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Abstract: Urban street vitality has been a perennial focus within the domain of urban planning. This
study examined spatial patterns of street vitality in the old city of Nanjing during working days
and weekends using real-time user datasets (RTUDs). A spatial autoregressive model (SAM) and
a multiscale geographically weighted regression (MGWR) model were employed to quantitatively
assess the impact of various factors on street vitality and their spatial heterogeneity. This study
revealed the following: (1) the distribution of street vitality in the old city of Nanjing exhibited
a structure centered around Xinjiekou, with greater regularity and predictability in street vitality
on working days than on weekends; (2) eight variables, such as traffic location, road density, and
functional density, are positively associated with street vitality, whereas the green view index is
negatively associated with street vitality, and commercial location benefits street vitality at weekends
but detracts from street vitality on working days; and (3) the influence of variables such as traffic
location and functional density on street vitality is contingent on their spatial position. Based on
these results, this study provides new strategies to enhance the street vitality of old cities.

Keywords: street vitality; residents’ perceptions; multisource data; multiscale geographically weighted
regression; the old city of Nanjing

1. Introduction

Vitality is defined as the degree to which a settlement form supports life functions,
ecological requirements, and human capabilities [1]. Urban vitality refers to the frequency
and diversity of various economic, cultural, and social activities in a city, arising from
the various social activities undertaken by residents in public spaces and serving as an
important indicator to measure the level of urban development and competitiveness [2–5].
Within cities, areas with high vitality offer numerous advantages. Economically, these
areas tend to be business hubs, hosting multiple employment opportunities and a range
of comprehensive service facilities [6]. Culturally, these areas often offer a variety of ac-
tivities that bolster the efficiency of residential interactions, thereby fostering innovation
and entrepreneurship [7]. Socially, these areas are characterized by frequent interpersonal
communication and strong social cohesion [8]. In recent years, rapid urbanization has pro-
pelled the level of urban development. However, it also poses a risk to urban vitality [9,10],
particularly manifested in the gradual decline of vibrant traditional urban streets [2]. Street
vitality, as a part of the urban space, is an important aspect of urban vitality [11]. Street
vitality encompasses the extent of diversity and frequency of street activities, including
shopping, commuting, socializing, and cultural engagements [2,5,12]. Streets with high
vitality are typically highly attractive to residents, and can bolster happiness and com-
munity cohesion [8,13–15]. Street space is now widely recognized in the field of urban
planning, and street vitality has emerged as a key issue in urban development. Urban
planning theories, including New Urbanism and smart growth, emphasize the importance
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of street vitality [16,17]. Since 2000, various countries have implemented urban street
design guidelines to steer and standardize the construction of local streets in alignment
with local conditions, with the goal of creating more attractive streets [18].

Urban construction in China has shifted from incremental expansion to enhancing
existing infrastructure, and urban renewal has emerged as a pivotal approach to urban
development [19]. During urban renewal, the vitality of urban public spaces, particularly
street vitality, plays a vital role in accommodating residents’ needs at various levels, and
is essential for optimizing urban development [20]. Pedestrians are the main group of
people who use streets for various activities. The number of pedestrians on the street and
the frequency of their activities directly reflect street vitality; more pedestrians indicate
more social interactions, commercial activities, and cultural exchanges, i.e., higher street
vitality [2,3,21]. Recently, cities such as Shanghai, Wuhan, and Xi’an in China have intro-
duced street design guidelines that prioritize pedestrian needs and strive to balance traffic
efficiency with pedestrian experience. Consequently, it is important to precisely assess the
vitality of urban streets, investigate the determinants of street vitality, and devise strategies
to invigorate them, thereby enhancing the quality of urban public spaces and achieving
superior urban development.

Research on urban street vitality measurement has evolved from subjective to objective
approaches, from qualitative to quantitative methods, and from traditional survey data to
leveraging big data. Initially, studies typically obtained data through field observations [22],
interviews [23,24], and questionnaire surveys [25] to measure street vitality. While these
techniques can directly capture citizens’ subjective perceptions and assessments, they are
inefficient and unsuitable for sustained large-scale research. The onset of the big data
era has prompted researchers to use multiple datasets, including real-time user datasets
(RTUDs) [26], mobile phone data [27], and social media check-in data [28], to assess
street vitality. Big data is characterized by its real-time nature, wide scope, and high
accuracy, and allows for integrated spatiotemporal analysis, enabling more extensive and
prolonged research.

Building on this foundation, scholars have conducted research on the determinants
of street vitality, with a primary focus on locational conditions and built environment.
Considering locational conditions, streets in prime locations—namely, those proximate to
service amenities, including metro stations or commercial entities—are deemed to possess
greater vitality [29–32]. Regarding the built environment, small-scale and compact streets
are viewed as more dynamic because of their moderate construction density and appealing
design [3,33–35]; simultaneously, urban streets that offer a variety of functions and mixed
uses are perceived as more vibrant [2,16,23,36]. Moreover, streets that facilitate efficient
commuting and those with a more transparent ground–floor interface are considered live-
lier [22,34]. Ultimately, to invigorate street vitality, urban planners have enacted measures
for city development, including the integration of diverse functional zones, the expansion
of pedestrian areas, and the enhancement of transportation access. In fact, along with the
dimensions of location conditions and built environment, residents’ subjective perceptions
also significantly influence street vitality. Relevant studies demonstrated that residents’
subjective experiences with urban streets, including comfort, security, enjoyment, and
satisfaction, influence their selection of streets for diverse activities [37–42]. However, the
impact of residents’ perceptual factors on street vitality has not received sufficient attention.
Therefore, unlike previous studies, the dimension of residents’ perceptions was taken into
account based on location conditions and built environment. Four variables related to
residents’ perceptions were selected for this study as potential influences on street vitality,
making the indicators of influence richer and more comprehensive.

Contemporary research on street vitality has employed two scales. The first is the
block scale, which typically examines a specific street or cluster of streets, concentrating on
street interface elements and residents’ particular activities, albeit with a limited scope and
sample size [13,43]. The second is the urban scale, which encompasses the city’s entire street
network and often utilizes large-scale grids, such as a 500 m grid, to delineate streets and
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assess vitality [44,45]. However, these grid units exceed the street scale, posing challenges
for the precise capture of street vitality and its critical determinants. To strike a balance
between accurately capturing street-scale changes in vitality and the operability of data
processing and analysis, a small-scale grid of 100 m was selected as the study unit. This
study first uses a 100 m grid for the analysis of street vitality, primarily because it strikes a
balance between capturing subtle spatial changes and keeping data processing and analysis
tractable. The 100 m grid coincides with the street scale and provides a more accurate
picture of street vitality while avoiding excessive computational complexity.

In summary, this research utilized the old city of Nanjing as a case study, using a
100 m fine-grained grid as the analysis unit. Initially, the RTUDs were employed to assess
temporal and spatial patterns of street vitality in the old city of Nanjing. Subsequently,
a range of determinants was analyzed using travel cost data, road network data, point
of interest (POI) data, street view image (SVI) data, and social media commentary data.
By integrating a spatial autoregression model (SAM) and a multiscale geographically
weighted regression (MGWR) model, this study investigated the factors influencing and
spatial variances of street vitality, to yield precise insights. This study addressed three key
questions: (1) what are the characteristics of the spatial distribution of street vitality in the
old city of Nanjing; (2) what are the factors impacting the vitality and the spatial variance
in terms of their quantitative influence; and (3) what strategies can be employed in urban
planning to enhance urban vitality?

2. Materials and Methods
2.1. Study Area

Nanjing is one of the central cities of the Yangtze River Delta and the capital of Jiangsu
Province. It is also classified as one of China’s national, historical, and cultural cities.
Possessing a history of 2496 years, Nanjing balances modernity with its rich historical
and cultural heritage. This study focused on the old city of Nanjing, which encompasses
an area of approximately 41.5 square kilometers (Figure 1). The old city is encircled by
the city walls of the Ming capital and preserves numerous historical elements within the
area, including four historic urban areas: the southern part of the old city, the Ming Palace
Museum, Gulou-Qingliang Mountain, and Beijing East Road. Furthermore, at the forefront
of Nanjing’s urbanization, the old city harbors a modern urban center, Xinjiekou. Streets in
the old city of Nanjing exhibit varied functional characteristics, and the diversity of street
types is indicative of the research scope. This study employed a 100 m grid as the analysis
unit, capable of encompassing various street types and minimally impacted by the internal
dynamics of urban blocks, offering greater precision than prior research. Based on this,
grids without roads were removed, ultimately yielding 2265 grids (Figure 1).

2.2. Data Sources and Processing
2.2.1. Real-Time User Datasets (RTUDs)

Real-time user datasets (RTUDs), representing real-time information about the number
of users in a given area, were collected with the consent of users who use location-based
services such as Baidu, Tencent, and Meituan. Each data point of the RTUD represents an
area of a specific range and contains the attributes of longitude, latitude, time, and count.
The count attribute can represent the density of real-time users in this area, which can be
used to portray street vitality. Prior research has indicated that RTUDs may serve as a
reliable measure of vitality [26,44,46].

Given Tencent’s substantial user base in China, this study utilized Tencent EasyGo
data as the RTUD, and with an accuracy of 25 m, they were deemed appropriate for
analyzing urban street scales. Following the COVID-19 outbreak, there was a significant
reduction in the intensity of urban human activity [47]. Consequently, to circumvent the
atypical manifestations of street vitality, this study used data collected from March to May
2018, gathering information at 2 h intervals from 10:00 to 20:00 on both working days and
weekends. This study included 509,769 data entries.
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Figure 1. The 100 m grid of the study area.

2.2.2. Travel Cost Data

Travel cost is the actual time or distance required to travel from a facility’s point of
demand to its point of supply. Utilizing Amap’s path planning API (https://lbs.amap.
com/api/webservice/guide/api/newroute, accessed on 22 July 2024), this study identified
each grid centroid point as the starting point and targeted subway stations and business
centers in the study area as endpoints. A Python program was employed to calculate the
shortest walking path from the starting point to the endpoint in batches, which served as
the travel cost and foundation for assessing location conditions.

2.2.3. Road Network Data

Vector road network data were obtained from OpenStreetMap (OSM) (https://www.
openstreetmap.org/, accessed on 22 July 2024). Initially, this study simplified the road
network data. Given that expressways and tunnels lack the attributes of public spaces, their
inclusion could introduce bias into our research findings. Consequently, expressways and
tunnels within the research area were excluded, and the remaining roads were classified
into four categories—main roads, secondary roads, branch roads, and alleyways—followed
by the merging of lanes and simplification of the road network. With all roads depicted as
single lines, the total length of the processed roads totaled 294.66 km (Figure 2).

Considering the visual range of human eyes and the intricacy of urban streetscapes,
prior studies typically adopt a 50 m interval as suitable for collecting SVIs [48,49]. Conse-
quently, this study established street view image collection points at every 50 m on each
road, resulting in a total of 5886 points (Figure 2). Subsequently, the longitude and latitude
coordinates of each point were computed and extracted from the batches. These served as
foundational data for the acquisition of street view images.

https://lbs.amap.com/api/webservice/guide/api/newroute
https://lbs.amap.com/api/webservice/guide/api/newroute
https://www.openstreetmap.org/
https://www.openstreetmap.org/
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2.2.4. Point of Interest (POI) Data

The point of interest (POI) data utilized in this study, sourced from the Amap open
platform (https://lbs.amap.com/, accessed on 22 July 2024), were employed to calculate
functional density and diversity. Amap is one of the most popular and largest online
map service providers in China, and the POI data obtained from the Amap open platform
perform well in terms of accuracy. Data were categorized into eight types: catering services,
public facilities, shopping services, finance and insurance, science and education, cultural
facilities, life services, sports and leisure, and accommodation services. A total of 35,335 data
entries were analyzed within this framework.

2.2.5. Street View Image (SVI) Data

Street view image (SVI) data have been utilized globally, due to their extensive cover-
age and economical collection costs. In previous research, three data sources, Google Street
View, Baidu Street View, and Tencent Street View, have been frequently used. Baidu SVI
data were selected for this study based on the availability of images within the research
scope and superior image resolution [50]. In addition, the panoramic mode of the SVIs,
as opposed to the conventional one-point-four perspective, aligns more closely with the
human visual field and subjective perception [51].

In this study, a web crawler script written in Python was utilized to invoke the Baidu
API service interface (https://lbsyun.baidu.com/, accessed on 22 July 2024), facilitating
batch retrieval of street view images using longitude and latitude coordinates. Initially, this
study simulated the human visual field to adjust the horizontal and vertical angles of the
line of sight and viewpoint position data. Subsequently, the photo collection period was
restricted to the months of April–November to ensure that the vegetation in the images
was lush, preventing any impact on overall spatial quality due to winter streetscapes. Due
to the absence of street view data at certain locations, 5683 SVIs were ultimately amassed.

2.2.6. Social Media Commentary Data

Social media commentary data are the comments left by residents on social platforms
after using service facilities, which represent users’ subjective evaluations of the quality of a
certain service facility. The social media commentary data used in this study were obtained
from the Dianping website (https://www.dianping.com/, accessed on 22 July 2024), which
is similar to Yelp. It is China’s leading local information and transaction platform, and

https://lbs.amap.com/
https://lbsyun.baidu.com/
https://www.dianping.com/
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one of the world’s earliest established independent third-party consumer review websites,
capable of providing information such as merchant introduction, consumer reviews, and
consumer offers. The social media commentary data we obtained contain the names and
addresses of various consumption places and the number of favorite comments they have.
Among them, the number of favorite comments was used to reflect residents’ satisfaction
with the service and thus their subjective experience. A total of 124,184 social media data
entries were included. Through the “Spatial Join” tool in ArcGIS 10.7, we summed the
number of favorite comments of consumption places in each grid and divided by the grid
area to obtain the values of the service satisfaction index.

2.3. Methods

The research framework is illustrated in Figure 3. This study initially measured the
spatial and temporal distribution characteristics of street vitality on working days and
weekends using Tencent EasyGo data. Subsequently, through a literature review and
field research, 11 potential factors were selected from three aspects: locational conditions,
built environment, and residents’ perceptions. Finally, the SAM and MGWR models were
employed to explore the quantitative association and spatial variance of these factors
affecting street vitality.
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2.3.1. SVI Segmentation

The Pyramid Scene Parsing Network (PSP Net) model [52] was used to segment
SVIs and determine the road area ratio, permeability ratio, green view index, enclo-
sure index, and visual complexity index within the images. PSP Net is a deep-learning-
based semantic segmentation network that captures contextual information via a pyramid
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pooling module that integrates both local and global information to yield more precise
segmentation outcomes.

The open-source ADE20K dataset [53] was used to calibrate the model for semantic
segmentation of Baidu SVIs. The ADE20K dataset is rich in content and includes 150 types of
objects, including urban environmental elements. To calibrate the ADE20K dataset suitable
for this study, we examined the streetscape images to ensure their clarity. Moreover, we
excluded the unrelated objects in the ADE20K dataset and retained only those that were
related to street vitality, which consisted of 21 types of objects, such as buildings, skies,
trees, and fences [54].

In the segmentation process, we initially preprocessed the SVIs to ensure they were
the same size and resolution, and suitable for the PSP Net model. Furthermore, these
SVIs were input into the PSP Net model, which fused the feature maps with the original
feature maps after pooling them at several scales through the PSP module. These were
then classified through a convolutional layer to generate the category probability map for
each pixel. Finally, the model generated semantic segmentation results by selecting the
final category of each pixel with the maximum probability (Figure 4).
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2.3.2. Variable Calculations

(1) Street Vitality Measurements

Street vitality is generated by residents engaging in various activities, including
shopping, leisure, and commuting [55]. The aggregation of people within street spaces
forms the foundation for these activities, and real-time gatherings and activities of the
population within the street space can be used to measure street vitality. Street spaces
should include the street itself and a range of surrounding functional areas [2,5]. In this
study, the street range was defined using a 100 m grid and involved two sets of real-time
user data collected on working days and weekends. Through the “Spatial Join” tool in
ArcGIS 10.7, the RTUDs within each grid were connected to corresponding street vitality
values on working days and weekends. The degree of population aggregation within
each grid and each time period is of equal importance; thus, this study used the regular
averaging method to summarize the resulting data. We summed the values represented by
all the points in a grid and divided by the number of points to obtain the vigor value for
that grid.

(2) Determination of Factors Influencing Street Vitality

Numerous factors have been shown to influence street vitality [29,33,37]. Firstly, a
review of the literature indicates that existing studies primarily focus on physical environ-
ment elements, which we categorize into two dimensions: location conditions and built
environment. Locational conditions encompassed traffic location (TL) and commercial
location (CL), specifically the travel distance from the grid center to the nearest metro
stations and business districts, calculated using Amap’s path planning API. The built envi-
ronment encompassed the road density (RD), functional density (FD), functional mixture
(FM), road area ratio (RAR), and permeability ratio (PR), where RD is the total length of
roads in a grid; FD is the density of functional facilities within a grid, calculated using
the number of POIs; FM is the diversity of the POIs within a grid, calculated by Shannon
entropy; and both RAR and PR were derived through SVI segmentation. Furthermore,
there is some literature that mentions the enclosure index (EI) and green view index (GVI)
as factors affecting street vitality [37–40]. In this research, we include the two factors of
the residents’ perception dimensions, as they represent the extent of street enclosure [13],
and the prevalence of greenery [41] within the field of view, which can reflect residents’
sense of security and comfort. Among these, EI is obtained by calculating “1 pixel minus
the number of sky pixels”. A higher number of sky pixels indicates more open street space
and a lower EI [56]. Therefore, by calculating “1 pixel minus the number of sky pixels”, a
reverse indicator can be obtained, which can directly reflect the degree of enclosure. This
method simplifies the calculation process and is widely used in such studies [57]. Through
the literature review and field research, we also learned that enjoyment and satisfaction
affect residents’ choice of street when performing various activities [41,42]. Therefore, we
added the visual complexity index (VCI) and service satisfaction index (SSI). The former,
derived through SVI recognition, indicates the diversity of visual elements within the field
of view [58], while the latter mainly reflects the subjective evaluation of residents, which is
indicated through the number of favorable comments in the social media commentary data
from the Dianping website. Ultimately, this study determined a total of 11 variables from
3 dimensions (Table 1).



ISPRS Int. J. Geo-Inf. 2024, 13, 282 9 of 21

Table 1. Descriptions of influencing variables.

Category Variables (Abbrev.) Formula Description

Locational Conditions

Traffic location (TL) [29] TLi = lg(ti1 × ti2)
ti1 and ti2 are the distances from the i-th
grid center to the nearest two different

metro stations, respectively.

Commercial location (CL) [32] CLi = lg(ci1 × ci2)

ci1 and ci2 are the distances from the i-th
grid center to the nearest two different

business districts (including the first-level
business district Xinjikou, the third-level

business districts Hunan Road and
Fuzimiao, and the fourth-level business

districts Ruijin Road and Zhongyangmen,
a total of five places), respectively.

Built Environment

Road density (RD) [33] RDi =
RLi
Ai

RLi is the total length of roads in the i-th
grid, and Ai is the area of the i-th grid.

Functional density (FD) [23] FDi =
POIi

Ai
POIi is the number of POIs in the i-th grid.

Functional mixture (FM) [36] FMi = exp(−∑
p
q=1 Piq ln Piq)

p is the number of POI species, and Piq is
the proportion of the q-th POI in the i-th

grid.

Road area ratio (RAR) [22] RARi =
1
N ∑N

j=1
Rij + Sij

Tij

N is the number of SVIs in the i-th grid, Tij
is the total pixels in the j-th image, and

Rij and Sij are the numbers of pixels
occupied by the car lane and sidewalk in

the i-th image, respectively.

Permeability ratio (PR) [34] PRi =
1
N ∑N

j=1
Wij + Dij

Wij + Dij + Bij

Wij , Dij , and Bij are the numbers of
pixels occupied by windows, doors, and
buildings in the j-th image, respectively.

Residents’ Perceptions

Enclosure index (EI) [13] EIi = 1− 1
N ∑N

j=1
SKYij

Tij

SKYij is the number of pixels occupied by
sky in the j-th image.

Green view index (GVI) [41] GVIi =
1
N ∑N

j=1
Gij

Tij

Gij is the number of pixels occupied by
greenery in the j-th image.

Visual complexity index (VCI) [56] VCIi =
1
N ∑N

j=1 exp(−∑J
k=1 ln Pjk)

J and Pik represent the number of objects
and the proportion of the k-th object in the

j-th image, respectively.

Service satisfaction index (SSI) [42] SSIi =
∑M

m=1 FCim
Ai

M is the number of consumption places in
the i-th grid, and FCim is the number of

favorite comments that the m-th place has
from the social media commentary data in

the i-th grid.

2.3.3. Spatial Autocorrelation Analysis

Moran’s I index [59] is commonly used to determine whether the distribution of
variables exhibits spatial autocorrelation. A Moran’s I exceeding zero signifies a positive
spatial correlation among the variables; conversely, a value less than zero indicates a
negative spatial correlation. Moran’s I can be categorized as global or local. Global Moran’s
I assesses the overall spatial autocorrelation of vitality within the study area, whereas local
Moran’s I examines the interrelations between each grid and its adjacent grids, thereby
providing a more intuitive depiction of the local vitality agglomeration characteristics. The
formulas for calculating global and local Moran’s I are

I =
N

∑N
i=1 ∑N

j=1 Wij

∑N
i=1 ∑N

j=1 Wij(xi − x)(xj − x)

∑N
i=1 (xi − x)2 (1)

Ii =
N

∑N
j=1 Wij

∑N
j=1 Wij(xi − x)(xj − x)

∑N
i=1 (xi − x)2 (2)
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where N represents the total number of grids, Wij represents the spatial weight of the i-
and j-th grids (i.e., the adjacency relationship between these two grids), xi represents the
vitality value of the i-th grid, and x represents the average vitality of all grids.

2.3.4. Global and Local Regression Models

Traditional linear regression models, such as the ordinary least squares (OLS) model,
are often used to determine the correlation and significance of key factors [60]. The formula
for the model is

y = β0 +
M

∑
j=1

β jxj + ε (3)

where β0 is the intercept, M is the total number of independent variables, xj and β j denote
the value and coefficient of the j-th variable, respectively, and ε represents the random
error term.

The OLS model assumes that observed values are mutually independent. However,
the presence of spatial autocorrelation among variables violates this presupposition, leading
to an underestimation of the influence of parameters from the independent to dependent
variables, thereby affecting the model’s fit [61]. This intricate issue was solved by the
SAM [44], which incorporates the Lagrange multiplier (LM) robust diagnostic test. This
test comprises two metrics: the LM (lag) and the LM (error). The robustness of these two
metrics is assessed to determine the appropriate application of either the spatial lag model
(SLM) or the spatial error model (SEM) within the SAM.

Obviously, street vitality varies spatially, and this variance is likely to exhibit certain
characteristics within the study area; its relationship with the potentially influential factors
is spatially non-stationary. Therefore, some studies have introduced local regression mod-
els [42,62,63]. Geographically weighted regression (GWR) models are frequently applied to
address spatial non-stationarity. However, traditional GWR presupposes uniform spatial
scales for all independent variables, potentially oversimplifying the spatial complexity.
Introduced by Fotheringham in 2017, the MGWR model [64] relaxes the scale assumptions,
permitting variable bandwidths for each independent variable, thereby enabling a regres-
sion analysis tailored to the optimal bandwidth of each factor. The formula for the MGWR
model is as follows.

yi = βbw0(ui, vi) +
M

∑
j=1

βbwj(ui, vi)xij + εi (4)

where βbw0 is the intercept under optimal bandwidth, (ui, vi) represent the coordinates
of the barycenter of the i-th grid, bwj represents the bandwidth of the j-th variable, xij
and βbwj(ui, vi) denote the value and coefficient of the j-th variable, respectively, and εi
represents the random error term of the i-th grid.

3. Results
3.1. Distribution Characteristics of Street Vitality
3.1.1. Pattern of Vitality Distributions

The natural breaks (Jenks) method [42] was used to discretize street spatial vitality
in the old city of Nanjing, categorizing it into 1 to 5 levels from low to high (lowest = 1,
highest = 5) (Figure 5). Overall, the spatial vitality distribution of streets in the old city
of Nanjing was heterogeneous, yet a consistent single-center pattern was exhibited on
both working days and weekends. Compared with the outlying regions, heightened street
vitality was observed in the Xjiekou area (A in Figure 5), with more pronounced cluster
agglomeration traits. Additionally, pockets of elevated vitality were interspersed within
the peripheral zones. The street vitality of working days was robust in the southern
sector and diminished in the northern sector, whereas the “core–periphery” dynamics were
accentuated during weekends. These outcomes were likely correlated with proximity to
metro stations and business districts.
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3.1.2. Spatial Autocorrelation Analysis of Street Vitality

Global Moran’s I, indicating the street vitality within the old city of Nanjing, and
associated statistics are presented in Table 2. At a significance level of 0.001, the maximum
Moran’s I values were 0.496 and 0.449 for working days and weekends, respectively,
indicating a substantial positive spatial autocorrelation in street vitality. Vitality distribution
was non-random and was correlated with various factors, including built environment and
residents’ perceptions, as indicated by pronounced clustering for these categories.

Table 2. Global Moran’s I for street vitality on working days and weekends.

Moran’s I z-Score p-Value

Working Days 0.496 36.308 0.001

Weekends 0.449 34.209 0.001
Note: Moran’s I is used to measure the spatial autocorrelation of variables, the z-score is used to react to the
degree of aggregation or disaggregation of the dataset, and the p-value is used to indicate the confidence level.
Number of permutations = 999.

Analysis of local spatial autocorrelation revealed that street vitality distribution within
the study area exhibited marked spatial autocorrelation, resulting in four distinct clusters
(Figure 6). These agglomeration groups were primarily characterized by “high–high”
and “low–low” clusters, with a limited number of “high–low” and “low–high” outliers,
indicating significant clustering in the distribution of street vitality. This pattern may
stem from the spatial dynamics of resident movement, where residents traverse between
identical or neighboring streets, and certain street focal points catalyze the congregation
and dispersal of individuals.
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3.2. Global Regression Analysis

After OLS regression analysis (Table 3), the LM robust diagnostic test was applied to
the residuals. Given that the LM (error) exceeded the LM (lag) in magnitude and robustness
(Table 4), SEM was ultimately chosen [31,63].

Table 3. OLS regression results on working days and weekends.

Category Variable VIF
Working Days Weekends

Coef. (B) Std. Coef. (B) Std.

Intercept -- 0.001 0.018 0.001 0.018

Locational
Conditions

TL 1.198 −0.097 *** 0.019 −0.002 0.019

CL 1.241 0.130 *** 0.020 −0.084 *** 0.020

Built
Environment

RD 1.098 0.048 * 0.019 0.039 * 0.018

FD 1.511 0.390 *** 0.022 0.469 *** 0.022

FM 1.475 0.095 *** 0.022 −0.018 0.021

RAR 1.294 0.151 *** 0.020 0.065 ** 0.020

PR 1.009 −0.004 0.018 0.019 0.018

Residents’
Perceptions

EI 2.704 0.093 ** 0.029 −0.006 0.029

GVI 2.922 −0.129 *** 0.030 −0.030 0.030

VCI 1.290 0.067 *** 0.020 0.056 ** 0.020

SSI 1.118 0.019 0.019 0.075 *** 0.019

Overall Model-Fitting AICc = 5673.76 AICc = 5639.75
Adjusted R2 = 0.288 Adjusted R2 = 0.298

Note: *, **, and *** indicate significance at the 0.05, 0.01, and 0.001 levels, respectively.
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Table 4. LM test results on working days and weekends.

Working Days Weekends

MI/DF Value p MI/DF Value p

Moran’s I (error) 0.2979 35.2021 0.0001 0.2275 26.9326 0.0001

Lagrange Multiplier (LM) (lag) 1 952.9891 0.0001 1 518.7896 0.0001

Robust LM (lag) 1 14.1159 0.0002 1 0.7998 0.0371

LM (error) 1 1195.9631 0.0001 1 697.3186 0.0001

Robust LM (error) 1 257.0899 0.0001 1 179.3288 0.0001

LM (SARMA) 2 1210.0790 0.0001 2 698.1184 0.0001

The variance inflation factors (VIF) for all variables were less than 5.0 (Table 3), indicat-
ing no multicollinearity among factors [65]. Synthesis of the data in Tables 3 and 5 resulted
in adjusted R2 values for the OLS model and SEM on working days of 0.288 and 0.415,
respectively, whereas those on weekends were 0.298 and 0.376, respectively, suggesting
that the explanatory power of the SEM surpasses that of the OLS model.

Table 5. SEM results on working days and weekends.

Category Variable
Working Days Weekends

Coef. (B) Std. Coef. (B) Std.

Intercept 0.002 0.035 0.005 0.031

Locational
Conditions

TL −0.168 *** 0.026 −0.057 * 0.025

CL 0.118 *** 0.034 −0.056 * 0.031

Built
Environment

RD 0.056 ** 0.017 0.043 * 0.018

FD 0.369 *** 0.022 0.461 *** 0.023

FM 0.068 ** 0.021 −0.012 0.021

RAR 0.121 *** 0.019 0.060 ** 0.019

PR −0.004 0.015 0.011 0.016

Residents’
Perceptions

EI 0.063 * 0.028 0.031 0.029

GVI −0.099 *** 0.029 −0.055 * 0.030

VCI 0.075 *** 0.019 0.058 ** 0.019

SSI 0.037 * 0.017 0.088 *** 0.018

Overall Model-Fitting AICc = 5334.76 AICc = 5452.31
Adjusted R2 = 0.415 Adjusted R2 = 0.376

Note: *, **, and *** indicate significance at the 0.05, 0.01, and 0.001 levels, respectively.

SEM regression indicated that street vitality was more predictable on working days
than weekends, due to a more consistent pattern of resident activity on working days. This
finding is consistent with the findings from other urban studies, such as in Chengdu [62].
Of the three categories, the built environment was most strongly correlated with street
vitality, followed by locational conditions, and residents’ perceptions. In addition to PR,
other variables were associated with street vitality, with TL, RD, FD, RAR, VCI, and SSI
positively correlated with street vitality, and GVI negatively correlated with street vitality.
The correlation of TL and RAR with street vitality was significantly higher on working
days than on weekends, suggesting that commuting is a pivotal factor influencing street
vitality. The correlations for FD and SSI were stronger on weekends than on working days,
reflecting residents’ elevated expectations of service facility quantity and quality during
weekends. Notably, FM and EI were only associated with street vitality on working days,
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and both were positively associated, whereas CL was positively associated with street
vitality on weekends, with converse effects observed on working days.

3.3. Local Regression Analysis

The GWR and MGWR models were employed to assess influencing factors at the
spatial scale (Table 6). Relative to the OLS and GWR models, the MGWR model exhibited
a higher adjusted R2 and lower corrected Akaike Information Criterion (AICc), demon-
strating the enhanced explanatory power of the MGWR model regarding the influence of
related factors on street vitality.

Table 6. Diagnostic information for regression models on working days and weekends.

Working Days Weekends

OLS GWR MGWR OLS GWR MGWR

AICc 5673.76 5046.97 4872.96 5639.75 5155.83 4923.84

R2 0.291 0.580 0.616 0.302 0.577 0.596

Adjusted
R2 0.288 0.526 0.560 0.298 0.514 0.552

Spatial distributions of the correlation of statistically significant (p ≤ 0.05) influencing
factors, from the MGWR analysis, are depicted in Figure 7 (working days) and Figure 8
(weekends). A deeper blue shade signifies a stronger negative correlation and a more
intense red hue indicates a stronger positive correlation.
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TL was associated with significantly enhanced street vitality on working days, with its
influence waning progressively from the south to the north of the city. This trend aligned
with the spatial distribution of street vitality on working days (Figure 5a), indicating the
role of commuting patterns in shaping street vitality. Of note, on weekends, only areas near
business districts and some metro stations exhibited a positive impact, while areas around
Zhongyangmen (A in Figure 8) and Sanpailou (B in Figure 8) showed a prominent negative
impact on street vitality.
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In addition to the proximity to several large entities (such as the National Electric
Power Research Institute, C in Figures 7 and 8) and parks (such as Nanjing Stone City Ruins
Park, D in Figures 7 and 8), FD was, generally, positively associated with street vitality.
Areas of high impact were more concentrated on working days, whereas on weekends the
dispersion extended to various business districts of different levels. The beneficial impact
of the RAR on street vitality aligns with the spatial distribution of street vitality on working
days (Figure 5a), underscoring the heightened activity along roads.

VCI was positively correlated with street vitality, particularly in the southern sector on
working days and in the Xinjiekou area on weekends. This pattern aligns with the spatial
distribution of street vitality (Figure 5), signifying that visual diversity is a key factor in
resident engagement. Within the study area, the EI, GVI, and SSI indicated minimal spatial
variance in street vitality.

4. Discussion
4.1. Spatial and Temporal Distributions of Street Vitality

This study revealed a distinct, single-center spatial pattern of street vitality within the
old city of Nanjing, China. Vitality was highest in streets near the primary urban center,
Xinjiekou, and there was a clear clustering effect, suggesting that high vitality in one area
can positively influence the vitality of neighboring regions. The concentration of commer-
cial and office spaces around Xinjiekou draws substantial foot traffic for diverse activities,
intensifying street vitality and establishing Nanjing’s central activity zone. A comparison
of working day and weekend vitality measurements revealed that the tertiary business
districts of Hunan Road and Fuzimiao and the quaternary business districts of Ruijin Road
and Zhongyangmen had higher vitality than other areas on weekends, underscoring the
significance of CL in influencing street vitality during weekend periods. Furthermore,
vitality on weekends was more unpredictable than on working days, indicating greater
diversity in public activities during weekends.

4.2. Factors Influencing Street Vitality

Overall, FD, TL, and RAR were positively correlated with enhanced street vitality.
Streets endowed with ample amenities, prime positioning, and accessible commuting
options typically offer a higher caliber of services, thereby attracting more residents and
leading to greater vitality, as indicated in previous research [23,27,29,30,36]. FD was
strongly associated with street vitality and was more concentrated on working days and
more scattered on weekends, possibly due to the more routine nature of resident activities
on working days as opposed to weekends [62]. In the proximity of very few large entities
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and parks, FD was negatively associated with street vitality. This association can be
attributed to the stable pedestrian traffic in large built establishments, and expansive parks
draw substantial crowds to adjacent zones, resulting in pronounced vitality, albeit with a
typically limited number of POIs. TL had a significant positive impact on street vitality
generally, and on working days this impact was evenly distributed within the study area,
while on weekends only areas near business districts and some metro stations exhibited a
positive impact, suggesting that residents have a greater preference for commercial services
on weekends. The negative impact of TL on street vitality was particularly pronounced
around Zhongyangmen and Sanpailou on weekends, possibly due to the large bus terminal
and wholesale market near the central gate, attracting a large number of people even though
these areas are some distance from the metro stations in the study area. In addition, the
established residential community in the Sanpailou area was serviced by comprehensive
amenities, diminishing its reliance on metro stations.

The SSI emerged as a strong correlate of street vitality, indicating that streets capable of
delivering superior services hold greater appeal for residents. Recent research has demon-
strated that residents’ evaluations of their experiences significantly influence waterfront
vitality [42]. The regression coefficient for this index was particularly high on weekends,
indicating that residents have a higher demand for service quality during their leisure
time. Previous studies have noted that higher visual complexity equates to a richer visual
experience, enhancing the likelihood of lingering [39,40]. VCI was positively correlated
with street vitality, indicating that visually diverse streets are more enticing to residents.
RD was positively correlated with street vitality, and this association was more pronounced
on working days than on weekends. The same relationship was observed for TL and
RAR, indicating that commuting activities are significant indicators of street vitality [66].
Under the time constraints of working days, residents preferred streets that facilitated easy
commuting, as per previous research findings [34,37]. The MGWR findings showed that
EI was positively associated with street vitality on working days and weekends, perhaps
because a higher degree of enclosure facilitates certain social activities that require a sense
of bounded privacy, thereby attracting residents to linger and engage in the area [57].

Research on the association between CL and street vitality has been relatively limited,
and the majority of findings suggest that streets closer to business districts possess higher
vitality [31,32]. The present study showed that CL was positively associated with street
vitality on weekends and negatively associated with street vitality on working days. People
may be more inclined to spend their weekend leisure time in commercial areas when they
have more time and energy to utilize the commercial services [66], whereas on working
days, they likely opt for neighborhood businesses or online shopping to meet their basic
needs. This finding reflects the diversity of residents’ shopping and consumption choices.

FM was positively correlated with street vitality on working days but was not corre-
lated with street vitality on weekends, suggesting that residents prefer streets with diverse
functions when leisure time is limited. Given that this study encompasses both the street
and its surrounding areas, the increased presence of residents in residential areas on week-
ends compared to working days may render the influence of this metric on vitality less
pronounced [67].

The observation that GVI was negatively correlated with street activity differs from
previous studies [38,39]. There are two potential reasons for this phenomenon: (1) Pertinent
research indicates that a GVI of 15% represents a threshold in residents’ perceptions of
urban greening and that beyond this point, urban greening enhances the psychological
and physiological well-being of residents [68]. Once the GVI surpasses this threshold, the
correlation between the extent of greening and its advantages assumes an “inverted U-
shape,” with approximately 24% being optimal for resident well-being [69]. In the present
study, the average GVI in the old city of Nanjing was 23.58%, with 66.84% of the grids
exceeding 15% and 42.25% exceeding 24%, suggesting that urban greening in the old city of
Nanjing is quite advanced and that the GVI is not a primary driver of residents’ selection
of streets for activities. (2) An overabundance of urban greenery might constrict informal
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commercial spaces, such as the street economy, thereby diminishing street vitality [70,71].
(3) Streets with high GVI require more resources for maintenance and management. If
poorly managed, this may result in cluttered green areas, which, in turn, can affect the
aesthetics and the experience of using the street [72].

Additionally, PR was not strongly associated with street vitality, contrasting with an
earlier empirical study in Osaka which found that permeability along the street interface
positively impacted pedestrian activity [13]. However, that study focused on areas adjacent
to commercial complexes, whereas our research encompassed streets across the old city
without differentiating between street types. Consequently, we suggest that permeability
only affects the vitality of streets of a commercial nature.

4.3. Strategies for Enhancing Street Vitality

As forerunners in modernization efforts, old cities should seize the opportunities
presented by urban renewal to enhance street vitality and urban spatial quality, thereby
meeting the diverse needs of residents. Strategies to enhance street vitality should be
approached in a number of ways.

Firstly, increasing functional density is crucial. The attractiveness of streets can be
significantly enhanced by adding a wide range of facilities such as dining, retail, entertain-
ment, and cultural facilities, particularly in areas with high pedestrian flow. The flexible
utilization of vacant buildings and sites to create temporary markets, exhibitions, and event
spaces can also increase street vitality. Furthermore, street vitality can be enhanced by
increasing the number of mixed-use neighborhoods that offer a variety of services and
activities, especially in areas with high weekday pedestrian traffic.

Secondly, urban planning should draw inspiration from the principles of New Ur-
banism [16,17] by employing a transit-oriented development (TOD) model to bolster the
construction of rail transit stations. Such a model advocates for compact development,
integrating mixed functions with small block construction and dense road networks [33,34].
This approach aims to reorganize street and alley spaces to enhance the connectivity and
accessibility of street networks, create social interaction spaces on the streets, and improve
traffic efficiency. Additionally, in neighborhoods farther away from metro stations, the focus
is on the improvement of facilities to neutralize the negative impacts of traffic locations.

Thirdly, while promoting the prosperous development of the city center (such as
Xinjiekou), this approach should also stimulate the growth of other commercial centers at
various levels. The construction of a multi-tiered, systematic commercial service facility
system is proposed to meet the diverse needs of residents and foster social interactions
within the region. Simultaneously, by increasing street furniture and vignettes and encour-
aging diversified architectural designs, the visual complexity of streets can be increased,
thus enhancing vitality.

Fourthly, appropriate street greenery is conducive to street vitality, supporting the
development of the street economy and promoting related commercial policies. However, it
is important to moderate street greening to ensure sufficient space for street-level commerce.

Finally, focusing on residents’ subjective experiences is beneficial for human-centered
planning. Thus, construction of urban street facilities should meet qualitative as well as
quantitative targets. To ensure the adequacy of facility numbers, service quality should be
gradually enhanced. A feedback mechanism for residents should be established to improve
services in a timely manner and enhance user experience. The goal is to build a city with a
“sense of warmth”, thereby strengthening residents’ sense of belonging.

4.4. Limitations

Although we conducted an in-depth study on street vitality and its influencing factors,
this study has several limitations. Firstly, the concept of vitality was initially intricate and
expansive. Street vitality, as referenced herein, encompasses both the street’s inherent
vibrancy and that of its contiguous lands, and the vitality of adjacent areas may affect
indicators such as FM. Secondly, the Tencent EasyGo data used in the study do not delineate
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pedestrian pathways. In addition, situations in which children or other vulnerable groups
do not use the Internet services provided by Tencent were not considered. It is recom-
mended that further research on this topic involves integration of data from diverse sources,
including heat maps, mobile phones, and social media check-ins. Where possible, field
research methods should be incorporated to obtain comprehensive vitality measurements.
Moreover, in Section 4.2, we speculate that the influence of GVI on street vitality shows an
“inverted U-shaped” relationship, and that PR only influences the vitality of streets of a
commercial nature. These speculations need to be explored further. Lastly, the SAM and
MGWR models used in this study also have some limitations. The results of the SAM can
only reveal the extent of the independent effects of factors on street vitality, and future stud-
ies may consider using a geographical detector model to explore the comprehensive effects
of different combinations of factors. Although the MGWR model can reveal the spatial
heterogeneity of street vitality, it also varies temporally. Therefore, combined with more
temporal data, the geographically and temporally weighted regression (GTWR) model is
required to obtain a comprehensive analysis of the temporal changes in street vitality.

5. Conclusions

To gain a comprehensive understanding of the characteristics, influencing factors, and
enhancement of street vitality in an old city, this study applied a refined scale of analysis,
using smaller grid units than previous studies and high-resolution RTUDs to achieve a
detailed measurement of street vitality. A more comprehensive set of influencing factor
variables was selected from the perspectives of three categories: locational conditions,
built environment, and residents’ perceptions. Additionally, the SEM and MGWR models
were employed to ascertain the factors associated with street vitality and their complex
spatial differences.

Several conclusions were drawn from this study. Firstly, street vitality in the old city of
Nanjing is monocentric during both working days and weekends, with high vitality areas
focused around Xinjiekou, and with greater regularity and predictability in street vitality on
working days than on weekends. Secondly, factors such as TL, RD, FD, FM, RAR, EI, VCI,
and SSI are positively associated with street vitality. Among them, the association of TL
and RAR with street vitality was more pronounced on working days, whereas FD and SSI
were more strongly associated with street vitality on weekends. Thirdly, GVI has a negative
impact on street vitality, which may be due to the fact that the green environment of streets
in the old city of Nanjing has reached a high level, and GVI is not the primary factor
affecting residents’ choice of streets for their activities. Fourthly, because CL has a positive
impact on street vitality on weekends and shows the opposite result on working days, a
big difference is observed between residents’ shopping demands on working days and
on weekends. Therefore, it is necessary to build a multi-level and systematic commercial
service facility system. Finally, the influence of different factors on street vitality varied
according to spatial location; TL was most strongly associated with street vitality in the
southern part of the old city, while FD was most strongly associated with street vitality in
the Xinjiekou area.

In summary, against the backdrop of urban development transitioning from expansion
to intensification, policymakers and urban planners should recognize the significant role
of old city streets in urban spaces. Comprehensive revitalization of the vitality of old city
streets can be achieved by adopting a public transportation-oriented development model
and constructing mixed-use, compact neighborhoods with dense street networks, ensuring
appropriate street greening to support the street economy, and enhancing the quality of
urban street service facilities, thereby promoting high-quality urban development.
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