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Abstract: In the midst of global efforts to curb the spread of infectious diseases, researchers worldwide
are striving to unravel the intricate spatial and temporal patterns of disease transmission dynamics.
Mathematical models are indispensable tools for understanding the dissemination of emerging
pathogens and elucidating the evolution of epidemics. This paper introduces a novel approach
by investigating city transmission networks as a framework for analyzing disease spread. In this
network, major cities are depicted as nodes interconnected by edges representing disease transmission
pathways. Subsequent network analysis employs various epidemiological and structural metrics to
delineate the distinct roles played by cities in disease transmission. The primary objective is to identify
superspreader cities. Illustratively, we apply this methodology to study COVID-19 transmission in
Saudi Arabian cities, shedding light on the specific dynamics within this context. These insights
offer valuable guidance for decision-making processes and the formulation of effective intervention
strategies, carrying significant implications for managing public health crises.

Keywords: transmission network; epidemiological measures; structural measures; superspreader
cities; COVID-19; GIS

1. Introduction

The transmission dynamics of infectious diseases are multifaceted, influenced by myr-
iad factors such as demographic characteristics, population movements, host behaviors and
immune responses, healthcare infrastructure, and environmental conditions [1,2]. Recent
studies underscore that a minority of infected individuals, often termed superspreaders,
can drive the majority of disease cases in an outbreak [3]. Furthermore, studies suggest
that imported cases play a substantial role in seeding local transmission in various epi-
demic contexts, often accounting for a considerable proportion of total infections in many
countries [4,5]. Interestingly, some cities exhibit characteristics that significantly influence
the spread of diseases, similar to the role of individual superspreaders in an outbreak,
prompting the adoption of the concept of superspreader cities[6]. Effective control strate-
gies necessitate comprehensive measures, including both within city lockdowns and between
city movement restrictions, to mitigate disease transmission rates [7].

Mathematically modeling disease transmission is a crucial step toward effective dis-
ease management, enabling better resource allocation in healthcare, the evaluation of
control measures’ effectiveness, and the prediction of transmission patterns. Epidemic
modeling provides a potent tool for predicting the trajectory of an outbreak and devising
strategies to contain it. Such models prove particularly useful in scenarios where data on
mobility and travel are limited or inaccurate. Various mathematical modeling approaches
have been employed in epidemiological contexts, including statistical models [8], mathe-
matical formulations [9–11], and network-based analyses [12–14]. These models contribute
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significantly to our understanding of disease dynamics and aid in developing evidence-
based interventions for public health. However, most traditional epidemic models focus on
the temporal aspect of the disease and are non-spatial [15]. While there are some studies
that have successfully modeled disease spread within cities and among individuals [16–22],
there remains a considerable gap in understanding and modeling between-city and cross-
regional disease transmission.

In this study, we explore between-city transmission patterns utilizing a spatiotemporal
network-based epidemic model. Spatiotemporal network-based epidemic models have
been widely recognized and utilized in the field of epidemiology to study disease transmis-
sion dynamics, particularly in the context of infectious diseases. While there are various
modeling approaches available, we choose the spatiotemporal network-based model due to
its ability to capture both spatial and temporal dimensions of disease transmission patterns.
It allows us to assess the role of different cities in the spread of a disease and identify
potential superspreaders (cities with the highest potential to disseminate the disease). This
highlights the critical importance of managing these influential nodes in disease control
efforts [23,24].

Initially, we establish a city transmission network where nodes represent distinct cities
and edges signify disease transmission from one city to another. Subsequently, the network
is partitioned into multiple epidemic trees, each originating from a city with initial cases.
These trees are then subjected to analysis using various epidemiological and structural
metrics, offering quantitative insights for comparing the distinct roles cities play in disease
propagation. Epidemiological measures delineate the spread of the epidemic among cities,
while structural metrics scrutinize the static interconnectivity between them. Our approach
emphasizes city connectivity over population size when studying disease propagation,
recognizing that population size alone has limitations as a reliable predictor of disease
spread [25].

We apply our framework to examine the case of COVID-19 in Saudi Arabia, leveraging
authentic epidemiological data [26]. Our findings reveal that the impact of city infections is
not confined to local boundaries but can extend across regional borders, affecting neigh-
boring areas. Furthermore, we assert that the identification of superspreader cities holds
greater significance than pinpointing infection sources. These results serve as valuable
guidance for policymakers in setting priorities and refining quarantine strategies.

The rest of this work is organized as follows: Section 2 presents some preliminary
concepts and definitions, and Section 3 presents the related work. Section 4 discusses the
method, including network construction and analysis. Section 5 presents an illustrative
example. Lastly, Section 6 concludes this paper.

2. Preliminaries

A crucial role in disease transmission is played by node accessibility (the local envi-
ronment of the node) and reachability (the global environment of the node) within network
structures [27–29]. Several network structures have been used to model disease propaga-
tion including social networks, contact networks, and disease transmission networks. In
this work, we use the epidemic tree [15,30,31] structure to track disease transmission.

In graph theory, an epidemic tree Tc = (V, E) rooted at node c ∈ V, where V is the set
of nodes (infection cases) and E is the set of edges, is a directed rooted tree that allows
understanding disease spread by its hidden structural properties [32]. The root of the tree c
represents a primary case in the infection process.

Each tree edge represents a parent–child relationship in the disease spread process,
where the parent node infects the child node. The creation of edges follows the chronologi-
cal order of the infection of each pair of nodes such that a parent node is infected before its
children nodes. The infection process from a parent node to a child node can be deterministic
using node attributes such as the spatial distance to an infected parent node, or stochastic
using probability [15,33–35].
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An epidemic forest is a collection of epidemic trees which accrues when there are
multiple primary cases. This representation assists the extraction of epidemic information
at different spatial and temporal scales. It can also be used to reveal disease–environmental
associations and guide disease control interventions.

The neighborhood of a node u ∈ V, denoted by N(u), is the set of neighbors of u, i.e.,
N(u) = v|u, v ∈ E. The degree of node u is the size of its neighborhood (d(u) = |N(u)|).
Node degrees have been shown to have a great impact on disease propagation [36,37].

A path in the tree connecting a pair of nodes u and v is a sequence of adjacent nodes
that starts at u and ends with v. The length of a given path is the number of edges on the
path. The diameter of a tree Tc, denoted by diam (Tc), is the number of nodes on a longest
path between any two nodes in the tree. The tree diameter and average path length provide
indications about the possibility of infection throughout the epidemic tree. For instance, the
shorter the average path length between nodes, the higher the possibility of infection [28].

A Breadth First Search (BFS) starting at a given node u traverses the entire tree, level by
level, by increasing distances from node u. That is, it starts traversing all nodes one hop
away from u (u’s neighbors). Then, it visits all nodes at two hops away from u, and so on.
This systematic exploration helps in visualizing the spread and reach of potential infections
across the network.

Node centrality measures rank nodes with respect to their importance by assigning a
numerical value to each node according to its location in the network, which influences the
overall dynamics of the network interactions. Degree centrality considers the central nodes
to be those with the highest number of connections, highlighting potential hubs of activity
or transmission. Closeness centrality identifies the center of the network as the subset of
nodes with the shortest average distance to all other nodes, thereby highlighting those that
can most efficiently spread or gather information, or, in the context of epidemics, transmit
infections. In tree-structured networks, closeness centrality offers profound insights; the
center, often referred to as the median and typically consisting of one or two nodes, is
deemed the pivotal point of the network. This designation underscores its importance
in strategic interventions and control measures. The application of closeness centrality is
crucial for identifying key nodes, which are prioritized for thorough analysis and targeted
in preventive strategies within epidemiological studies. This approach ensures that efforts
are concentrated where they can be most effective in mitigating the spread of disease.

3. Related Work

Understanding how infections spread is crucial for controlling disease transmission.
Epidemiology can greatly benefit from studying contact networks, as they provide valuable
insights into disease propagation between individuals [12–14].

Recent studies have focused on utilizing advanced tools and methodologies to analyze
city transmission networks and uncover hidden patterns of disease spread within cities. For
instance, the study by John [38] investigated the impact of high connectivity and human
movement on infectious disease transmission within city networks. The results indicated
that travel time was the most crucial factor influencing disease transmission, followed by
human movement. The study by Guo et al. [39] focused on a dynamic model of respiratory
disease transmission by population mobility based on city networks, highlighting the
importance of considering population mobility and disease transmission dynamics in
urban settings. Leung et al. [40] conducted a systematic review on simulating contact
networks for livestock disease epidemiology. The research altered the resulting network by
randomly rewiring edges connecting node types that were not connected in the empirical
network while preserving the clustering coefficient and mean degree of the Barabasi–Albert
model simulation. This approach aimed to enhance the understanding of livestock disease
transmission dynamics.

Luo et al. [29] studied COVID-19 transmission in the Chinese cities of Tianjin and
Chengdu using visualization techniques, finding that transmission characteristics varied
among cities. Büttner and Krieter [41] demonstrated various disease transmission routes
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within animal trade networks, emphasizing the integration of different transmission path-
ways into simulation models. Xie et al. [42] investigated the impact of asymmetric activity
on interactions between networks, highlighting the role of network structures. In a re-
lated study, Hearst et al. [43] identified potential superspreaders and disease transmission
hotspots using white-tailed deer scraping networks. Krbylvik et al. [19] conducted network
analysis of the detained and staff member movements in the Cook County Jail in Chicago,
Illinois. The study, based on the movement of 5884 persons from 1 March to 30 April
2020, identified fewer COVID-19 links than expected among detained persons, implying
that interventions and medical isolation policies were effective. In the networks of staff
members, there were more links than predicted, indicating possible areas of concentration
for further transmission.

Recent studies have also focused on the spatiotemporal dynamics of disease trans-
mission. For instance, Shaw et al. [44] focused on modeling contacts and the spread of
COVID-19 in the context of the return to work, demonstrating that limiting social contact
through strategies such as reducing the number of people or time spent in the workplace
are effective measures. Silva et al. [45] quantitatively analyzed the effectiveness of public
health measures on COVID-19 transmission, emphasizing the importance of social isolation
policies. Gayawan et al. [46] looked at the spatiotemporal dynamics of COVID-19 in
47 African countries. The study focused on the first 62 days of the disease’s appearance in
Africa, revealing that neighboring countries pose a major importation risk to each other.
Chan and Wen [47] examined the impact of changes in intercity passenger rail travel on
COVID-19 early spatial transmission in mainland China, investigating the association
between structural changes in the railway origin-destination network and the prevalence
of COVID-19 cases using Bayesian multivariate regression. Dlamini et al. [48] integrated
various variables to spatially model COVID-19 transmission risk in Eswatini, analyzing
case data for the period under strict lockdown. Pribadi et al. [49] studied the policy of
Large-Scale Social Restriction (LSSR) in Jakarta, Indonesia, using hotspot analysis and
space–time scan statistics to examine infection and transmission risk. The results suggest
that spatial transmission continues despite a decrease in the overall pandemic curve during
LSSR adoption.

In the context of Saudi Arabia, which serves as the case study for this work, the majority
of COVID-19 research primarily focuses on statistical and mathematical models [50–56].
However, there is an opportunity to explore network-based approaches to better understand
city-to-city disease transmission. While existing studies have utilized network-based SIR
models [13], they often overlook the spatiotemporal aspect of the infection. Consequently,
in this work, we propose a spatiotemporal network-based model to shed light on the
dynamics of city-to-city disease transmission in Saudi Arabia.

4. Methods

We investigate between-city disease transmission patterns by analyzing city transmis-
sion networks. To achieve this goal, we initially build a city transmission network using
data on infection and disease importation history. Subsequently, we conduct a quantitative
analysis of the network’s global, epidemiological, and structural characteristics.

4.1. Transmission Network Construction

To understand the dynamics of disease transmission across cities, we establish a city
transmission network characterized by three fundamental components: central nodes
denoting cities with initial imported cases (patient zero), nodes representing the remaining
cities, and edges indicating the direction of transmission from one city to another. All central
nodes are considered infected because they host at least one individual who contracted the
disease while traveling. The remaining cities become infected when a person in that city is
confirmed to have the disease. Each of these cities is linked to another city from which they
contract the disease and to another city to which they transmit the infection. The resulting
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city transmission network is denoted by G = (V, C, E) where V is the set of nodes, C ⊂ V
is the set of central nodes, and E indicates the set of edges.

This construction results in a network with a tree-like structure. Each node is at-
tributed with an infection date. The ensemble of epidemic trees rooted at each central
node constitutes an epidemic forest. The resulting network is undirected; however, we use
directed edges to emphasize the chronological flow of disease transmission. See Figure 1
for an example of a transmission network.

Figure 1. An example of a transmission network. Tables list the epidemiological and structural
properties of the epidemic tree rooted at node c with three transmission chains.

4.2. Transmission Network Analysis

Our goal is to use the topological properties of the transmission network to understand
the role of cities and their connectivity in the disease propagation patterns. To do so, we
analyze the developed network global properties such as node degree distribution and
pair of node distances. Then, we analyze the epidemic tree rooted at each central node
using two sets of measures: epidemiological and structural. Epidemiological measures
are used to assess the evolving epidemiology of a disease. These metrics are crucial for
understanding how infections propagate between nodes within the network, highlighting
key transmission paths and the overall reach of the disease. Structural measures focus
on the overall topology and connectivity of the epidemic network. These metrics are
important for understanding the static properties of the network that might impact disease
propagation. They provide insights into the network’s connectivity and the hierarchical
organization of infected nodes. Figure 1 shows an example of all properties.

In an epidemic tree, the root (source node) represents a source of infection. A transmis-
sion chain shows generations of infected nodes generated as a result of direct or indirect
contact with the source node. Let Tc be the epidemic tree rooted at central node c, and
Tc = {V, E} be the set of epidemiological measures which include the following.
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• Total Number of Chains: The Total Number of Chains indicates the number of chains
starting at a central node [29]. The Total Number of Chains of a given central node c
equals the number of node c’s direct neighbors. It can be used to rank central nodes
according to their role in direct disease spread. For example, in Figure 1, the Total
Number of Chains of the shown epidemic tree is 3. This metric indicates the number of
direct transmission paths originating from a central node, reflecting the node’s direct
impact on disease spread.

• Chain Size: The Chain Size indicates the number of nodes in each transmission chain
excluding the central node [29]. The Chain Size of a given node v, where v ∈ N(c) and
c is a central node, equals the number of nodes in the Breadth First Search (BFS) tree
rooted at v. It can be used to measure the influence of non-central nodes in spreading
the disease. For example, the Chain Size of Chain B in Figure 1 is 11 since node u
spreads the disease to 10 other nodes.

• Maximum Length of Chains: The Maximum Length of Chains shows the maximum
number of directional edges in each chain [29]. The Maximum Length of Chains of a
node v, where v ∈ N(c) and c is a central node is equal to the height of the Breadth
First Search (BFS) tree rooted at v. This metric captures the furthest extent a disease
can travel within a chain. The Maximum Length of Chains of Chain B in Figure 1 is 4,
showing the number of generations the disease traveled.

• Average Chain Size: The Average Chain Size represents the average number of cases
resulting from an infection started at given central node [29]. It is computed by
dividing the summation of Chain Sizes starting with same central node by the number
of chains starting at a central node, providing an average measure of transmission
spread. For example, the Average Chain Size of the epidemic tree in Figure 1 is 4.7
((1 + 11 + 2)/3).

• Chain Diameter: The Chain Diameter measures the longest distance between any two
nodes in a chain (excluding the central node), indicating the maximal spread within a
chain. It can be obtained by computing the diameter of the undirected BFS tree rooted
at node v, where v ∈ N(c) and c is a central node. In Figure 1, the diameter of Chain B
is five since the maximum distance connecting two nodes is five (path between nodes
w and z).

The set of structural measures compares the hierarchical structures of each epidemic
tree rooted at a central node. This set of measures includes:

• Size: The size of Tc indicates the total number of nodes that are infected as a result of
a direct or indirect relationship with c, reflecting the infection’s reach. It is computed
as |Tc| − 1. The size measure provides a quantification of the infection ability of each
central node. The size of the epidemic tree Tc in Figure 1 is 14.

• Diameter: The diameter of Tu represents the maximum path length between any
two nodes in Tu. It is computed as maxw,z∈V{d(w, z)}. The Diameter provides an
estimation of the disease transmission distances. Note that the diameter does not
take edge directions into account. In Figure 1, the diameter of Tc equals d(k, z),
which is seven.

• Height: The height of Tc shows the maximum number of directional edges in a path
connecting c to a leaf node. It is computed as maxv∈V{d(c, v)}. This measure is similar
to the Maximum Length of Chains, except that it selects the maximum over all chains.
In Figure 1, the height of the epidemic tree is five since d(c, z) = 5.

• Median: The median of Tc represents the vertex (or two connected vertices) closest
to every other vertex in Tc (edge directions are not considered). It identifies disease
spreader nodes with respect to node closeness to other nodes in the tree. The two
nodes that represent the median of the epidemic tree in Figure 1 are nodes u and v.

• Degree Center: The Degree Center decides which node (or nodes) are most central
with respect to their number of connections in an epidemic tree. It identifies disease
spreader nodes with respect to node degrees. The central node according to degree in
Figure 1 is node u.
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• Temporal Information: A given epidemic tree can be temporally characterized by
starting and ending dates [29]. The starting date of an epidemic tree Tc is equal to the
infection date of its root node c, and its ending date is the last date on which a leaf
node v ∈ V was infected. The two dates define the disease spreading period [15].

• Spatial Information: A given epidemic tree can be spatially characterized by its geo-
graphic coverage [29], which describes the geographic area coverage by the tree [15].

5. Illustrative Example

We study the role and impact of city connectivity on COVID-19 disease spread in
Saudi Arabia to demonstrate the proposed method.

5.1. Data

We utilize a COVID-19 dataset. The dataset is procured from the Saudi Ministry of
Health [26], covering the period from 2 March 2020, to 25 April 2020, and consisting of
198,018 records. Each record within the dataset contains personal details, including age,
gender, race, and city of residence. Additionally, the dataset encompasses information
related to COVID-19 testing, such as the date of the test, the hospital where it was con-
ducted, the test outcome, and the date the results were received. It also includes travel
history, specifically noting whether individuals had visited any countries where the virus
was endemic.

Two main data cleaning steps are applied to the dataset. First, we exclude any records
that indicated a negative or not confirmed COVID-19 outcome, ensuring that our dataset
focuses exclusively on confirmed cases. Second, records of individuals who tested positive
for COVID-19 but had no travel history are excluded. This step ensures that the analysis
concentrates on cities with initial imported cases. After applying these cleaning steps, the
dataset is reduced to 1366 records.

After that, information from the individual records is extracted to build the COVID-19
city infection history file which includes the following sections (see Table A1 in Appendix A):
city name, city region, date of first reported case (confirmation as a positive case), and date
of first imported tested case (taking the swap). We include 119 main cities in Saudi Arabia.
Not all cities appear in the obtained file. The reported dates for those cities are obtained from
the daily dates provided by the online COVID-19 Dashboard: Saudi Arabia [57]. Table A1
shows that the date of the first imported tested case is much earlier compared to the date of
the first reported case in 27 cities such as Arriad, Addammam, and Abha. This indicates
that positive imported COVID-19 cases are actively spreading the disease for a period of
time. This set of cities is considered to have a central role in disease transmission. The
generated COVID-19 city infection history file and the constructed transmission network
dataset are all available at https://github.com/halrashe/Covid19-Transmission-Network
(accessed on 1 August 2024).

We assume that the potential infectious range of a city to cover the entire country since
Saudi Arabia has well-developed road networks and transportation systems, and thus
travel between any two cities is possible.

Our city transmission network, denoted by G = (V, C, E) where V is the set of nodes,
C ⊂ V is the set of central nodes, and E is the set of edges, has a total of 119 nodes,
20 central nodes, and 118 edges (see Figure 2). The first positive COVID-19 case in
Saudi Arabia was confirmed on 2 March 2020 in the city of Alqatif. Therefore, Alqatif
city is selected to be the first infected node in the network. The remaining cities are added
based on their first reported date (breaking ties arbitrarily). Let I ⊆ V be a set of infected
nodes, S ⊆ V be a set of susceptible nodes, and w ∈ I and z ∈ S be two nodes (cities). A
directed edge ewz connects node w to node z if w is the closest in distance to node z than
every other node v ∈ I. Because we focus on between-city analysis, nodes with an imported
tested case after the date of 21 March 2020 (the date when all domestic transportation was
suspended) are not considered central.

https://github.com/halrashe/Covid19-Transmission-Network
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Figure 2. COVID-19 city transmission network between in Saudi Arabia. Nodes are partitioned
according to their administrative regions. Node sizes are proportional to their populations.

5.2. Experimental Setup

Network construction and analyses were all conducted using the Python-based Net-
workx library [58]. Network visualizations were implemented using Gephi [59]. All
experiments were run using a MacBook Pro, with the macOS Catalina operating system,
version 10.15.4, and a 2 GHz Quad-Core Intel Core i5 with 16 GB RAM.

5.3. Results

Several cases test positive for COVID-19 after visiting infected countries in 27 Saudi
cities, 20 of which occur before or on 21 March 2020 (the date when all domestic transporta-
tion was suspended). We consider all 20 cities as central nodes in the transmission network.
Then, we measure several global, epidemiological, and structural properties of the trans-
mission network and its chains. Tables 1 and 2 list several quantitative epidemiological
and structural properties of COVID-19 transmission in Saudi Arabia.

5.3.1. Global Properties of Transmission Network

The network (epidemic forest) has 119 nodes and 118 edges (single connected com-
ponent). The epidemic forest consists of 20 epidemic trees, each rooted at a central node.
In total, 71% of edges connect cities that belong to the same administrative region. The
maximum, minimum, and average outdegrees over all nodes are 11, 0, and 1, respectively.
Figure 3 shows the degree distribution of all nodes. The degree distribution depicted in
Figure 3 highlights a skewed pattern, with most nodes having a low outdegree and a few
nodes exhibiting higher connectivity. This heterogeneity indicates that certain cities play
disproportionately influential roles in disease transmission, acting as hubs in the network.
Irrespective of edge directions, the average path length between nodes is three, and the
network diameter is eight.
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Table 1. Epidemiological properties of the transmission network chains for COVID-19 in
Saudi Arabia.

Central Node Total Num
of Chains

Avg Chain
Size

Chain
Size

Num of
Chains

Max Length
of Chains

Chain
Diam

1 Alqatif 11 10.7

1 7 1 0
2 2 2 1
9 1 4 5
98 1 8 13

2 Makkah
almukarramah 8 7.4

1 6 1 0
11 1 4 5
42 1 6 8

3 Arriyad 5 19.4

1 1 1 0
3 1 2 2
4 1 3 2
29 1 6 9
60 1 7 10

4 Jazan 5 8.2

1 2 1 0
2 1 2 1
6 1 3 4
31 1 5 8

5 Almadinah
almunawwarah 5 2

1 3 1 0
2 1 2 1
5 1 4 4

6 Muhayil 3 10
6 1 4 4
9 1 4 5
15 1 4 6

7 Najran 3 2.7
1 1 1 0
3 1 2 2
4 1 3 3

8 Abha 2 2.5 1 1 1 0
4 1 3 3

9 Adduwadimi 2 1 1 2 1 0

10 Alkharj 1 3 3 1 2 2

11 Addammam 1 1 1 1 1 0

12 Duba 1 1 1 1 1 0

13 Hafar-albatin 1 1 1 1 1 0

14 Aljubayl 0 0 0 0 0 0

15 Jeddah 0 0 0 0 0 0

16 Annamas 0 0 0 0 0 0

17 Alahsa 0 0 0 0 0 0

18 Altaif 0 0 0 0 0 0

19 Alkhubar 0 0 0 0 0 0

20 Alqunfidhah 0 0 0 0 0 0

5.3.2. Epidemiological Properties of Transmission Networks

Different epidemiological characteristics were captured by the quantitative measures
of the transmission network: Total Number of Chains, Chain Size, Maximum Length of
Chains, Average Chain Size, and Chain Diameter. The Total Number of Chains, Chain
Size, and Average Chain Size describe the scope of COVID-19 transmission through one
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source of infection (one central node). The Maximum Length of Chains and Chain Diameter
describe the scale of COVID-19 transmission through one source of infection.

Table 2. Quantitative structural properties of transmission chains for COVID-19 in Saudi Arabia.

Central Node Size Diameter Height Median Degree Center

1 Alqatif 118 13 8 Arriyad AlqatifMakkah

2 Makkah 59 10 6 Jazan Albaha

3 Arriyad 97 13 7
Arriyad Albaha
Makkah Makkah

Buraydah

4 Jazan 41 8 5 Muhayil Albaha

5 Almadinah 10 5 3 Almadinah AlmadinahYanbu-albahr

6 Muhayil 30 8 4 Muhayil Albaha

7 Najran 8 5 3
Najran Najran
Thar Thar

Addair

8 Abha 5 4 3 Ahad-rifaydah Ahad-rifaydah

9 Adduwadimi 2 2 1 Adduwadimi Adduwadimi

10 Alkharj 3 2 2 Hawtat-bani-tamim Hawtat-bani-tamim

11 Addammam 1 1 1 Addammam Addammam
Buqayq Buqayq

12 Duba 1 1 1 Duba Alwajh
Duba Alwajh

13 Hafar-albatin 1 1 1 Hafar-albatin Rafha
Hafar-albatin Rafha

14 Aljubayl 0 0 0 Aljubayl Aljubayl

15 Jeddah 0 0 0 Jeddah Jeddah

16 Annamas 0 0 0 Annamas Annamas

17 Alahsa 0 0 0 Alahsa Alahsa

18 Altaif 0 0 0 Altaif Altaif

19 Alkhubar 0 0 0 Alkhubar Alkhubar

20 Alqunfidhah 0 0 0 Alqunfidhah Alqunfidhah

Figure 3. Degree distribution of the transmission network nodes.

According to Table 1, Alqatif city appears to have a bigger role in the spread of
COVID-19 (Total Number of Chains is 11). This can be due to the fact that Alqatif was the
first city to host a positive COVID-19 case in Saudi Arabia. This can also be due to Alqatif’s
geographic location (or a combination of both). The Maximum Length of a Transmission
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Chain in Alqatif reaches 8, which suggests that the spread of COVID-19 in Saudi Arabia
was highly affected by in-between city transmission. The Average Chain Size is 10.7 (the
smallest Chain Size is one and the largest is 98). This suggests that COVID-19 may have
traveled to 10 cities (depth-wise) before it was controlled.

Table 1 also shows that Makkah, the holiest city, was a vital source of the disease’s
transmission. A total of eight transmission chains originated from Makkah with a Maximum
Length of 6 and a Chain Size of 42. Each of Arriyad, Jazan, and Almadinah generated a
total of five transmission chains with average sizes of 19.4, 8.2, and 2, respectively. The
Maximum Length of Chains is 7 in Arriyad, 5 in Jazan, and 4 in Almadinah.

Several central cities generated fewer transmission chains including Muhayil, Najran,
Abha, and Adduwadimi (Total Number of Chains is between two and three). Interestingly,
the produced transmission chains are not necessarily shorter (compared with the Average
Chain Size of central cities that produced more chains). For example, Muhayil’s Average
Chain Size is larger than Makkah’s Average Chain Size, although Makkah produced eight
chains and Muhayil produced three chains.

Some cities appear to have more negligible transmission effects during the disease
transmission period. For example, Addamam, Duba, and Hafar-albatin caused a trans-
mission to only a single city. Aljubayl, Jeddah, Annamas, Alahsa, Altaif, Alkhubar, and
Alqunfidhah did not produce any disease transmissions across the network.

Figure 4 show two epidemic trees rooted at central nodes Jazan (TJazan) and Almadinah
(TAlmadinah), respectively. The different nodes are colored according to the administrative
regions they belong to. The figure shows that both central nodes have caused disease
transmission within and outside of their administrative regions (Jazan spread the disease
to five other regions and Almadinah to two other regions). Both trees have the same
Total Number of Chains. However, the Average Chain Size of TJazan is larger than that
of TAlmadinah.

Figure 4. The epidemic trees rooted at two central nodes: Jazan (top) and Almadinah (bottom).
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5.3.3. Structural Properties of Transmission Networks

The second set of measures examines the structural properties of the epidemic trees
rooted at each central node. Those measures provide insights about the between-city trans-
mission events. Seven measures were considered for each epidemic tree: Size, Diameter,
Height, Median, Degree Center, and Temporal and Spatial Information. The Size property
indicates the total number of infections arising from each infected central node. Table 2
shows that the epidemic trees rooted at Alqatif, Arriyad, and Makkah resulted in larger
infection sizes compared to the other epidemic trees. The three trees also have the largest
diameters and heights, indicating their significant role in the disease spread. The Diameters
of each of TAlqati f , TMakkah, and TArriyad are 13, 10, and 13, respectively. The Heights of
TAlqati f , TMakkah, and TArriyad are 8, 6, and 7, respectively.

Additionally, Jazan generated a total of 41 infections with a Diameter of eight and
a Height of five. Muhayil produced a total of 30 infections. The Diameter and Height
of TMuhayil are 8 and 4, respectively. Almadinah and Najran (with sizes of 10 and 8,
respectively) both have a Diameter of 5 and Height of 3. Abha, Alkharj, and Adduwadimi
generated 5, 3, and 2 total infections. The Diameters are 4, 2, and 2, and the Heights are 3, 2,
and 1, respectively.

Node centrality measures identify superspreader nodes in each tree. We use two
centrality measures: Median (node or nodes closest to every other node with respect to
distance) and Degree Center (node or nodes with the largest number of connections).
Interestingly, the central node and the median are represented by different nodes in most
epidemic trees. For example, the Median in TAlqati f is represented by two nodes: Arriyad
and Makkah. The Median in TMakkah is represented by one node: Jazan. Similarly, in most
epidemic trees, the central node and the Degree Center are not necessarily equal. For
example, the Degree Center in both TMakkah and TJazan is Albaha (see Figure 4. In fact,
Albaha appears to represent the Degree Center in several epidemic trees including TMakkah,
TArriyad, and TMuhayil .

Figure 5 and Table 3 show the temporal and spatial information of several epidemic
trees. Multiple epidemic trees have overlapping temporal information and geographic
coverages. For example, TMuhayil is a subset of TJazan.

Table 3. Temporal and spatial information of 13 epidemic trees.

Central Node Starting Date Ending Date Coverage (km2)

1 Alqatif 2 March 2020 23 June 2020 1,862,582
2 Arriyad 9 March 2020 23 June 2020 1,066,118
3 Makkah 10 March 2020 22 June 2020 642,964
4 Jazan 16 March 2020 22 June 2020 351,874
5 Muhayil 19 March 2020 22 June 2020 339,969
6 Almadinah 20 March 2020 23 June 2020 206,758
7 Najran 23 March 2020 11 June 2020 65,481
8 Abha 24 March 2020 22 June 2020 88,921
9 Adduwadmi 30 March 2020 26 April 2020 79,475
10 Alkharj 9 April 2020 23 May 2020 81,057
11 Addammam 15 March 2020 24 April 2020 7778
12 Duba 3 April 2020 6 April 2020 23,046
13 Hafar-albatin 20 March 2020 24 April 2020 87,496

5.3.4. Validation

Our goal is to validate our city transmission network generation. Our proposed
network generation model uses geographic distance between cities as the single factor
that affect the infection process (the infection always progresses to a susceptible city from
the closest infected one). To validate the generated network, we need to decide the factor
or factors that most affect disease transmission between cities, for example, mobility
and population.
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Figure 5. Geographic coverages of six epidemic trees: (A) TAlqati f , (B) TArriyad, (C) TMakkah,
(D) TAlmadinah, (E) TJazan, and (F) TMuhayil . The red dots indicate the root cities of the respective
epidemic trees.

We analyze the relationship between city populations and the order by which each
city was infected. We use Pearson’s product–moment correlation to find the correlation
between the population and the order (see Figure 6). The analysis indicates a moderate
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negative relationship (r = −0.39), suggesting that nodes with higher populations are more
likely to become infected earlier than lower population nodes.

Based on this result, we create another transmission model that takes destination city
population into account. Given an infected node u and a non-infected node v, the spread of
infection from u to v occurs with a probability puv proportional to the population of node v
(resembling city mobility) as follows puv = α ∗ (populationu/populationsum), where α is a
constant and populationsum is the population sum over all cities.

We use this model to create several transmission network ensembles, each of which
simulates a disease transmission incident. The first infected node is set to Alqatif, and α is
set to 0.1. For each network, we count the Size (number of infected nodes in the tree rooted
at a central node) of each central node and compare them with the tree sizes of the original
transmission network. Figure 7 compares the epidemic tree sizes of the original network
and the average of 100 simulated networks using the model described above. The Pearson
correlation coefficient between the two curves is 0.78, indicating a positive relationship.
This implies that no matter what the infection order is, a city population plays a big role in
its infectivity.

Figure 6. The correlation between city populations and the order in which cities were infected.

Figure 7. Comparing tree sizes of original and simulated transmission networks.
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5.4. Discussion

Understanding the behavior and the spread patterns of a disease helps to effectively
and cost-efficiently contain it. Tracing the transmission chains across the cities is one of the
crucial tools for managing the pandemic. It can assist authorities in tailoring their efforts
and setting the appropriate control measures, focusing on superspreader cities instead of
overall lockdowns, to alleviate the otherwise devastating effects on economies.

Considering the importance of between-city movement in disease transmission, we
propose constructing a city transmission network that models the spread of a disease.
Network-based approaches provide additional insights into disease spread dynamics
that are not captured by alternative methods. Unlike traditional models, network-based
approaches can incorporate more information and handle complex interactions between
geographical locations. This level of information richness offers a better representation of
disease transmission through specific pathways and superspreader cities. The network-
based method improves epidemic forecasting accuracy while also providing actionable
information for more effective disease control and prevention strategies.

Our network is built based on epidemiological data about the disease and geographic
distances between cities. Then, quantitative analysis is used to compare the impact of
different cities on the disease transmission process. We focus on epidemiological and
structural effects of each source of infection, including tracing the infection and discovering
superspreader cities.

Identifying the source (or sources) of an infection is important; however, deciding
superspreader cities (with the highest potential to spread an infection) is vital for disease
prevention. In our example, Alqatif was the first city with a positive COVID-19 case in Saudi
Arabia. However, tracing the transmission chains in the city transmission network revealed
that the median (center) of this tree was Arriyad and Makkah. This indicates that the role
played by Arriyad and Makkah cities during disease transmission was bigger compared
to that of Alqatif. Consequently, authorities should prioritize enforcing lockdowns in
these cities to effectively mitigate the spread of disease. By focusing the preventative
measures and resources in Arriyad and Makkah, where the transmission dynamics have
demonstrated a central role in the network, targeted interventions can be more strategically
implemented. This approach not only curtails the further spread of the virus from these
hubs but also allows for a more efficient allocation of healthcare resources and public health
responses, potentially leading to a quicker containment of outbreaks.

Our analysis also shows that a city infection impact is not always local. In most
cases, the impact crosses the regional borders of a city to other cities in different regions.
For example, Makkah city spread the disease to other cities within its region (Altaif,
Alqunfidhah, and Khulays) and others in Almadinah, Jazan, and Albaha regions. This type
of analysis can help decision makers with disease prevention and control strategies, for
example, determining priorities and narrowing the scope of quarantine.

Because the model relies on the daily number of confirmed cases, it enables the
real-time identification of critical locations for early intervention with a certain degree of
precision. It uses epidemiological metrics, such as the Total Number of Chains at each
central node, to decide the role of these nodes in disease spread, even before the pandemic
ends and without complete time series data. This capability for early detection could have
allowed authorities to implement targeted quarantine measures to effectively mitigate
the impact of an outbreak. Furthermore, our model facilitates the efficient allocation and
management of healthcare resources, thereby reducing the pressures on national healthcare
systems. It empowers authorities to more effectively distribute medical supplies and other
essential items to strategically important cities. By preparing essential nodes in the virus
propagation network ahead of time, we can ensure better readiness for potential outbreaks.



ISPRS Int. J. Geo-Inf. 2024, 13, 283 16 of 22

6. Conclusions

In order to better control a running disease, it is important to understand how it
propagates. Individuals and the disease transmission between them or (groups of them)
can be represented as a network. Such a network can be constructed to provide important
information on the epidemiological dynamics. Looking into the network structure and
possible disease transmission paths may help with disease management and control. Here,
we proposed building a city transmission network to simulate the spread of a disease. The
constructed network supports comparing the impact of cities on disease transmission using
quantitative methods.

For each source of infection, we investigated the epidemiological and structural im-
pacts, as well as superspreaders. Our analysis suggests that identifying superspreader
cities is crucial in the early stages of an epidemic, more so than community-level disease
transmission. This is because the effects of infections in these cities are not confined to local
boundaries but can extend across regional borders, impacting neighboring areas. We show
the example of COVID-19 in Saudi Arabia. In this example, there is evidence that Arriyad
and Makkah played a larger influence in the spread of disease than the city of Alqatif.

The proposed method for investigating superspreading events and disease transmis-
sion dynamics can be applied in different regions by considering region-specific factors,
human mobility patterns, and transmission dynamics. The methodology’s adaptability
and effectiveness in estimating superspreading environments make it a valuable tool
for studying disease transmission dynamics across various geographical settings. More-
over, the model can be applied in real time to offer insights into the role of cities in
disease transmission.

The proposed method has a few challenges and limitations. First, the available epi-
demiological data of each infected individual usually lack complete contact history. The
exact exposure history (including domestic travel history) of each individual is important
for accurate network construction. Second, while it is often straightforward to identify
individuals’ international travel history, tracking their domestic travel can be more chal-
lenging. Third, the between-city distance was the only criterion used to decide disease
transmission from one city to another. A probabilistic model that considers other criteria
(human mobility, city population, etc.) would have provided more realistic results.
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Appendix A

Table A1. COVID-19 city infection history file with the following sections: cities, their regions, date
and frequency of first reported case, and first tested case in each city, respectively.

Reported Tested
City Region Date Freq Date Freq

1 Alahsa Eastern Region 14 March 2020 1 11 March 2020 2

2 Alaflaj Ar-Riyad 6 May 2020 1

3 Alasyah Al-Qaseem 23 May 2020 1

4 Albaha Al-Baha 20 March 2020 1 20 March 2020 1

5 Albadai Al-Qaseem 31 March 2020 1

6 Albukayriyah Al-Qaseem 18 April 2020 1

7 Alhariq Ar-Riyad 23 May 2020 1

8 Addiriyah Ar-Riyad 4 April 2020 1

9 Addammam Eastern Region 15 March 2020 1 3 March 2020 1

10 Adduwadimi Ar-Riyad 30 March 2020 1 28 March 2020 1

11 Alaridah Jazan 26 April 2020 14

12 Alaqiq Al-Baha 23 April 2020 1

13 Alghat Ar-Riyad 22 June 2020 2

14 Alghazalah Hail 6 May 2020 1

15 Abha Aseer 24 March 2020 6 19 March 2020 2

16 Abu Arish Jazan 26 April 2020 10

17 Ahad
almusarihah

Jazan 26 May 2020 1

18 Ahad
Rifaydah Aseer 2 April 2020 1

19 Afif Ar-Riyad 26 April 2020 2

20 Addair Jazan 7 May 2020 1

21 Alharth Jazan 1 June 2020 1

22 Alhinakiyah Al-Madinah
Al-Monawarah

1 April 2020 1

23 Alidabi Jazan 4 May 2020 1

24 Aljubayl Eastern Region 25 March 2020 1 21 March 2020 1

25 Aljumum Makkah
Al-Mokarramah

21 May 2020 3

26 Alkamil Makkah
Al-Mokarramah

6 May 2020 1

27 Alkhafji Eastern Region 26 March 2020 1

28 Alkharj Ar-Riyad 9 April 2020 2 6 April 2020 1

29 Alkharkhir Najran 22 June 2020 4

30 Alkhubar Eastern Region 22 March 2020 4 11 March 2020 1

31 Alkhurmah Makkah
Al-Mokarramah

23 April 2020 1

32 Allith Makkah
Al-Mokarramah

16 April 2020 2
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Table A1. Cont.

Reported Tested
City Region Date Freq Date Freq

33 Almadinah
almunawwarah

Al-Madinah
Al-Monawarah

20 March 2020 1 19 March 2020 2

34 Almahd Al-Madinah
Al-Monawarah

24 April 2020 3

35 Almajardah Aseer 26 April 2020 1

36 Almajmaah Ar-Riyad 4 April 2020 1

37 Almandaq Al-Baha 23 April 2020 1

38 Almidhnab Al-Qaseem 22 April 2020 1

39 Almukhwah Al-Baha 21 April 2020 3

40 Almuzahimiyah Ar-Riyad 24 April 2020 1

41 Alnuayriyah Eastern Region 21 March 2020 1

42 Alqari Al-Baha 21 May 2020 1

43 Alqatif Eastern Region 2 March 2020 1 19 March 2020 1

44 AlDarb Jazan 2 May 2020 1

45 Alqunfidhah Makkah
Al-Mokarramah

23 March 2020 1 20 March 2020 1

46 Alqurayyat Al-Jouf 16 April 2020 2

47 Alquwayiyah Ar-Riyad 10 April 2020 2

48 Altaif Makkah
Al-Mokarramah

23 March 2020 6 19 March 2020 1

49 Alula Al-Madinah
Al-Monawarah

7 April 2020 1

50 Alwajh Tabouk 6 April 2020 1

51 Annabhaniyah Al-Qaseem 11 June 2020 1

52 Annamas Aseer 22 May 2020 1 19 March 2020 2

53 Arar Northern Borders 25 March 2020 2 22 March 2020 2

54 Arrass Al-Qaseem 30 March 2020 1 26 March 2020 1

55 Arrayth Jazan 10 June 2020 1

56 Arriyad Ar-Riyad 9 March 2020 1 7 March 2020 1

57 Ashshimasiyah Al-Qaseem 22 June 2020 11

58 Asshinan Hail 20 June 2020 1

59 Assulayyil Ar-Riyad 13 May 2020 1

60 Azzulfi Ar-Riyad 15 April 2020 1

61 Badr Al-Madinah
Al-Monawarah

23 June 2020 1

62 Badr aljanub Najran 11 June 2020 1

63 Balqarn Aseer 17 May 2020 7

64 Baqa Hail 22 May 2020 1

65 Baysh Jazan 19 April 2020 1

66 Biljurashi Al-Baha 24 April 2020 1
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Table A1. Cont.

Reported Tested
City Region Date Freq Date Freq

67 Bishah Aseer 20 March 2020 1

68 Buqayq Eastern Region 24 April 2020 3

69 Buraydah Al-Qaseem 26 March 2020 1 22 March 2020 1

70 Damad Jazan 27 May 2020 1

71 Dawamat
aljandal

Al-Jouf 27 April 2020 1

72 Duba Tabouk 3 April 2020 1 18 March 2020 1

73 Duruma Ar-Riyad 4 May 2020 1

74 Farasan Jazan 10 June 2020 2

75 Hafar albatin Eastern Region 20 March 2020 1 18 March 2020 1

76 Hail Hail 14 April 2020 1 12 April 2020 1

77 Haqil Tabouk 16 May 2020 1

78 Hawtat Bani
Tamim

Ar-Riyad 4 May 2020 1

79 Hubuna Najran 3 June 2020 1

80 Huraymila Ar-Riyad 12 May 2020 1

81 Jazan Jazan 16 March 2020 1 14 March 2020 1

82 Jeddah Makkah
Al-Mokarramah

11 March 2020 1 8 March 2020 2

83 Khamis
Mushayt Aseer 28 March 2020 3

84 Khaybar Al-Madinah
Al-Monawarah

4 May 2020 1

85 Khubash Najran 22 May 2020 1

86 Khulays Makkah
Al-Mokarramah

10 April 2020 1

87 Makkah
almukarramah

Makkah
Al-Mokarramah

10 March 2020 1 9 March 2020 4

88 Marat Ar-Riyad 15 May 2020 1

89 Muhayil Aseer 19 March 2020 1 17 March 2020 1

90 Najran Najran 23 March 2020 1 18 March 2020 1

91 Qaryah alulya Eastern Region 20 May 2020 1

92 Qilwah Al-Baha 11 May 2020 1

93 Rabigh Makkah
Al-Mokarramah

19 April 2020 2

94 Rafha Northern Borders 24 April 2020 1

95 Ranyah Makkah
Al-Mokarramah

28 May 2020 1

96 Ras Tannurah Eastern Region 29 March 2020 1

97 Rijal Alma Aseer 16 April 2020 3

98 Riyadh
alkhabra Al-Qaseem 9 April 2020 1 6 April 2020 1

99 Rumah Ar-Riyad 16 May 2020 1
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Table A1. Cont.

Reported Tested
City Region Date Freq Date Freq

100 Sabya Jazan 12 April 2020 2

101 Sakaka Al-Jouf 24 April 2020 5

102 Samtah Jazan 30 March 2020 1

103 Sarat Abidah Aseer 9 May 2020 1

104 Shaqra Ar-Riyad 12 May 2020 1

105 Sharurah Najran 7 April 2020 4

106 Tabuk Tabouk 29 March 2020 1 1 April 2020 2

107 Tathlith Aseer 8 May 2020 1

108 Tayma Tabouk 15 May 2020 1

109 Thadiq Ar-Riyad 8 May 2020 1

110 Thar Najran 25 May 2020 6

111 Turayf Northern Borders 12 May 2020 18

112 Turubah Makkah
Al-Mokarramah

25 April 2020 1

113 Umluj Tabouk 30 April 2020 1

114 Unayzah Al-Qaseem 9 April 2020 2

115 Uyun aljiwa Al-Qaseem 21 May 2020 5

116 Wadi
addawasir Ar-Riyad 26 April 2020 2

117 Yadamah Najran 1 June 2020 1

118 Yanbu albahr Al-Madinah
Al-Monawarah 8 April 2020 1

119 Zahran
aljanub Aseer 21 May 2020 2
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