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Abstract: The division of urban functional zones is crucial for understanding urban characteristics and
aiding in urban management and planning. Traditional methods, like dividing based on blocks and
grids, are insufficient for modern demands. To address this, a knowledge-graph-supported method
for building functional category division is proposed. Firstly, the associations between points of
interest (POI) and buildings are established using triangulation and buffer zones. Then, a knowledge
graph of buildings is constructed through entity and relationship extraction. A functional category
classification model supported by the Z-score is designed using the semantic characterizations of
surrounding POIs for inference rules. The results demonstrate high accuracy in building functional
category division, supporting the refinement and intelligent expression of urban functional zones for
urban construction, planning, and management.

Keywords: building functional classification; points of interest; building; urban functional zone;
knowledge graph

1. Introduction

Urban functional zones serve as crucial spatial components for fulfilling various
economic functions within cities. Different types of functional zones contribute to the
formation of distinct urban spaces [1,2]. Accurate classification of these zones provides
essential data support for urban management, planning, land policy formulation, and
residents’ daily lives [3–5]. Research on urban functional zone classification primarily
focuses on utilizing diverse datasets including POI data, trajectory data, and hyperspectral
remote sensing imagery to classify spatial boundaries and identify zones with similar urban
characteristics or functions in order to effectively describe urban morphologies [6–10].
Among these approaches, POI data have received increasing attention due to their rich
semantic features, low acquisition cost, high timeliness, and high presentationality [10–14].

Numerous studies have been conducted by scholars to explore the effective utilization
of POI data for delineating and understanding urban functional zones, yielding notable
results. For instance, Deng et al. [10] employed grids as classification units and functional
categories to analyze urban traffic patterns. Meanwhile, Deng et al. [12] established urban
functional zones by calculating the proportion of POI categories within each grid. Similarly,
Chen et al. [13] identified neighborhood functional categories using POI data, facilitating
the evaluation of urban planning and design effectiveness. Additionally, Du et al. [14]
correlated POI data with zones delineated by the road network, enabling the classification
of functional categories and further investigation into the driving factors behind urban
heat island phenomena. A comprehensive analysis of the aforementioned literature reveals
that many existing methods for delineating urban functional zones rely on dividing the
study area into grids or blocks as basic spatial units. These methods then generalized the
functional attributes of POIs within these units to generate functional zones. However,
utilizing grids or neighborhoods as basic spatial units may pose challenges such as inaccu-
rate classification of functional categories due to the large spatial extent of these units and
limited correlation with POI data.
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Functional zone classification based on traditional spatial units is no longer sufficient
to meet the current demand for refined and intelligent urban construction, management,
and planning [15,16]. The increasingly complex and diversified internal structures of
cities are driving the demand for more refined spatial units, as seen in current smart city
and real-life three-dimensional construction scenarios. Buildings are crucial for people’s
production, life, and urban economic development [15]. Building data, serving as the
fundamental spatial cognitive objects in urban morphology and structure, play a crucial
role in numerous practical applications, including urban planning, land use analysis,
population estimation, etc. [17]. POI data, which are closely tied to buildings, exhibit a
strong spatial correlation with building data. Utilizing POI data enriched with semantic
features to classify the functional categories of building spatial units contributes to a
more refined and precise expression of urban functional zones, enhancing the granularity
perceived within a city [9,16]. However, achieving this refined expression often necessitates
efficient processing of vast amounts of building and POI data. Automating or even imbuing
intelligence into the task of classifying building functional categories is pivotal to enhancing
the capability for fine-grained urban functional zone delineation.

Knowledge engineering offers a novel solution for efficiently processing large datasets,
advancing data processing from automation to intelligence. The knowledge graph, a sig-
nificant outcome of knowledge engineering since its inception by Google in 2012 [18,19],
has revolutionized critical fields such as intelligent searches, Q&A, and recommendations.
It functions as a semantic network and knowledge base with a directed graph structure
that explicates entities (concepts) and their relations in the physical world through ternary
<Entity, Relation, Entity> [18] representations, thereby empowering computers with ex-
plainable, comprehensible, and rational intelligence [20]. In recent years, scholars have
increasingly applied knowledge graphs in geoscience, particularly in geographic informa-
tion retrieval [21,22], spatio–temporal information mining [23], epidemic prevention, and
disaster management [24,25]. However, effectively applying knowledge graphs to classify
building functional categories remains an area ripe for further exploration, promising to
enhance the refinement and intelligent expression of urban functional zones. Leveraging
the advantages of a comprehensive knowledge graph based on POI data and building
data with rich semantic characterizations enables the establishment of a POI semantic
characterization knowledge graph. This knowledge graph can classify building space units
into functional categories, enhancing the refinement and intelligent of urban functional
zone expressions and improving the perceived granularity of cities [9,16].

Therefore, to achieve a more refined and intelligent expression of urban functional
zones, we propose a method supported by a POI semantic characterization knowledge
graph for classifying the functional categories of buildings. The approach involves de-
signing a Delaunay triangular network combined with buffer zones to match buildings
with POIs. Subsequently, entity extraction and relation establishment are used to construct
a knowledge graph. Furthermore, a Z-score-supported functional category delineation
model is developed to enhance the rationality of the functional category delineation results.
Combined with the functional category classification model, a building functional category
reasoning method is designed to effectively reason about building functional categories. Fi-
nally, the effectiveness of this method is validated through experiments, aiming to advance
the refinement and intelligent division of urban functional zones and elevate the service
level of urban management and planning.

2. Methodology

We propose a POI semantic characterization knowledge-graph-supported method for
classifying the functional categories of buildings. The method takes buildings as the main
spatial unit for constructing the building knowledge graph and achieves the reasoning of
building functional categories by designing category reasoning rules. Figure 1 illustrates
the main flow of the method. Initially, a Delaunay triangular network combined with
buffers is employed to match buildings and POIs. Subsequently, entity extraction and
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relation extraction operations are conducted to construct the necessary knowledge graph. A
functional category classification model with Z-score support is then developed. Combined
with the Z-score functional classification model, the building functional category reasoning
rules are designed for the two cases of matched and unmatched POIs, respectively, so as to
realize the effective reasoning of building functional categories.

Figure 1. Main process for automatic classification of building functional categories supported by
POI semantic characterization knowledge graph.

2.1. Building and POI Matching

Due to the crowdsourcing nature of POI production, ensuring the quality of POI
data can be challenging. Common issues include location offsets, missing data, and non-
standardized attributes. Additionally, the spatial distribution of POIs is often uneven, with
zones like large shopping malls having a higher concentration of POIs, while larger indus-
trial parks, neighborhoods, and campuses may have sparser distributions. These factors
often result in the absence of POI distributions inside many buildings or the displacement
of the original POIs from the inside to the outside of buildings, as depicted in Figure 2.

To facilitate the classification of building functional categories, it is crucial to effec-
tively correlate POIs with buildings. Determining the influence zone of buildings is a key
prerequisite for this association. Existing methods often rely on Delaunay triangulation
networks or buffer zones to determine the influence zone of buildings [26]. The Delaunay-
based method effectively dissects the space where buildings are situated while considering
their topological relations (Figure 3a). However, it overlooks the influence of distances,
potentially resulting in POIs that are located farther away from buildings being erroneously
classified within the influence zone. On the other hand, the buffer-based method takes into
account the influence of distance on the building, but it does not consider the topological
relation of the building when constructing the influence zone (Figure 3b). Consequently, we
propose a hybrid approach that combines Delaunay triangular networks and buffer zones
to establish the association between buildings and POIs. The main process is as follows:

Step 1. We construct a Delaunay triangular network of the building and extract skele-
ton lines to form a Voronoi surface based on the Delaunay triangular network
(Figure 3a).
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Step 2. We create a buffer zone around the building based on a distance threshold
dis_thresh (determined by analyzing building spacing in Shanghai and consult-
ing the relevant literature [15,27,28], typically set to 10 m). The result is depicted
in Figure 3b.

Step 3. We intersect the Voronoi polygon obtained from Step 1 and the buffer zone
obtained from Step 2 with the building to determine the influence zone of the
building, as shown in Figure 3c.

Step 4. We utilize the influence zone obtained from Step 3 to spatially categorize POIs
(Figure 3d), thereby establishing the relation between POIs and buildings, as
illustrated in Figure 3e.

Figure 2. Spatial distribution of POI data.

Figure 3. The process of establishing the relations between POIs and buildings.

2.2. Building Knowledge Graph Construction

Buildings, as a typical geographic element, should be constructed with careful consid-
eration of their proximity relations and geographic attributes when integrating them into a
knowledge graph. Therefore, when developing a POI semantic characterization knowledge
graph, it is essential to accurately define and express the attributes of entities and relations.
Simultaneously, it is crucial to define and express the attributes of entities and relations
effectively. We designed a knowledge graph structure, as illustrated in Figure 4, which
encapsulates various relations. These include proximity relations between buildings (e.g.,
<B1, has_proximity, B2>), containment relations between buildings and points of interest
(POIs) (e.g., <B2, has_poi, P1>), relations between building entities and categories (e.g., <B2,
has_category, C1>), attribute information contained in entities and relations, etc.
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Figure 4. Structural design of POI semantic characterization knowledge graph.

2.2.1. Proximity Relation

Proximity relations serve as a crucial foundation for the construction and application
of geographic knowledge graphs [29–31]. It is essential to choose an appropriate method
for constructing proximity relations when building knowledge graphs. Thanks to its robust
ability to detect proximity relations, the Delaunay triangular network is frequently utilized
in detecting building proximities [26,32]. For this purpose, the Delaunay triangular network
is employed to establish building proximity relations, as depicted in Figure 5. The Delaunay
triangular network of building nodes is constructed, and then the building proximity graph
G = {V, E} is formed by determining the presence of shared triangles between buildings.
V = {vi}n

i=1 represents the set of building nodes, where v1 indicates the set of proximity
relations between nodes, with e(v1, v2) denoting that buildings B1 and B2 are in proximity
to each other (i.e., there exists a proximity relation P(B1, B2)) or P(B2, B1)).

Figure 5. The construction of building proximity relations.

2.2.2. Entity Properties

For the construction of building entities, POI entities, and functional category entities,
their respective attributes are documented in Table 1. Geometric information for these
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entities is stored in well-known text (WKT) format, exemplified by POINT(13535970.6954
3668878.2461), representing a specific point in the spatial reference. The spatial reference
system conforms to the geographic coordinate system and projection standards established
by the European Petroleum Survey Group (EPSG), such as EPSG:3587, indicating the
widely utilized Web Mercator projection. This projection, renowned for its isometric
cylindrical format, is prevalent in online map services and web map applications. The
“functional_category” attribute for POI entities is typically classified into categories like
“public”, “commercial”, and “residential”.

Table 1. Properties of the entities.

Entity Property Description

building bid Records the unique identification of the building entity, e.g., B1.

crs Records the spatial reference of the current entity, e.g.,
EPSG:3857.

Include_poi Records whether the POI is included in the building’s sphere of
influence, e.g., True.

geometry
Records the geometric information of the current building,
e.g., POLYGON ((13535970.6954 3668878.2461,..., 13535918.1390
3668878.2516, 13535970.6954 3668878.2461)).

poi pid Records the unique identifier of the POI entity, e.g., P1.
name Records the name of the POI entity, e.g., Lafont Hotel.

geometry Records the geometry information of the POI entity, e.g.,
POINT(13535975.6844 3668879.1255)).

functional_category Records building functional class information, e.g., commercial.

category cid Records the unique identifier of the functional category entity,
e.g., C1.

public_number Records the number of public category POIs contained in the
building, e.g., 3.

commercial_number Records the number of commercial category POIs contained in
the building, e.g., 2.

residential_number Records the number of residential category POIs contained in
the building, e.g., 4.

2.2.3. Relation Property

The proximity relation between building entities, serving as the primary relation, and
its associated attributes are depicted in Table 2. For buildings B1 and B2 with a proximity
relation, the minimum distance from all vertices on B1 to B2, denoted as minDis1, and
the minimum distance from all vertices on B2 to B1, denoted as minDis2, are calculated
to determine the shortest distance min(minDis1, minDis2) as detailed in [33], which is
documented in the field “min_distance”. The “is_intersect” field is utilized to indicate
whether B1 and B2 intersect: “True” is recorded if they intersect; otherwise, “False” is
recorded.

Table 2. Properties of the proximity relation.

Relation Property Description

has_proximity rid Records the unique identification of the proximity relation, e.g.,
R1.

min_distance Records the shortest distance between buildings, e.g., 12.32.
is_intersect Records whether buildings intersect with each other, e.g., True.

2.3. Building Functional Classification Model

A POI, as a type of geographic entity, expresses the name, functional category, spatial
location, and other attributes of the geographic entity. Analyzing the category ratios (CRs)
of various POI functional categories within a building’s sphere of influence enables the
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determination of the building’s functional category; the CRs are calculated as shown in
Equation (1).

CRi =
ni
N
(i = 1, 2, 3, ..., n) (1)

where CRi denotes the percentage of the number of POIs in category i, ni denotes the
number of POIs in category i, and N denotes the total number of POIs within the building’s
sphere of influence.

After calculating the percentage for each functional category of the POI, the classifi-
cation of the building’s functional category is conducted. The common method involves
using 0.5 as the threshold for categorization. If a category has a CRi greater than 0.5, then
this is considered the building’s functional category; if all CRi values are less than 0.5, the
building is recognized as having mixed functionality. While this method accurately divides
functional categories in most cases, it sometimes yields unreasonable results. For example,
when the type proportions are CR1 = 0.51, CR2 = 0.48, CR3 = 0.01, using the 0.5 threshold
would incorrectly categorize the building as belonging to the first category. However,
considering the overall CRi values, it is more reasonable to classify the building as having
a mixed functional category consisting of categories 1 and 2. Therefore, we designed a
building functional category classification model based on the Z-score [34,35]. The main
classification process is as follows:

Step 1. Calculate the mean E and standard deviation S of each category share CRi.
Step 2. Calculate the Z-score value Zi(i = 1, 2, 3, ..., n) for each category share CRi.
Step 3. Obtain the maximum value Zmax in Zi(i = 1, 2, 3, ..., n) and record the functional

category Cmax corresponding to Zmax. Further determine the functional category
of the building by comparing the magnitude of Zmax and 1.

Step 4. If Zmax ≥ 1, then determine the building functional category as Cmax.
Step 5. If Zmax < 1, then determine the building functional category as mixed type.

Identify the functional functional categories that satisfy the condition CRi ≥ E
and classify the building as a mixed functional zone composed of these categories.

The Z-score is a method used for detecting outliers in a one-dimensional or low-
dimensional space. It evaluates the distance between a sample point and the overall mean.
The main application of the Z-score is to measure how many standard deviations the
original data differs from the overall mean, as calculated in Equation (2). When applied to
the problem of classifying the functional categories of buildings, the percentage for CRi
for the corresponding functional category of a single functional category building should
be higher than the percentages of other functional categories. Otherwise, the building is
classified as a mixed functional category. Since ∑n

i=1 CRi = 1 takes the value in the range of
[0,2), taking Zi = 1 as the condition can effectively identify the functional category of the
building.

Zi =
CRi − E

S
(i = 1, 2, 3, ..., n) (2)

2.4. Rule-Based Reasoning for Functional Classes of Buildings

Mining valuable hidden knowledge from large-scale data relies on the support of
reasoning techniques [36], and Neo4j, as a knowledge graph storage, management, and
reasoning tool [37–39], is often used for geographic knowledge graph storage and reason-
ing [40–42]. Based on the Cypher query language provided in Neo4j, users can achieve
efficient queries with customized rules [37]. Matching buildings with POIs based on the
method described in Section 2.1 results in two scenarios: buildings with POI matches or
buildings with no POI matches. The buildings in these two cases are analyzed separately,
and the corresponding reasoning rule design is developed to realize the recognition of the
functional categories of the buildings.
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2.4.1. Category Reasoning for Buildings with Matched POIs

The reasoning for building categories with matched POIs mainly consists of the
following process (Figure 6):

Step 1. The building entities are reasoned to obtain the buildings that include POIs
in the influence zone. For example, the building entity B1 with the attribute
“include_poi” set to “True” is reasoned to obtain the buildings in the influence
zone that include POIs.

Step 2. Based on the building entity B1 obtained in Step (1), further reasoning is performed
to obtain the category entity “category entity” C1 that has a “has_category” relation
with the building entity.

Step 3. The maximum value Zmax in Zi(i = 1, 2, 3, ..., n) is obtained, and the functional
category Cmax corresponding to Zmax is recorded. The functional category of
the building is further determined by comparing the magnitude of Zmax to 1.

Step 4. Reasoning is done on the category entity C1 obtained from Step (2) to obtain
the attribute values Zmax in Zi(i = 1, 2, 3, ..., n) for the fields “public_number”,
“commercial_number”, “residential_number” in the entity, and the category array
{num1, num2, num3} is constructed.

Step 5. The obtained building category array is subjected to category prediction using
the method from Section 2.3 to obtain the functional category of building B1.

Figure 6. Category reasoning process for buildings with unmatched POIs: “pub-com” denotes a
mixed function category containing “public” and “commercial”; “pub-res” denotes a mixed function
category containing “public” and “residential”; “com-res” indicates a mixed function category
containing “commercial” and “residential”; “pub-com-res” indicates a mixed function category
containing “public”, “commercial”, and “residential”.

2.4.2. Category Reasoning for Buildings with Unmatched POIs

The reasoning for building categories with unmatched POIs mainly consists of the
following process (Figure 7):

Step 1. The building entities are reasoned to obtain the buildings that include POIs in the
influence zone. For example, building entity B with the attribute “include_poi”
set to “False” is reasoned to obtain the buildings in the influence zone that
include POIs.

Step 2. Proximity building reasoning is performed on building B, and the proximity
building group {B1, B2, . . . , Bn} that has a “has_proximity” relation with B and
the attribute “include_poi” set to “True” is obtained. The proximity buildings
{B1, B2, . . . , Bn} with a “has_proximity” relation with B and the attribute “in-
clude_poi” set to “True” are identified.

Step 3. Based on the building group {B1, B2, . . . , Bn} obtained in Step (2), category
inference of building entities is performed to obtain the corresponding category
entity group {C1, C2, . . . , Cn}.

Step 4. For the category entity group {C1, C2, . . . , Cn} in Step (3), reasoning is performed
to obtain the attribute values num1i, num2i, and num3i of the entities with the field
names “public_number”, “commercial_number”, and “residential_number”,
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respectively, and the corresponding category array {{num1, num2, num3}}(n =
1, 2, . . . , n) is constructed.

Step 5. The elements in the category array in Step (4) are summed to get a new category
array {∑n

i=1 num1i, ∑n
i=1 num2i, ∑n

i=1 num3i}.
Step 6. Category reasoning is performed on the obtained building category array using

the method in Section 2.3 to obtain the functional category of building B.

Figure 7. Category reasoning process for buildings with unmatched POIs: “pub-com” denotes a
mixed function category containing “public” and “commercial”; “pub-res” denotes a mixed function
category containing “public” and “residential”; “com-res” indicates a mixed function category
containing “commercial” and “residential”; “pub-com-res” indicates a mixed function category
containing “public”, “commercial”, and “residential”; “no class” denotes not categorized.

3. Experiments and Results
3.1. Study Area and Data

The study area covers a 6 km × 6 km zone within the main city of Shanghai, China,
as shown in Figure 8a. As a professional digital map provider in China, Amap (https:
//ditu.amap.com/) has spatial data services at multiple scales and is also an important
data source for carrying out related scientific research activities. POI data and building
data on Amap were collected, and 47,291 POI data (Figure 8c) and 14,281 building data
(Figure 8d) were obtained, with the data acquisition time being April 2024.

POI data mainly include information such as ID, name, type, address, latitude, and
longitude. As the original POI data were more complex, there were some POIs with lower
cognition, which affected the inference effect for building functional categories to a certain
extent. Therefore, it was necessary to remove some points with low cognition, such as
convenience stores, public restrooms, ATMs, bus stops, etc., from the original data with
reference to Du et al. [14] and Cao et al. [17]. And the remaining POI points were reclassified
with reference to the “Code for classification of urban and rural land use and planning
standards of development land (GB50137)”. We classified POI data into three categories:
public, commercial, and residential. After reclassifying POIs, a total of 43,726 POI data
points were obtained (Table 3), and the spatial distribution is shown in Figure 9.

Table 3. POI reclassification results.

Building Categories POI Categories Number

public hospitals, schools, museums, libraries, research units, etc. 3543

commercial companies, industrial parks, shopping malls, hotels, inns,
shopping centers, etc. 36,916

residential residential areas, villa areas, dormitories, commercial and
residential buildings, etc. 2780

https://ditu.amap.com/
https://ditu.amap.com/
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Figure 8. Study area and data. (a) Location of the study area. (b) Details of the study area. (c) Distri-
bution of POIs in the study area. (d) Distribution of buildings in the study area.

Figure 9. Spatial distribution of POI reclassification results.
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3.2. Experimental Setting

In this study, the Python language was used for processing building data and extract-
ing relations, Neo4j was used for storing knowledge graphs, and the Cypher language in
Neo4j was used for knowledge reasoning. The experimental equipment used included a
Gold 6226R CPU, 126 GB of memory, and the Windows 10 (64-bit) operating system.

3.3. Results of Knowledge Graph Construction

The main process of POI semantic characterization knowledge graph construction
proceeded as follows: Firstly, the method outlined in Section 2.1 was employed to match
buildings and POIs, establishing the “has_poi” relations between building and POI entities.
Next, POI entities linked via the “has_poi” relations with building entities were catego-
rized and tallied. Subsequently, POI entities categorized as “public”, “commercial”, or
“residential” were used to construct category entities that were linked by “has_category”
relations with buildings. A Delaunay triangulation network was utilized to detect building
proximities and establish the “has_proximity” relation between building entities. Finally,
Neo4j was utilized to store the acquired entities and relations, as depicted in Figure 10,
showcasing part of the knowledge graph construction results. The scale of the specific
knowledge graph is outlined in Table 4, revealing 14,281 building entities and 8242 category
entities and indicating extensive associations between building and POI entities.

Figure 10. Partial POI semantic characterization knowledge graph construction results.

Table 4. Scale of POI semantic characterization knowledge graph.

Type Name Number

Entity building 14,281
POI 32,364
category 8242

Relation has_poi 32,364
has_category 8242
has_proximity 42,460

3.4. Knowledge-Graph-Based Functional Category Reasoning for Buildings

Based on the constructed POI semantic characterization knowledge graph, build-
ing functional category reasoning was carried out according to the method described in
Section 2.4, and the functional category reasoning results of the matched POI buildings
(Figure 11a) and the functional category reasoning results of the unmatched buildings
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(Figure 11b) were obtained. The reasoning results in both cases were superimposed to
obtain the final functional category reasoning result of the buildings, as shown in Figure 11c.
Analyzing the inference results, it is observed that: (1) Most of the functional categories
of the buildings in the region are commercial categories, which is mainly related to the
prosperous economy of Shanghai shaping the commercial space distribution pattern in the
region. (2) By reasoning the functional categories of the buildings matching POIs, most of
the functional categories of the buildings in the region could be obtained, and on this basis,
combined with the results of the reasoning of the functional categories of the buildings with
unmatched POIs, the recognition rate of the functional categories of the buildings could
be effectively improved. (3) Buildings near roads were almost always recognized; this is
mainly related to the feature that POIs are mostly collected from and distributed along
roads, resulting in a higher density of POIs near roads and fewer cases of unrecognized
buildings.

(a) (b)

(c)

Figure 11. Building functional category reasoning results. (a) Category reasoning results for buildings
with matched POIs. (b) Category reasoning results for buildings with unmatched POIs. (c) Category
reasoning results overall for all buildings.

The recognition rate is crucial for functional classifications of buildings. Without
a sufficient recognition rate, achieving high accuracy in classifying buildings into their
correct functional categories becomes meaningless [17]. The recognition rate is calculated
according to Equation (3). By counting buildings categorized as “public”, “commercial”,
and “residential”, we obtained the following results, which are summarized in Table 5.
The statistical results presented in Table 5 provide insights into the recognition rates of
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building functional categories under different reasoning scenarios. Here is a breakdown
of the findings: (1) When considering only buildings that matched POIs, the recognition
rate of building functional categories was 57.71%. (2) However, when the reasoning results
of both matched and unmatched buildings were combined, the final recognition rate of
building functional categories increased significantly to 94.94%. These results indicate that
the reasoning method employed in this study demonstrates a high recognition rate for
determining the functional categories of buildings. Moreover, its adaptability is highlighted
by its ability to effectively handle buildings with low densities or missing POIs.

RR =
I
N

× 100% (3)

where RR denotes the recognition rate; I denotes the number of buildings identified; N
denotes the total number of buildings.

Table 5. Scale of knowledge graph.

Functional Category Buildings with Matched POIs Buildings with Unmatched POIs Overall Buildings

public 516 287 803
commercial 6294 3954 10,248
residential 676 449 1125
pub-com 305 206 511
pub-res 53 54 107
com-res 358 303 661
pub-com-res 40 63 103
no class 6039 9965 723

3.5. Validation of Building Category Reasoning Results

To assess the accuracy of reasoning the functional categories of buildings, the results
obtained from the method described in this study were compared and analyzed against
Amap online map information. The comparative results for several typical buildings are
presented in Table 6.

In Table 6, for zone A, the Amap displays “No.9 People’s Hospital Fever Outpatient”,
which is categorized as a medical public service: consistent with the inference result
of “public”. For zones C1 and C2, the online map indicates shopping, aligning with
the inference result of “commercial” for the building functional category in these zones.
Similarly, for zone E, the online map identifies it as a residential zone, corresponding to the
reasoning result of “residential” for the building’s functional category in that zone. These
validation results demonstrate that the building functional category reasoning method
outlined can accurately recognize the functional categories of buildings.

3.6. Comparison and Analysis

To further validate the superiority of our method, the traditional frequency density
method (referred to as Method 1) and the inverse-distance-weighted frequency density
method (referred to as Method 2) proposed by Cao et al. [17] were selected for a comparative
analysis. The results from utilizing these two methods for reasoning about building
functional categories are depicted in Figure 12. By comparing Figure 12a with Figure 12b
and Figure 11c, respectively, it is evident that the number of unrecognized buildings in the
inference results of building functional categories obtained by Method 1 is significantly
higher than for Method 2 and our method, indicating that the recognition rate of Method 1
for building functional categories is lower.
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Table 6. Verification of building functional category reasoning results.

Functional Category Amap Reasoning Result

public (green)

commercial (red)

residential (blue)

Statistics on the reasoning results of the functional categories of the buildings that
were obtained by the three ways are shown in Table 7. Among the reasoning results of the
three methods, the commercial type accounted for the largest proportion, indicating that
the commercial development of the study area selected is better and dominant. However,
the three methods also showed different degrees of unclassified phenomena, in which
the number of unclassified buildings in Method 1 is the largest, accounting for 62.98%,
and the number of unclassified buildings in Method 2 is smaller, accounting for 0.02%.
Further analysis revealed that Method 1 only considered POIs falling inside the building
for the classification of building functional categories, so it led to a lower recognition rate
of building functional categories, while Method 2, on the basis of improving Method 1,
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took POIs within 100 m of the building as the basis for reasoning about the functional
categories of the buildings with missing POIs, which led to a higher recognition rate of
functional categories. The building functional category recognition rate of Method 2 was
99.80%, which was 4.86% higher compared to our method, but further comparison was
needed to see how correct the reasoning results were.

(a) (b)

Figure 12. Functional category reasoning results for buildings using two different methods. (a) Func-
tional category reasoning results for buildings based on Method 1. (b) Functional category reasoning
results for buildings based on Method 2.

Table 7. Functional category reasoning for buildings using three different methods.

Functional Category Method 1 Method 2 Our Method

public 351 579 803
commercial 4245 11,640 10,248
residential 342 701 1125
pub-com 178 535 511
pub-res 17 60 107
com-res 142 725 661
pub-com-res 12 12 103
no class 8994 29 723

To further compare the correctness rate of Method 2 and our method in terms of
functional category classification results (the correctness rate was calculated as shown in
Equation (4)), the following process was used to carry out the comparison test: Firstly,
1000 randomly selected buildings were labeled according to the four categories of “public”,
“commercial”, “residential”, or “mixed”, and the labeling results are shown in Figure 13.
Secondly, the reasoning results of Method 2 and our method were compared with the
labeled building dataset, and the confusion matrix was calculated (Figure 14).

RCR =
RT
RN

× 100% (4)

where RCR denotes the rate of correct recognition results, RT denotes the number of correct
ones in the recognition results, and RN denotes the number of recognition results.
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Figure 13. Randomly selected building labeling results.

From the confusion matrix (Figure 14), it was observed that the number of commercial-
type buildings was higher in the prediction results, which is consistent with the commercial-
oriented building functional categories in the area. Further calculations based on the
confusion matrix were conducted to determine the accuracy in categorizing building
functional categories using the two methods, as shown in Table 8. Both methods exhibited a
high correctness rate for inferring building functional categories, indicating their suitability
for classifying the functional categories of buildings. However, compared to Method 2, the
correctness rate of our method was higher for the reasoning for each functional type, with
the overall correctness rate also being 9% higher than that of Method 2. This demonstrates
that our method achieved a high correctness rate when reasoning about building functional
categories and can be applied to the automatic reasoning and delineation of functional
categories of large-scale buildings.

(a) (b)

Figure 14. Calculation of confusion matrices of two methods. (a) Confusion matrix of Method 2.
(b) Confusion matrix of our method.

Table 8. Correctness of reasoning for two methods.

Functional Category Method 2 Our Method

public 53.62% 85.51%
commercial 95.38% 95.90%
residential 45.59% 92.65%
mixed 26.51% 65.06%
total 83.40% 92.40%
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4. Discussion

Most of the existing studies on urban functional districts achieve the construction of
functional districts by summarizing the POI attributes within the spatial units of blocks
or grids. To promote a more refined and intelligent division of functional zones, we have
conducted research on constructing and reasoning with a knowledge graph to categorize
building functions. This research has achieved a high recognition rate and correctness
rate for building functional categories, providing robust support for city management
and planning.

In terms of the use of reference data for delineating building functional categories,
we relied solely on POI data for classifying building functions. However, for achieving
more precise classification of building functional categories, relying solely on POI data was
inadequate, and we required diverse types of data. In the future, we will incorporate data
related to daily human activities (e.g., human mobility [43,44], travel behaviors [45,46],
mobile signaling [47,48], etc.) to explore the correlations between buildings and peoples’
daily routines. This approach will help us extend the existing knowledge graph and will
enable more accurate and intelligent classification of building functional categories.

In terms of the recognition rate for inferring building functional categories, this paper
achieved a lower rate compared to Method 2. One significant reason was that our method
relied solely on buildings with first-order neighboring relationships (with matched POIs)
to infer functional categories for buildings with unmatched POIs. Therefore, in cases like
B1 in Figure 15, we could not determine the functional category of B1 because none of
its first-order neighboring buildings (B2, B3, and B4) had matched POIs. To address this
limitation, we proposed considering higher-order neighboring buildings (e.g., second,
third, fourth, etc.) of B1 for functional category inference when first-order neighbors were
insufficient. Given that spatially proximate entities often exhibited similar characteristics
due to the first law of geography, our approach involved carefully considering the interac-
tion degree of functional categories and spatial distances when reasoning about building
functional categories using higher-order neighboring entities. In our future work, we aim
to improve the recognition rate of knowledge-graph-supported methods for classifying
building functional categories. This will be achieved by carefully considering distance
factors and conducting research on higher-order-based inference methods.

Figure 15. First-order proximity building entities containing POIs.

In terms of the accuracy of building functional category inference, the method pro-
posed in this paper achieved a higher accuracy rate compared to Method 2. However,
there were instances of misclassification in specific areas within the district. For example,
as shown in Figure 16, buildings B1 to B4 are located in the residential area “Mengzi
Road 601 Long Unit” and should be classified as residential based on their functional
categories. Nonetheless, due to B1 containing two commercial POIs, it was incorrectly
classified as commercial using the method described in this paper. To address this issue,
we initially attempted to improve the accuracy by removing some low-recognition POI
points, such as convenience stores. However, this approach alone does not provide a
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comprehensive solution to such problems. In the future, we will integrate AOI (area of
interest) data, enhance our knowledge graph by establishing associations between AOI
data and building data, and develop corresponding reasoning rules for building functional
categorization. This approach will aim to improve the accuracy of building functional
category classification results.

Figure 16. Situation of settlements prone to misclassification.

Further integration of POI semantic embedding technology will enhance the recogni-
tion rate and accuracy of functional category classification in our approach. POI semantic
embedding improves the semantic understanding and reasoning performance of comput-
ers for POIs by virtue of its expression of POI information in the form of a continuous
vector space [49]. Consequently, POI semantic embedding has been constantly utilized
for delineating functional zones by enhancing the accuracy of urban zone delineation
through embedded representations of multiple POI functional categories [50,51]. In our
forthcoming work, we will focus on POI semantic embedding technology and explore its
integration with a knowledge graph to develop a method for constructing functional cate-
gory classification supported by POI semantic embedding. Leveraging POI embedding will
enrich the representation of POIs’ diverse functional category information and enhance the
granularity of the knowledge graph’s depiction of POI functional categories. Additionally,
we will design reasoning rules that combine POI embedding to improve the accuracy and
correctness of building functional category classification.

Our research results show promising outcomes in multi-scale representation of func-
tional zones. The knowledge graph we constructed accurately classified building functional
categories, fulfilling the requirements for generating and depicting functional zones at
various scales (such as at the building level, neighborhood level, block level, township
level, city level, etc.). Enabling the expansion of building functional areas to larger scales
often involves cartographic synthesis guided by existing knowledge graphs [52] to enhance
their capability to reason and represent functional categories across different scales. In
our future work, we intend to integrate knowledge graph technology with cartographic
generalization technology [30,37]. This will involve refining our current knowledge graph
and optimizing reasoning rules by implementing techniques such as merging, deleting,
and shifting to enable a cross-scale representation of buildings. Ultimately, we aim to
develop a versatile knowledge graph capable of classifying building functional categories
and generating multi-scale functional zones. This approach will support automatic and
intelligent representation of urban functional areas and will meet various scales of urban
management and planning requirements.

5. Conclusions

To enhance the sophistication and intelligent representation of urban functional zones,
we proposed a building functional classification method supported by a knowledge graph.
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The method primarily included four main processes: building and POI matching, build-
ing knowledge graph construction, building functional classification model design, and
building functional category reasoning based on the knowledge graph. The effectiveness of
our method was verified through a case study using building and POI data from Shanghai.
The following conclusions were drawn: (1) In terms of the recognition rate, our method
had a high recognition rate, reaching 94.94%, and demonstrated strong adaptability to
buildings with low or missing POI density. (2) In terms of the correctness rate, our method
was equivalent to Method 2 with a high correctness rate of 92.40%, making it applicable for
the automatic reasoning and classification of large-scale building functional categories.

Our method can be adapted to the delineation of functional categories of buildings
in large-scale and large areas and can promote the refinement and intelligent expression
of urban functional zones. However, our method has some limitations in the delineation
of building functional categories, and there are inaccuracies in the delineation of building
functional categories for similar residential zones. In our future work, we will consider
expanding the knowledge graph by adding multivariate data to improve the correctness
of the classification of building functional categories. Simultaneously, we will integrate
comprehensive cartographic knowledge into the knowledge graph to enhance the multi-
scale representation of building functional zones.
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2. Sorin, B.; Gavrilă, A.; Popescu, I.M.; Gombos, S.P.; Vasilache, P.C. Theories and Models of Functional Zoning in Urban Space. Rev.

Manag. Comp. Int. 2020, 21, 21–53. [CrossRef]
3. Wang, Y.; Liu, W.; Tan, Y.; Li, Y. Classification of Urban Functional Areas by Convolution Neural Network Recognition Combined

with Sliding Window and Semantic Reasoning. Geomat. Inf. Sci. Wuhan Univ. 2023, 48, 950–959. [CrossRef]
4. Zhang, H.; Zhang, L.; Che, F.; Jia, J.; Shi, B. Revealing Urban Traffic Demand by Constructing Dynamic Networks With Taxi

Trajectory Data. IEEE Access 2020, 8, 147673–147681. [CrossRef]
5. Schiavina, M.; Melchiorri, M.; Freire, S.; Florio, P.; Ehrlich, D.; Tommasi, P.; Pesaresi, M.; Kemper, T. Land use efficiency of

functional urban areas: Global pattern and evolution of development trajectories. Habitat Int. 2022, 123, 102543. [CrossRef]
6. CHEN, Y.; LI, X. Applications and New Trends of Machine Learning in Urban Simulation Research. Geomat. Inf. Sci. Wuhan Univ.

2020, 45, 1884–1889. [CrossRef]
7. Liu, F.; Andrienko, G.; Andrienko, N.; Chen, S.; Janssens, D.; Wets, G.; Theodoridis, Y. Citywide Traffic Analysis Based on the

Combination of Visual and Analytic Approaches. J. Geovisualization Spat. Anal. 2020, 4, 15. [CrossRef]
8. Huang, X.; Yang, J.; Li, J.; Wen, D. Urban functional zone mapping by integrating high spatial resolution nighttime light and

daytime multi-view imagery. ISPRS J. Photogramm. Remote Sens. 2021, 175, 403–415. [CrossRef]
9. Lin, A.; Sun, X.; Wu, H.; Luo, W.; Wang, D.; Zhong, D.; Wang, Z.; Zhao, L.; Zhu, J. Identifying Urban Building Function by

Integrating Remote Sensing Imagery and POI Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 8864–8875. [CrossRef]

http://doi.org/10.24818/RMCI.2020.1.44
http://dx.doi.org/10.13203/j.whugis20210377
http://dx.doi.org/10.1109/ACCESS.2020.3015752
http://dx.doi.org/10.1016/j.habitatint.2022.102543
http://dx.doi.org/10.13203/j.whugis20200423
http://dx.doi.org/10.1007/s41651-020-00057-4
http://dx.doi.org/10.1016/j.isprsjprs.2021.03.019
http://dx.doi.org/10.1109/JSTARS.2021.3107543


ISPRS Int. J. Geo-Inf. 2024, 13, 285 20 of 21

10. Deng, Z.; You, X.; Shi, Z.; Gao, H.; Hu, X.; Yu, Z.; Yuan, L. Identification of Urban Functional Zones Based on the Spatial Specificity
of Online Car-Hailing Traffic Cycle. ISPRS Int. J. Geo-Inf. 2022, 11, 435. [CrossRef]

11. Chen, B.; Zhang, H.; Wong, C.U.I.; Chen, X.; Li, F.; Wei, X.; Shen, J. Research on the Spatial Distribution Characteristics and
Influencing Factors of Educational Facilities Based on POI Data: A Case Study of the Guangdong–Hong Kong–Macao Greater
Bay Area. ISPRS Int. J. Geo-Inf. 2024, 13. [CrossRef]

12. Deng, Y. Research on the Method of Dividing Urban Functional Areas Based on Multi-Source Points of Interest Data. Master’s
Thesis, Chinese Academy of Surveying and Mapping, Beijing, China, 2018.

13. Pan, C.; Wu, S.; Li, E.; Li, H.; Liu, X. Identification of urban functional zones in Macau Peninsula based on POI data and remote
information sensors technology for sustainable development. Phys. Chem. Earth Parts A/B/C 2023, 131, 103447. [CrossRef]

14. Du, S.; Wu, Y.; Guo, L.; Fan, D.; Sun, W. How Does the 2D/3D Urban Morphology Affect the Urban Heat Island across Urban
Functional Zones? A Case Study of Beijing, China. ISPRS Int. J. Geo-Inf. 2024, 13, 120. [CrossRef]

15. Kong, B.; Ai, T.; Zou, X.; Yan, X.; Yang, M. A graph-based neural network approach to integrate multi-source data for urban
building function classification. Comput. Environ. Urban Syst. 2024, 110, 102094. [CrossRef]

16. Xie, X.; Xu, Y.; Feng, B.; Wu, W. Multiscale Urban Functional Zone Recognition Based on Landmark Semantic Constraints. ISPRS
Int. J. Geo-Inf. 2024, 13, 95. [CrossRef]

17. Cao, Y.; Liu, J.; Wang, Y.; Wang, L.; Wu, W.; Su, F. A study on the method for functional classification of urban buildings by using
POI data. J. Geo-Inf. Sci. 2020, 22, 1339–1348. [CrossRef]

18. Ehrlinger, L.; Wöß, W. Towards a Definition of Knowledge Graphs. SEMANTiCS (Posters, Demos, SuCCESS) 2016, 48, 2.
19. Peng, C.; Xia, F.; Naseriparsa, M.; Osborne, F. Knowledge graphs: Opportunities and challenges. Artif. Intell. Rev. 2023,

56, 13071–13102. [CrossRef]
20. Hogan, A.; Blomqvist, E.; Cochez, M.; D’amato, C.; Melo, G.D.; Gutierrez, C.; Kirrane, S.; Gayo, J.E.L.; Navigli, R.; Neumaier, S.;

et al. Knowledge Graphs. ACM Comput. Surv. 2022, 54, 1–37. [CrossRef]
21. Laurini, R. A conceptual framework for geographic knowledge engineering. J. Vis. Lang. Comput. 2014, 25, 2–19. [CrossRef]
22. Hamdani, Y.; Xiao, G.; Ding, L.; Calvanese, D. An Ontology-Based Framework for Geospatial Integration and Querying of Raster

Data Cube Using Virtual Knowledge Graphs. ISPRS Int. J. Geo-Inf. 2023, 12, 375. [CrossRef]
23. Zheng, K.; Xie, M.H.; Zhang, J.B.; Xie, J.; Xia, S.H. A knowledge representation model based on the geographic spatiotemporal

process. Int. J. Geogr. Inf. Sci. 2022, 36, 674–691. [CrossRef]
24. Fan, R.; Wang, L.; Yan, J.; Song, W.; Zhu, Y.; Chen, X. Deep Learning-Based Named Entity Recognition and Knowledge Graph

Construction for Geological Hazards. ISPRS Int. J. Geo-Inf. 2019, 9, 15. [CrossRef]
25. Li, W.; Wang, S.; Chen, X.; Tian, Y.; Gu, Z.; Lopez-Carr, A.; Schroeder, A.; Currier, K.; Schildhauer, M.; Zhu, R. GeoGraphVis: A

Knowledge Graph and Geovisualization Empowered Cyberinfrastructure to Support Disaster Response and Humanitarian Aid.
ISPRS Int. J. Geo-Inf. 2023, 12, 112. [CrossRef]

26. Usui, H.; Teraki, A.; Okunuki, K.i.; Satoh, T. A comparison of neighbourhood relations based on ordinary Delaunay diagrams
and area Delaunay diagrams: An application to define the neighbourhood relations of buildings. Int. J. Geogr. Inf. Sci. 2020,
34, 2177–2203. [CrossRef]

27. Xie, X.; Liu, Y.; Xu, Y.; He, Z.; Chen, X.; Zheng, X.; Xie, Z. Building Function Recognition Using the Semi-Supervised Classification.
Appl. Sci. 2022, 12, 9900. [CrossRef]

28. Chen, Y.; Liu, X.; Li, X.; Liu, X.; Yao, Y.; Hu, G.; Xu, X.; Pei, F. Delineating urban functional areas with building-level social media
data: A dynamic time warping (DTW) distance based k -medoids method. Landsc. Urban Plan. 2017, 160, 48–60. [CrossRef]

29. Huang, Y. Construction of the Geographic Scenario Data Model and Its Ontological Representation. Ph.D. Thesis, Nanjing
Normal University, Nanjing, China, 2020. [CrossRef]

30. Zhiwei, W.; Yi, X.; Ying, T.; Wenjia, X.; Yang, W. Linear building pattern recognition via spatial knowledge graph. Acta Geod.
Cartogr. Sin. 2023, 52, 1355–1363.

31. Qiu, P.; Gao, J.; Yu, L.; Lu, F. Knowledge Embedding with Geospatial Distance Restriction for Geographic Knowledge Graph
Completion. ISPRS Int. J. Geo-Inf. 2019, 8, 254. [CrossRef]

32. Wang, L.; Zhang, J.; Yao, G. The analysis and experiments of least-squares method for settlements generalization. In Proceedings
of the 2012 IEEE International Conference on Information Science and Technology, Wuhan, China, 23–25 March 2012; pp. 210–214.
[CrossRef]

33. Regnauld, N. Contextual Building Typification in Automated Map Generalization. Algorithmica 2001, 30, 312–333. [CrossRef]
34. Fei, N.; Gao, Y.; Lu, Z.; Xiang, T. Z-Score Normalization, Hubness, and Few-Shot Learning. In Proceedings of the 2021 IEEE/CVF

International Conference on Computer Vision (ICCV), Montreal, QC, Canada, 10–17 October 2021; pp. 142–151. [CrossRef]
35. Curtis, A.; Smith, T.; Ziganshin, B.; Elefteriades, J. The Mystery of the Z-Score. AORTA 2016, 04, 124–130. [CrossRef]
36. Chen, X.; Jia, S.; Xiang, Y. A review: Knowledge reasoning over knowledge graph. Expert Syst. Appl. 2020, 141, 112948. [CrossRef]
37. Wei, Z.; Xu, W.; Xiao, Y.; Shu, M.; Cheng, L.; Wang, Y.; Liu, C. Enhancing building pattern recognition through multi-scale data

and knowledge graph: A case study of C-shaped patterns. Int. J. Digit. Earth 2023, 16, 3860–3881. [CrossRef]
38. Fang, J.; Yan, X. Classification of multi-modal remote sensing images based on knowledge graph. Int. J. Remote Sens. 2023,

44, 4815–4835. [CrossRef]
39. Liu, X.; Lu, H.; Li, H. Intelligent generation method of emergency plan for hydraulic engineering based on knowledge graph-take

the South-to-North Water Diversion Project as an example. LHB 2022, 108, 2153629. [CrossRef]

http://dx.doi.org/10.3390/ijgi11080435
http://dx.doi.org/10.3390/ijgi13070225
http://dx.doi.org/10.1016/j.pce.2023.103447
http://dx.doi.org/10.3390/ijgi13040120
http://dx.doi.org/10.1016/j.compenvurbsys.2024.102094
http://dx.doi.org/10.3390/ijgi13030095
http://dx.doi.org/10.12082/dqxxkx.2020.190608
http://dx.doi.org/10.1007/s10462-023-10465-9
http://dx.doi.org/10.1145/3447772
http://dx.doi.org/10.1016/j.jvlc.2013.10.004
http://dx.doi.org/10.3390/ijgi12090375
http://dx.doi.org/10.1080/13658816.2021.1962527
http://dx.doi.org/10.3390/ijgi9010015
http://dx.doi.org/10.3390/ijgi12030112
http://dx.doi.org/10.1080/13658816.2020.1748191
http://dx.doi.org/10.3390/app12199900
http://dx.doi.org/10.1016/j.landurbplan.2016.12.001
http://dx.doi.org/10.27245/d.cnki.gnjsu.2020.000092
http://dx.doi.org/10.3390/ijgi8060254
http://dx.doi.org/10.1109/ICIST.2012.6221639
http://dx.doi.org/10.1007/s00453-001-0008-8
http://dx.doi.org/10.1109/ICCV48922.2021.00021
http://dx.doi.org/10.12945/j.aorta.2016.16.014
http://dx.doi.org/10.1016/j.eswa.2019.112948
http://dx.doi.org/10.1080/17538947.2023.2259868
http://dx.doi.org/10.1080/01431161.2023.2240032
http://dx.doi.org/10.1080/27678490.2022.2153629


ISPRS Int. J. Geo-Inf. 2024, 13, 285 21 of 21

40. Da, M.; Zhong, T.; Huang, J. Knowledge Graph Construction to Facilitate Indoor Fire Emergency Evacuation. ISPRS Int. J.
Geo-Inf. 2023, 12, 403. [CrossRef]

41. Jiang, B.; Tan, L.; Ren, Y.; Li, F. Intelligent Interaction with Virtual Geographical Environments Based on Geographic Knowledge
Graph. ISPRS Int. J. Geo-Inf. 2019, 8, 428. [CrossRef]

42. Guo, C.; Xu, T.; Liu, L. Construction of Knowledge Graph Based on Geographic Ontology. IOP Conf. Ser. Earth Environ. Sci. 2019,
252, 052161. [CrossRef]

43. Liu, E.J.; Yan, X.Y. A universal opportunity model for human mobility. Sci. Rep. 2020, 10, 4657. [CrossRef]
44. Schläpfer, M.; Dong, L.; O’Keeffe, K.; Santi, P.; Szell, M.; Salat, H.; Anklesaria, S.; Vazifeh, M.; Ratti, C.; West, G.B. The universal

visitation law of human mobility. Nature 2021, 593, 522–527. [CrossRef]
45. Yuan, J.; Zheng, Y.; Xie, X. Discovering regions of different functions in a city using human mobility and POIs. In Proceedings of

the Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Beijing China,
12–16 August 2012; pp. 186–194. [CrossRef]

46. Irawan, M.Z.; Belgiawan, P.F.; Joewono, T.B.; Bastarianto, F.F.; Rizki, M.; Ilahi, A. Exploring activity-travel behavior changes
during the beginning of COVID-19 pandemic in Indonesia. Transportation 2022, 49, 529–553. [CrossRef]

47. Yan, X.Y.; Wang, W.X.; Gao, Z.Y.; Lai, Y.C. Universal model of individual and population mobility on diverse spatial scales. Nat.
Commun. 2017, 8, 1639. [CrossRef] [PubMed]

48. Chen, J.; Wang, C.; Zhang, Y.; Li, D. Measuring spatial accessibility and supply-demand deviation of urban green space: A mobile
phone signaling data perspective. Front. Public Health 2022, 10, 1029551. [CrossRef] [PubMed]

49. Bing, J.; Chen, M.; Yang, M.; Huang, W.; Gong, Y.; Nie, L. Pre-Trained Semantic Embeddings for POI Categories Based on Multiple
Contexts. IEEE Trans. Knowl. Data Eng. 2023, 35, 8893–8904. [CrossRef]

50. Huang, W.; Cui, L.; Chen, M.; Zhang, D.; Yao, Y. Estimating urban functional distributions with semantics preserved POI
embedding. Int. J. Geogr. Inf. Sci. 2022, 36, 1905–1930. [CrossRef]

51. Liu, K.; Yin, L.; Lu, F.; Mou, N. Visualizing and exploring POI configurations of urban regions on POI-type semantic space. Cities
2020, 99, 102610. [CrossRef]

52. Zhang, F.; Sun, Q.; Ma, J.; Lyu, Z.; Huang, Z. A polygonal buildings aggregation method considering obstacle elements and
visual clarity. Geocarto Int. 2023, 38, 2266672. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.3390/ijgi12100403
http://dx.doi.org/10.3390/ijgi8100428
http://dx.doi.org/10.1088/1755-1315/252/5/052161
http://dx.doi.org/10.1038/s41598-020-61613-y
http://dx.doi.org/10.1038/s41586-021-03480-9
http://dx.doi.org/10.1145/2339530.2339561
http://dx.doi.org/10.1007/s11116-021-10185-5
http://dx.doi.org/10.1038/s41467-017-01892-8
http://www.ncbi.nlm.nih.gov/pubmed/29158475
http://dx.doi.org/10.3389/fpubh.2022.1029551
http://www.ncbi.nlm.nih.gov/pubmed/36339177
http://dx.doi.org/10.1109/TKDE.2022.3218851
http://dx.doi.org/10.1080/13658816.2022.2040510
http://dx.doi.org/10.1016/j.cities.2020.102610
http://dx.doi.org/10.1080/10106049.2023.2266672

	Introduction
	Methodology
	Building and POI Matching
	Building Knowledge Graph Construction
	Proximity Relation
	Entity Properties
	Relation Property

	Building Functional Classification Model
	Rule-Based Reasoning for Functional Classes of Buildings
	Category Reasoning for Buildings with Matched POIs
	Category Reasoning for Buildings with Unmatched POIs


	Experiments and Results
	Study Area and Data
	Experimental Setting
	Results of Knowledge Graph Construction
	Knowledge-Graph-Based Functional Category Reasoning for Buildings
	Validation of Building Category Reasoning Results
	Comparison and Analysis

	Discussion
	Conclusions
	References

