.9833 0.9319
A7 0.7962 0.9393 0.9785 0.8092 0.9504
A8 0.9781 0.9549 0.9317 0.98 0.9236
A9 0.7228 0.8658 0.9671 0.8043 0.9904
A10 0.8204 0.9389 0.9243 0.8173 0.8274
A11 0.8756 0.9631 0.939 0.9877 0.9991
A12 0.8577 0.9256 0.9824 0.9291 0.8108
A13 0.9352 0.8588 0.9608 0.8874 0.9565
A14 0.8673 0.941 0.9112 0.8844 0.8331
A15 0.8021 0.8436 0.8554 0.9228 0.8009
S1 0.9468 0.9149 0.8404 0.8894 0.9627
S2 0.8154 0.8567 0.9138 0.959 0.9031
R1 0.8132 0.8782 0.8907 0.801 0.871
R2 0.767 0.882 0.8498 0.9685 0.9144
R3 0.9446 0.9384 0.869 0.9506 0.8298
R4 0.7098 0.8094 0.8524 0.8619 0.9178
R5 0.8562 0.9334 0.9563 0.9627 0.9986
R6 0.8816 0.9935 0.8823 0.8818 0.8912
R7 0.8917 0.8004 0.8009 0.9273 0.9856

Table 7. Evaluation results of similar cases.

Compatibility
Calculation

Similar Cases

C1 C2 C3 C4 C5

k(A3) 0.73632 0.48028 0.68273 0.76047 0.39772
k(A4) 0.52029 0.22987 0.3179 0.61327 0.28184
k(A5) 0.56912 0.81926 −0.80066 0.45055 0.10633
k(A6) 0.8992 0.47143 0.85985 0.3185 −0.86412
k(A7) 0.20243 0.4194 0.38574 0.75552 0.68376
k(A8) −0.26346 0.71412 0.17521 0.77377 0.55243
k(A9) 0.40125 0.20773 0.53943 0.36065 0.43011
k(A10) 0.35066 0.28443 0.69777 0.77603 0.74197
k(A11) 0.20136 0.13543 0.83635 0.65208 0.28544
k(A12) −0.50385 0.46818 0.52366 0.86655 0.12306
k(A13) 0.70714 −0.36584 0.50213 0.27115 0.70551
k(A14) 0.2015 0.64299 0.7128 0.26767 0.66865
k(S1) 0.47604 0.78895 0.23606 −0.81431 0.62266
k(S2) 0.35159 0.87258 0.24634 0.19142 0.36758
k (P) −0.62203 −0.22625 −0.70771 −0.81116 −0.16647

3.6. Discussion Summary

The innovative HCSCBR model demonstrates significant advantages and potential
in healthy city assessments. By incorporating spatial relationships, it addresses the spa-
tial heterogeneity within cities, enhancing evaluation accuracy, especially for spatially
dependent health issues. The model’s comprehensive consideration of both attribute and
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geographic spatial features improves overall performance. Optimization through ASC
spatial clustering, genetic algorithms, and rough set algorithms enhances time efficiency
and ensures stability with large datasets. Experimental comparisons show that the HC-
SCBR model outperforms traditional CBR and other data mining methods in both accuracy
and efficiency. Practical applications validate its wide applicability across various health
assessment scenarios, from community to city levels, providing valuable support for public
health research and urban planning. The successful application of the HCSCBR model
highlights its ability to significantly improve the precision and efficiency of healthy city
evaluations by integrating spatial relationships and attribute features.

4. Conclusions

In the field of evaluating healthy cities, this paper presented a novel model based on
case-based reasoning (CBR) theory, ingeniously integrating spatial relationships, attribute
features, and machine learning methods aimed at improving the predictive accuracy of
urban health assessments. Through experimental comparisons, we have drawn several
important conclusions and findings:

Spatial Relationship Case Reasoning Method: The study successfully developed a
case reasoning method incorporating spatial relations, effectively addressing the issue of
quantitative assessment in healthy cities. By utilizing spatial relations, this method aligns
more closely with the complexity and multidimensionality of actual geographic data.

Consideration of Spatial Features: During the reasoning process, special emphasis
was placed on the spatial characteristics of geographical events. This novel perspective
not only enhances the stability and adaptability of the CBR model but also delves deep
into the intrinsic connections of geographic data, enhancing the model’s comprehensive
evaluation capabilities.

Case Pre-organization and Attribute Reduction Algorithm: Through the employment
of spatial clustering algorithms, genetic algorithms, and rough set algorithms for case
pre-organization and attribute reduction before case retrieval, the time efficiency of spatial
case reasoning was significantly enhanced. Such algorithmic design not only optimized
the data processing workflow but also ensured the efficiency of the model in handling
large-scale data.

Multi-level Evaluation System: The model is not only applicable to the fine-grained
MSOA level health assessments but can also aggregate to the city level, forming a compre-
hensive urban health evaluation system. This provides a more comprehensive and flexible
evaluation scale for healthy city assessments.

Future work will focus on incorporating the time dimension to further expand and
refine the healthy city evaluation model, enhancing its dynamism and predictive accu-
racy. Additionally, considering the need for pre-setting parameters when using genetic
algorithms, optimizing parameter settings is crucial for improving inference accuracy and
efficiency. Further studies will concentrate on exploring more suitable parameter setting
methods to fully mine and utilize data characteristics, achieving more accurate and practical
healthy city evaluations.
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