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Abstract: Existing studies have limited evidence about the complex nonlinear impact mechanism
of road network topology and built environment on bike-sharing systems’ greenhouse gas (GHG)
emission reduction benefits. To fill this gap, we examine the nonlinear effects of road network
topological attributes and built environment elements on the potential GHG emission reduction of
dockless bike-sharing (DBS) trips in Shenzhen, China. Various methods are employed in the research
framework of this study, including a GHG emission reduction estimation model, spatial design
network analysis (sDNA), gradient boosting decision tree (GBDT), and partial dependence plots
(PDPs). Results show that road network topological variables have the leading role in determining
the potential GHG emission reduction of DBS trips, followed by land use variables and transit-
related variables. Moreover, the nonlinear impacts of road network topological variables and built
environment variables show certain threshold intervals for the potential GHG emission reduction of
DBS trips. Furthermore, the impact of built environment on the potential GHG emission reduction
of DBS trips is moderated by road network topological indicators (closeness and betweenness).
Compared with betweenness, closeness has a greater moderating effect on built environment variables.
These findings provide empirical evidence for guiding bike-sharing system planning, bike-sharing
rebalancing strategy optimization, and low-carbon travel policy formulation.

Keywords: nonlinear impacts; threshold effects; road network topology; built environment; dockless
bike sharing; emission reduction

1. Introduction

Over the past few decades, urban transport systems have faced tremendous pres-
sure to reduce greenhouse gas (GHG) emissions due to increasing population and private
cars. To handle the rapidly growing travel demands and mitigate urban environmen-
tal degradation, numerous cities worldwide continually develop low-carbon transport
modes to achieve carbon neutrality [1,2]. Meanwhile, commuters may have to experience
long distances between their origins (or destinations) and public transport stations due
to urban sprawl. The “first kilometer” and “last kilometer” problem stemming from this
phenomenon has likewise garnered considerable focus from scholars. Bike sharing, as one
of the environment-friendly travel modes, presents evident advantages in resolving the
above issues [3,4]. In fact, bike sharing is a valuable complement to urban public transport
systems, especially when other travel modes are unavailable and walking distances are too
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long [5]. Furthermore, bike-sharing schemes offer a sustainable solution to the shortcom-
ings of conventional public transport and contribute to the development of low-carbon
travel, commuting and economy [2,3,6–8]. In particular, bike sharing has considerable
environmental benefits in reducing GHG emissions [9–11]. On the one hand, bike sharing
offers a green travel choice with no GHG emissions during its operation. On the other
hand, bike sharing also has an important impact on sustainable development and the GHG
emission reduction of urban transport systems because of its potential substitution and
supplementation of other travel modes. Nevertheless, the uneven distribution of shared
bikes in cities may affect bike-sharing usage, which could further lead to traffic congestion
and environmental pollution [12]. Therefore, it is imperative to understand the complex
influence mechanisms of bike-sharing trips and curb the GHG emissions of urban transport
systems by guiding bike-sharing development.

There exists a large and increasing body of published studies that have described the
impacts of the built environment on bike-sharing trips. Much of the existing literature
has focused on examining the spatial–temporal distribution and utilization levels of bike-
sharing trips and their built environment determinants [8,13–23], along with system layout
optimization, rebalancing strategies, and environmental benefits [9,11,24–26]. These built
environment determinants mainly contain the following aspects: public transport, land use,
road networks, population density, regional location, and bike infrastructure. In particular,
some studies have attempted to elucidate the complex nonlinear associations between
urban built environment attributes and bike-sharing usage [27–31]. However, although
bike-sharing environmental benefits have been fully recognized and assessed, existing
studies fail to specify the nonlinear impacts and thresholds intervals of built environment
factors on the potential GHG emission reduction of bike-sharing trips. In addition, urban
road networks affect the routes, durations, and distances of residents in a direct way when
they travel by bike sharing. Meanwhile, the topological attributes of streets at varying
scales frequently indicate the accessibility for cyclists in distinct urban functional zones.
Thus, street configurations and their topological attributes may prominently influence
the potential GHG emission reduction of bike-sharing trips. Many scholars have tried to
understand the self-organized state and pattern of cycle flows in cities by exploring the
topological associations of street networks [32–34]. However, the impacts of road network
topological attributes on the potential GHG emission reduction of bike-sharing trips have
not been systematically evaluated in the relevant literature. Therefore, it is essential to
examine the possibility of improving the operational efficiency and potential GHG emission
reduction of bike sharing when considering road network topology.

In comparison to docked bike sharing (public bicycle), dockless bike sharing (DBS)
offers smart locks with numerous positioning functions, allowing for adaptable parking
arrangements and rebalancing strategies. During the last few years, the popularity of DBS
has been on the rise across numerous cities globally, which is attributed to its perceived
social, environmental, and health benefits [35–38]. In particular, the development of
DBS is an important way for citizens to choose green travel and practice low-carbon life.
The existing literature demonstrates that DBS can bring about GHG emission reduction
benefits by its potential substitution of other transport modes (e.g., public transportation,
taxis, and private cars) [2,10,11,39]. Moreover, several studies have explored the built
environment features that influence DBS trips at the street level [40,41]. Furthermore, the
studies that illustrate the nonlinear relationships between built environment elements and
the utilization of bike sharing are often conducted in the context of DBS trips. Therefore,
we focus on the potential GHG emission reduction of DBS trips and take Shenzhen, China,
as a study case, examining the nonlinear effects and threshold intervals of road network
topological attributes and built environment elements. The overall research framework
of this paper employs various methods, including a GHG emission reduction estimation
model, spatial design network analysis (sDNA), gradient boosting decision tree (GBDT)
algorithm, and partial dependence plots (PDPs).
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The major research contributions of this paper are summarized in the following. First,
it evaluates the relative importance of various built environment attributes on the potential
GHG emission reduction of DBS trips and highlights the vital role of road network topology.
Second, it illustrates the complex nonlinear effects and threshold intervals of road network
topology and built environment elements on the potential GHG emission reduction of
DBS trips. Third, it further examines how road network topological attributes moderate
the impacts of built environment determinants on predicting the potential GHG emission
reduction of DBS trips.

The remainder of this study is structured as follows. Section 2 reviews the previous
related studies. Section 3 illustrates the methods. Section 4 describes the research data.
Section 5 analyzes and discusses the modeling results obtained. Section 6 presents the main
findings and explains the implications for practice or policy.

2. Literature Review
2.1. Environmental Benefits of Bike Sharing

Bike sharing, due to perceived environmental benefits and convenience, has received
widespread attention from policy makers and scholars during its early development stages.
The implementation of bike-sharing systems holds immense importance in optimizing
urban travel structure, promoting the growth of slow traffic, and establishing a sustainable
and environment-friendly society. Due to the increased availability of relevant data, it has
become possible to assess the environmental benefits of bike sharing in a scientific and
effective manner. These studies examine the impacts of using shared bikes on reducing
GHG emissions and other pollutants. Zhang and Mi (2018) [9] evaluated the spatiotemporal
influences of bike sharing on environmental benefits in Shanghai, involving the change in
carbon dioxide (CO2) emission, nitrogen oxide (NOx) emission, and energy consumption.
Cao and Shen (2019) [6] employed a response surface method and Minitab to evaluate how
bike sharing affects CO2 emission reduction and the economic growth of Beijing. Kou et al.
(2020) [42] constructed a model, designated as BS-EREM, which can be used for the analysis
of emission reduction and environmental benefits related to the utilization of shared bikes.
By incorporating variables such as travel start time, travel distance, and the distribution of
previous transport mode choices, BS-EREM can stochastically estimate the transport modes
substituted by bike-sharing trips. Shang et al. (2021) [43] developed a novel approach to
compute possible trajectories and distances of bike-sharing trips, which enabled them to
accurately investigate the potential changes in bike sharing’s environmental benefits and
their users’ travel behaviors resulting from the COVID-19 pandemic. Li et al. (2021) [11]
proposed a high-resolution assessment framework for the environmental impact of DBS,
which can estimate the substitution rate of each DBS trip to various travel modes and GHG
emission reductions. Chen et al. (2022) [26] took New York as a case study to analyze the
long-term environmental benefits of bike sharing. The findings indicated that the utilization
of bike sharing as an alternative to public transit or private cars in commuting has emerged
as a viable option to eliminate the carbon footprint and urban pollutants. Saltykova et al.
(2022) [10] examined the environmental effects of bike sharing when taking its substitution
of public transit into consideration. They found that the environmental benefits may be
overestimated if bike sharing’s substitution of public transit is not considered. Although
prior studies have indicated that the substitution rate of bike-sharing trips to other transport
modes is not constant, bike sharing can indeed reduce motorized travel and contribute to
enhancing environmental benefits.

In addition, some scholars have applied life cycle assessments (LCAs) to examine the
environmental benefits of bike sharing. They investigated the environmental impacts and
resource consumption of shared bikes at the different phases of their life cycle. Luo et al.
(2019) [44] compared the GHG emissions of DBS systems and station-based bike systems in
the U.S from the perspective of an LCA. Chen et al. (2020) [45] used an LCA to measure
CO2 emissions thresholds during the production, operation, and recycling of shared bikes.
They also calculated the minimum time needed using bike sharing to offset the above
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CO2 emissions. Wang and Sun (2022) [46] quantitatively measured the impact of the DBS
program in Beijing on the GHG emissions generated from the urban transportation system
by employing an LCA and bottom-up approach. Furthermore, some literature also focuses
on the GHG emissions produced by motor vehicles during the rebalancing process of bike
sharing. Luo et al. (2020) [12] designed a framework to reduce the life cycle GHG emissions
of bike-sharing systems by obtaining the optimal rebalancing strategy and bicycle fleet
size and validated this framework by applying it to the DBS system in Xiamen, China.
D’Almeida et al. (2021) [47] employed an LCA to measure the CO2 emissions of the Just Eat
Cycles program in Edinburgh, UK, which involves the production, operation, and disposal
stages of shared bikes. The findings indicated that improving the rebalancing strategies
and producing bicycles near their operation areas may further enhance the GHG emission
reduction benefits from bike-sharing systems.

2.2. Built Environment Factors Affecting Bike-Sharing Usage

To enhance the effectiveness of government regulation and bike rebalancing, it is
crucial to identify the factors that influence the travel behaviors and demand distribution
of residents who utilize bike sharing. In contrast to natural environment and individual
attributes, urban planners can optimize the built environment elements through rational
planning and scientific arrangement. The associations between the utilization of bike
sharing and built environments have therefore been a subject of considerable interest
to scholars in the transportation field. In early studies, researchers used interviews or
questionnaires to collect data. They often analyzed bike-sharing usage while considering
users’ social economy attributes and travel willingness. Using various regression models,
researchers can better explain how subjective perceptions of built environments affect
bike-sharing travel behavior. These models include multiple linear regression [13,19],
negative binomial regression [24,48], logistic regression [49,50], Poisson regression [51],
and the like. With the continuous advancement of data mining technology, many scholars
have analyzed the spatial–temporal features and behavioral patterns of bike-sharing trips
based on trajectory data and order data. On this basis, scholars have explored how built
environment attributes affect the utilization of shared bikes from the following aspects:

Public transport development: Existing studies have primarily focused on how the
density of metro stations and bus stops and transport accessibility affect bike-sharing travel
willingness and demand distribution [17,52,53]. In addition, some scholars have explored
how the related factors affect the integration of public transport with bike sharing, e.g., Guo
and He (2020) [1] suggested that DBS is more probable when integrated with metro stations
with a higher ridership that are closer to city centers. Guo et al. (2021) [54] indicated a
positive correlation between metro stations with a higher ridership and the integrated
utilization of DBS and metro. Zhou et al. (2023) [55] found that the integrated utilization of
DBS and metro is significantly influenced by the accessibility of bus stops.

Land use factors: In general, there are differences in land use types and their mixing
degree in different urban functional areas. These differences and the distribution of public
service facilities in different land use types will directly influence travelers’ willingness to
cycle and the origins and destinations of bike-sharing trips. Zhao et al. (2020) [56] employed
a panel spatial regression model to investigate the relationships between land use and DBS
trips. The findings suggested that the percentage of green land significantly affects DBS
usage, and a positive correlation exists between land use mix and DBS usage frequency.
Moreover, numerous studies have evaluated the associations between various categories of
POIs and bike-sharing trips. In particular, some POI types have garnered substantial focus,
including commercial facilities, employment-related, residences, education-related, leisure
facilities, and hotels [17,20,22,25,52,57]. The density of various POIs and land use mixture
tend to positively affect the usage of bike sharing. Furthermore, residential facilities and job
density have a strong association with bike-commuting behavior, as well as the integration
utilization of public transit and bike sharing.



ISPRS Int. J. Geo-Inf. 2024, 13, 287 5 of 28

Road network factors: Road network density and intersection density are the most
common influencing factors when investigating the relationships between bike-sharing
usage and built environment design, e.g., El-Assi et al. (2017) [16] indicated that a lower
intersection density may promote bike-sharing travel. The research conducted by Chen and
Ye. (2021) [28] suggested that DBS trips may be positively affected by a higher road density.
In the meantime, some scholars have explored the associations between the utilization of
bike sharing and different street patterns. Tu et al. (2019) [58] implied that people tend to
use bicycles on streets with a higher density and greater connectivity. At the same time,
streets with better destination accessibility may tend to attract more cycling travel [15]. Ji
et al. (2023) [29] offered a systematic review that compared the impacts of different street
patterns on bike-sharing trips and usage. Furthermore, related studies suggested that the
centrality index and connectivity index are critical road network topological measurements
that affect bike-sharing usage. Wang et al. (2023) [15] revealed that when paired with
the centrality of road networks and crucial facilities such as libraries and supermarkets,
streetscape elements have significantly higher explanatory power for the utilization of
bike sharing.

Population density: Population density directly influences the travel demand of urban
residents and the origins and destinations of bike-sharing trips. Moreover, it also guides the
operation and rebalancing of bike sharing in different urban areas. Therefore, population
density is widely regarded as the primary explanatory variable or control variable in most
studies that examine the associations between built environment factors and bike-sharing
trips [16,20,21,57,59]. The existing literature has verified that the threshold interval of
population density on the number of bike-sharing trips varies when other variables are
considered. Nevertheless, the positive impact of population density on bike-sharing trips
has become a consensus in the academic community [17,18,23].

Regional location: Some scholars have examined the associations between regional
location and bike-sharing ridership. They usually choose the distance to the nearest city
center or central business district (CBD) as the regional location variable, which represents
destination accessibility. Duran-Rodas et al. (2019) [14] found that the distance to the city
center is another critical built environment factor that influences bike-sharing usage, apart
from city population, leisure-related establishments, and transport-related infrastructure.
Taking Chicago’s Divvy bicycle system as the study case, Yang et al. (2020) [60] studied
the associations between bike-sharing trips and built environment elements. The results
showed that the ridership of bike sharing is negatively related to the distance to the urban
CBD. In fact, areas with high economic vitality and large ridership are often located in the
city center and CBD. Travelers whose origins are close to such areas are more inclined to
use shared bikes [61]. Also, metro stations with a higher ridership near city centers may be
more easily integrated with bike-sharing systems [1].

Bike infrastructure: Bike lanes and stations are the main components of bike infrastruc-
tures. Many scholars have examined the effects of bike stations or bike lanes on bike-sharing
ridership. These bike infrastructures usually have a positive impact on bike-sharing rid-
ership [16,21,53,62]. In particular, previous studies have primarily concentrated on the
impacts of bike stations and their neighborhoods with adjacent bike lanes or stations. Buck
and Buehler. (2012) [59] found that placing bike stations near bike lanes had a significant
impact on the utilization of shared bikes by analyzing the influence factors of ridership
at the station level. Rixey (2013) [63] found that a well-established bike-sharing station
network and bike stations with numerous adjacent stations in their service scope have
a positive impact on the ridership of bike sharing. Noland et al. (2016) [64] suggested
that bike-sharing stations near busy subway stations and bike infrastructures experienced
greater utilization. Similarly, Kabak et al. (2018) [65] found that a positive correlation
existed between individuals’ travel willingness by bike and the proximity of bike-sharing
stations to bike lanes. In addition, women’s bike-sharing usage may be more affected
by bike facilities [66,67]. Moreover, the existing literature has also studied the effects of
interaction density and the spatial distribution of bike stations on bike-sharing trips [16].



ISPRS Int. J. Geo-Inf. 2024, 13, 287 6 of 28

2.3. Nonlinear Relationships between Bike-Sharing Usage and Built Environment Factors

Built environment factors have been identified as a kind of key determinant which
affect the usage of shared bikes in previous studies. However, the impacts of built envi-
ronment factors on the utilization of shared bikes may be nonlinear and present various
intervals of effective range. Furthermore, the thresholds of various built environment
determinants that affect the usage of shared bikes and travel demands differ in terms of
their maximum and minimum values. In addition, these intervals and thresholds may
indicate noticeable spatial variations across various research scales and traffic zones [17].
This does not correspond to the assumption in many studies that a linear relationship
exists between bike-sharing usage and built environment factors [8]. Therefore, numerous
scholars have initiated the analysis of the nonlinear associations between diverse factors
and bike-sharing usage. Wang et al. (2022) [31] applied a random forest (RF) approach
and partial dependency plots (PDPs) to analyze the contribution and nonlinear impacts of
various influencing factors on the utilization of DBS. Zhuang et al. (2022) [30] employed
a gradient boosting decision tree (GBDT), relative importance, and PDPs to identify the
nonlinear relationships and threshold intervals of built environment factors and traffic con-
ditions at the street level for DBS in the central regions of Shenzhen. Cheng et al. (2022) [27]
applied quantile regression to assess the nonlinear impacts of built environment factors on
the integrated usage of urban rail transit and DBS. In particular, Ji et al. (2023) [29] utilized
generalized additive mixed modeling (GAMM) to measure the nonlinear impacts of land
use and street patterns on bike-sharing usage. The findings indicated that an increased
average geodesic distance is often associated with a decrease in the arrival and departure
of bike-sharing trips. Furthermore, an inversely U-shaped nonlinear relationship exists
between land use density and the quantity of arriving and departing bike-sharing trips
when considering street patterns.

Existing studies have offered valuable insights into bike-sharing usage, rebalancing,
and environmental benefits from multiple perspectives, but the following gaps remain
to be addressed. On the one hand, although the environmental benefits of bike sharing
during its operation phase are widely recognized by scholars, limited studies emphasize
the associations between the potential GHG emission reduction from bike-sharing trips
and built environment attributes. In particular, no literature has examined the nonlinear
impacts and threshold intervals of built environments on the potential GHG emission
reduction of bike sharing. On the other hand, few studies have considered road network
topological attributes and measured their relative contribution in predicting the potential
GHG emission reduction of bike-sharing trips. In addition, road network topological
attributes may show moderating effects on the potential GHG emission reduction of bike-
sharing trips. To fill these gaps, we examine the nonlinear effects of road network topology
and built environment attributes on the potential GHG emission reduction of DBS trips
in Shenzhen, China. Furthermore, this study also explores the interaction effects of road
network topology and built environment factors on predicting the potential GHG emission
reduction of DBS trips.

3. Methodology
3.1. Research Framework

To explore the complex nonlinear impact mechanism of road network topology and
built environment on the potential GHG emission reduction of DBS trips, we designed
the research framework of this study based on multisource datasets (Figure 1). First, the
potential GHG emission reduction of DBS trips was measured by the change in GHG
emissions according to the potential travel mode substitution of DBS trips. The dependent
variable of the research framework is the potential GHG emission reduction of DBS trips.
Second, we used a spatial design network analysis (sDNA) to quantify the road network
topological attributes of the study area under an optimal research scale. Moreover, we
extracted several built environment indicators that prominently affect the usage of DBS from
different raw datasets. Road network topological variables and built environment variables
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are the independent variables of the research framework. Third, a gradient boosting
decision tree (GBDT) algorithm and partial dependence plots (PDPs) were employed to
examine the nonlinear effects and threshold intervals of road network topology indicators
and built environment elements on the potential GHG emission reduction of DBS trips.
In addition, we examined how road network topology moderates the impacts of built
environment elements on predicting the potential GHG emission reduction of DBS trips.
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which is utilized as dependent variable; (b) Extracting the independent variables, including road
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of road network topology and built environment on the potential GHG emission reduction of
DBS trips.

3.2. Dependent Variable

The GHG emission reduction benefits of bike sharing are often estimated by the GHG
emissions of the travel modes which replace bike-sharing trips [2,10,11,39]. Existing studies
often assume that all travel demands of bike sharing can be met by car travel in urban
areas. However, public transport, cars, and other motorized travel modes may replace
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the corresponding travel volume if bike sharing is unavailable in the real world [10,26].
Moreover, travelers with a cycling distance less than 1 km are more likely to choose
walking rather than motorized travel modes [10,39]. In addition, the “bottom-up” approach
has been widely used to calculate the GHG emissions of the motorized travel modes in
previous studies [46]. The workflow of the “bottom-up” approach begins with collecting
and analyzing the underlying activity data, including travel modes, travel distance, and
emission factors. This approach estimates the GHG emissions of urban transportation
systems based on the gradual aggregation of these data. Therefore, we introduced an
estimation model to evaluate the potential GHG emission reduction of DBS trips based
on the “bottom-up” approach and motorized travel mode replacement. This estimation
model considers the total distances of all DBS trips in the study area and their replacement
of motorized travel modes. The detailed description is illustrated as follows: (1) Due to
walking not producing GHG emissions and some motorized travel modes (e.g., motorcycle)
account for a relatively small proportion of urban transportation [39], only four motorized
travel modes (bus, metro, taxi, and car) are considered in the estimation model. (2) The
potential GHG emission reduction of DBS trips is represented by the GHG emissions of the
alternative motorized travel modes that would result from replacing all the demand for DBS
trips within a distance of more than 1 km. This replacement applies to the entire demand
for DBS trips in the study area and does not mean that each DBS order can be replaced with
an alternative travel mode. (3) The GHG emission factors are determined by the average
emission coefficient of each travel mode at the macrolevel. Accordingly, we employ the
motorized split rate data of the study area to reflect the travel mode replacement of DBS
trips from a macroperspective. Furthermore, this study does not consider the differences of
individual trips and the impact of emergencies or major events on GHG emissions within
urban transport systems. The potential GHG emission reduction of DBS trips in the study
area can be denoted as Equation (1):

PERGHG = ∑
i

∑
j

Di × Mj × EFj (1)

where PERGHG represents the potential GHG emission reduction of DBS trips in the study
area; Di denotes the travel distance (km) of the ith DBS order in the study area; Mj is
the split rate of the jth potential substitution travel mode in the study area; and EFj is
the average GHG emission coefficient (kg CO2-eq/pkm) of the jth travel mode during its
operation phase.

3.3. Independent Variables
3.3.1. Road Network Topological Variable Measurement

sDNA is a sophisticated three-dimensional spatial network analysis approach, which
can be applied to examine the associations between various spatial networks and transport
systems. The measured output and parameters from sDNA provide evidence for the design
of better networks in urban built environments. Specially, sDNA is particularly suitable for
modeling sustainable transport systems. Therefore, this paper quantifies the road network
topological attributes of the study area from the perspective of sDNA. In sDNA, closeness
and betweenness have been usually selected by previous studies to explore the multiscale
network laws [68,69], which are introduced in the following.

1. Closeness

Closeness is employed to measure the accessibility of street networks in the study area
and their ability to attract traffic flows. This topological attribute represents the relative
difficulty of moving from one street link to other street links within the given road networks
under different search radii. The street links with a higher closeness usually have better
accessibility and make it easier for cyclists to arrive at their potential destinations [69].
This phenomenon is likely to promote the emergence of DBS orders near these street
links. Network quantity penalized by distance (NQPD) is utilized to quantify closeness
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in sDNA [70]. Given that cyclists are inclined to follow angular geodesics, our study
employs NQPD in radius angular (NQPDA) to quantify closeness, which is calculated by
Equation (2):

NQPDAR(x) = ∑
y∈Rx

w(y)p(y)
dA(x, y)

(2)

where NQPDAR(x) represents the closeness of street link x in the defined network radius
R; p(y) denotes the proportion of street link y in the network radius R, whose value ranges
from 0 to 1 in continuous space analysis and equals 0 or 1 in discrete space analysis; Rx
is the link set in the network radius R of street link x; and dA(x, y) denotes the shortest
angular geodesic distance from street link x to y.

2. Betweenness

Betweenness is employed to identify the probability of the street links that can be
passed by the traffic flows in the study area. This topological attribute represents the traffic
diversion capacity and passing capacity of the street networks under different search radii.
In fact, the passing capacity of various traffic flows (including bikes) is often better within
road networks which have a higher value of betweenness [69]. An advanced form of
betweenness, namely, two phase betweenness (TPBt), is put forth to quantify betweenness
in sDNA [70]. TPBt can identify and assess the potential for competition among all of the
destinations within the given street networks. Given that cyclists are inclined to follow
angular geodesics, our study employs TPBt angular (TPBtA) to quantify betweenness,
which is calculated by Equation (3):

TPBtAR(x) = ∑
y∈N

∑
z∈Ry

OD(y, z, x)
w(z)p(z)

tw(y)
(3)

where TPBtAR(x) denotes the betweenness of street link x in the defined network radius R;
Ry represents the link set in the network radius R of street link y; w(z) denotes the weight
of street link z; N is the street link set in the study area; p(z) represents the proportion of
street link z in the network radius R; and tw(y) is the total weight of the street link set
within the radius R of street link y. OD(y, z, x) represents the shortest angular geodesic
route between link y and link z traversing link x under the given network radius R, which
is calculated by Equation (4):

OD(y, z, x) =


1, i f x is on the geodesic f rom y to z
1
2 , i f x = y ̸= z
1
2 , i f x = z ̸= y
1
3 , i f x = y = z
0, otherwise

(4)

3.3.2. Built Environment Variable Selection

Urban built environment systems restrict the usage of shared bikes and residents’ travel
behavior. Compared with docked bike sharing, the users of DBS are more susceptible to the
impacts of built environments. Referring to previous studies [1,8,13–23,25,27–31,52–57,59–61],
we selected 18 built environment variables that are closely associated with the utilization
of DBS and its potential GHG emission reduction benefits, involving population, land
use, transport accessibility, and regional location. Specifically, built environment variables
include population density, restaurant density, life service density, commercial residence
density, government organization density, enterprise density, education facility density,
hotel facility density, sport facility density, medical service density, shopping density, tourist
attraction density, POI mix entropy, bus stop density, metro station density, distance to the
nearest bus stop, distance to the nearest metro station, and distance to the nearest city center.
In addition, road density, intersection density, bike lanes, and bike stations are excluded in
the built environment variables of this study. This is because road density and intersection
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density influence the topological attributes of road networks directly, which may lead to a
deviation in the research conclusions. Moreover, the impacts of bike lane variables and bike
station variables on the use of DBS are often insignificant in actual traffic circumstances.

3.4. Research Model and Main Algorithms
3.4.1. Gradient Boosting Decision Tree (GBDT) Algorithm

GBDT is utilized in this paper to investigate the nonlinear impact mechanism of
urban road network topology and built environment on the potential GHG emission
reduction of DBS trips. GBDT is a machine learning algorithm that does not make any initial
assumptions about the model. By adjusting the weight of predictor variables through staged
learning data, GBDT is suitable for explaining potential nonlinear relationships between
different variables, and the model prediction results have a high accuracy [71–76]. At the
same time, GBDT can effectively manage the issue of multicollinearity among variables and
can account for missing values of independent variables [77]. In addition, GBDT is suitable
for handling larger sample sizes and demonstrates strong adaptability in addressing traffic
issues, particularly those that necessitate the division of study zones. GBDT has been
extensively utilized in examining nonlinear relationships in urban transportation and other
domains [76,78,79]. Some scholars have also applied this algorithm to the research of
travel-related CO2 emissions [80]. For this study, using GBDT has the following advantages.
First, GBDT can be used to analyze the impact thresholds, effective ranges, and relative
importance of road network topological indicators and built environment variables on
the potential GHG emission reduction of DBS trips. Second, this study can utilize the
GBDT algorithm to analyze the interaction effects between each road network topological
indicator and each built environment variable on the potential GHG emission reduction
of DBS trips. Equation (5) presents the mathematical form of the GBDT algorithm, which
estimates the function F(x) as an additive expansion of the basis function h

(
x; θj

)
.

F(x) =
m

∑
j=1

f j(x) =
m

∑
j=1

αjh
(
x; θj

)
(5)

where x is a set of explanatory variables like road network topological indicators and build
environment elements in this study; F(x) represents the potential GHG emission reduction
of DBS trips, which is the dependent variable in this study; θj denotes the mean of the split
positions and terminal nodes of an individual decision tree h

(
x; θj

)
; and αj is the weight of

h
(

x; θj
)
, which is estimated by minimizing the loss function L(y, F(x)) = (y − F(x))2. The

optimization iterative procedure of the GBDT method is summarized in the following.
First, the initial function is set by Equation (6):

f0(x) = arg min
α

n

∑
i=1

L(yi, α) (6)

Second, for iteration rounds from j = 1 to m, the negative gradient rij of data sample
i (i = 1, 2, 3, · · · , n) is computed by Equation (7):

rij = −
[

∂L(yi, f (xi))

∂ f (xi)

]
f (x)= f j−1(x)

(7)

Third, a regression tree h
(
x; θj

)
is fitted to the target rij, and the optimal gradient

descent step length can thus be estimated in Equation (8):

αj = arg min
α

n

∑
i=1

L
(
yi, Fj−1(xi) + αjh

(
xi; θj

))
(8)
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The fourth step is to update the model based on Equations (7) and (8) as follows:

f j(x) = f j−1(x) + αjh
(
x; θj

)
(9)

The last step is to output the results of the final model as Equation (10):

F(x) =
m

∑
j=1

f j(x) (10)

To moderate the overfitting problem, a learning rate ξ(0 < ξ < 1) is introduced
to scale the contribution of each tree model. Thus, the final model can be rewritten as
Equation (11):

f j(x) = f j−1(x) + ξαjh
(

x; θj
)

(11)

The GBDT method provides an approach to capture the potential of reducing pre-
diction errors according to the final model, which represents the relative importance of
different independent variables. The square importance of an independent variable xi can
be defined as Equations (12) and (13):

I2
xi
=

1
m

m

∑
j=1

I2
xi

(
Tj
)

(12)

I2
xi

(
Tj
)
=

h

∑
k=1

dk (13)

where Ixi is the relative importance of independent variable xi; Ixi

(
Tj
)

denotes the relative
importance of independent variable xi when a decision tree is added to the model; dk is the
corresponding improvement of squared errors if setting variable xi as the jth split node for
each tree T; and k represents the number of terminal nodes.

3.4.2. Partial Dependence Plots (PDPs)

The GBDT approach can depict the associations between the predicted outcome
and the independent variable (usually, one or two) by producing PDPs when the other
independent variables are controlled. This feature enables this study to visualize the
nonlinear associations between different independent variables and the potential GHG
emission reduction of DBS trips. Moreover, PDPs can be used to evaluate the interaction
effects between road network topological variables and built environment variables. The
partial dependence of fs on xs can be defined as Equation (14):

fs(xs) = Exc [ f (xs, xc)] (14)

where xc are the other control variables; and Exc [ f (xs, xc)] represents the marginal expec-
tation value of f (xs, xc). Specially, f (xs, xc) can be calculated by the mean value of the
training dataset as Equation (15):

f s(xs) =
1
n

n

∑
i=1

[ f (xs, xc)] (15)

4. Study Area and Data Processing
4.1. Study Area

Shenzhen is one of the four economically developed first-tier cities in China and
the central hub of the Guangdong–Hong Kong–Macau Greater Bay Area. In 2016, a
DBS operation mode based on the Internet was introduced to Shenzhen. At present,
Shenzhen has developed a well-established DBS system. Moreover, Shenzhen shares
similar characteristics with many other cities in China in terms of planning and operating
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strategies for DBS. Therefore, we selected the administrative district of Shenzhen as the
study area (Figure 2). According to previous studies [79,81], grid cells of 500 m × 500 m
were determined as the units of analysis in this study. After removing grids without DBS
trips, we attained 4260 grids for further analysis.
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4.2. Data Sources and Processing

Three datasets, DBS order data, traffic GHG emission factor data, and the split rate
data of various transport modes, were used to compute the dependent variable. Another
three datasets, road network data, population data, and urban point of interest (POI) data,
were applied to compute the independent variables.

4.2.1. DBS Order Data

The DBS order data were collected from the Shenzhen data open platform (https:
//opendata.sz.gov.cn/, accessed on 5 June 2022). The sample dataset used by this study
spans the period from February 1 to February 14 in 2021, covering 14 days. The fields of
data records contain bike ID, company ID, start time, end time, start longitude, start latitude,
end longitude, and end latitude. According to the longitude and latitude information of
origins and destinations, we computed the distance and the duration of each DBS trip. We
removed the DBS trips with a distance less than 100 m or a duration less than 60 s [29,39].
Moreover, the trips with origins or destinations outside the study area were also deleted. In
addition, we filtered out the invalid data and the data records with errors. After the above
data preprocessing, 13,726,046 data records were included in this study.

4.2.2. Traffic GHG Emission Factor Data

The GHG emission coefficients of various urban travel modes in Equation (1) are
sourced from the China products carbon footprint factors database (http://lca.cityghg.
com/, accessed on 16 May 2022). In the database, the average GHG emission coefficient of
buses is 0.01 kg CO2-eq/pkm, the average GHG emission coefficient of metros is 0.015 kg
CO2-eq/pkm, the average GHG emission coefficient of taxis is 0.03 kg CO2-eq/pkm, and
the average GHG emission coefficient of cars is 0.034 kg CO2-eq/pkm (Table 1).

https://opendata.sz.gov.cn/
https://opendata.sz.gov.cn/
http://lca.cityghg.com/
http://lca.cityghg.com/
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Table 1. GHG emission coefficients of various travel modes.

Bus Metro Taxi Car

GHG emission coefficient
(kg CO2-eq/pkm) 0.01 0.015 0.03 0.034

4.2.3. Split Rate Data of Different Transport Modes

The split rate data of various transport modes were obtained from the Seventh Resident
Travel Survey of Shenzhen. According to the survey results, in Shenzhen, the proportion
of travel in private cars is 53%, the proportion of travel by bus is 18%, the proportion of
travel by metro is 20%, the proportion of travel in taxis is 5%, and other modes account for
3%. Based on the above three datasets and Equation (1), we calculated the potential GHG
emission reduction of DBS trips in each study grid. Figure 3 shows the spatial distribution
of the potential GHG emission reduction of DBS trips in Shenzhen.
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4.2.4. Road Network Data

The road network data were obtained from an open geographic map database, Open-
StreetMap (https://www.openstreetmap.org/, accessed on 20 March 2021). Some roads
and transportation facilities were removed as follows: (1) restricted roads that are located
in an enclosed area such as a community, school, park, etc.; (2) roads that are impassable or
restricted for bikes; (3) pedestrian road-supporting facilities such as steps, overpasses, etc.
In addition, road centerline vector data are necessary for sDNA analysis. However, the road
network data from OpenStreetMap is multiline data (one road is represented by multiple
lines). Therefore, we extracted the road centerline vector data from simplified road network
data through GIS tools including Buffer, Reclass, and ArcScan. On this basis, we calculated
the closeness and betweenness within the various search radii of the road networks in
each grid according to Equations (2)–(4). The search radii include 800 m, 1600 m, 2500 m,
3000 m, 5000 m, 8000 m, 10,000 m, 15,000 m, and 20,000 m, which reflect the topological
features of the road networks under different research scales. In addition, these search radii
can cover nearly all the DBS orders with different trip distances and trip durations. We
finally selected the search radius of 5000 m, which corresponds to the GBDT model with
the optimal goodness of fit. Therefore, NQPDA5000 and TPBtA5000 were used to represent
the road network topological variables in this study (Figure 4).

https://www.openstreetmap.org/
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Figure 4. Road networks and their topological measurements in Shenzhen: (a) NQPDA5000;
(b) TPBtA5000.

4.2.5. Population Data

The population density data of Shenzhen is sourced from the WorldPop website
(https://www.worldpop.org, accessed on 15 January 2023). According to the data from
the Seventh Population Census of Shenzhen, we further amended the population data of
each grid in the study area. Based on the above grid population data, we used the method
proposed by Li and Liu (2018) [82] to extract eight urban centers of Shenzhen (as shown in
Figure 5). Since regional location is crucial to DBS trips, the distance of each grid centroid
to the closest city center centroid was computed to interpret the impacts of its location in
the study area.
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4.2.6. Urban POI Data

The urban POI data were acquired from Gaode Map (https://lbs.amap.com/, accessed
on 5 March 2021). This dataset contains 12 types of POIs, including transport-related, restau-
rant, life service, sports, enterprises, hospital-related, commercial residence, government
organization, education-related, shopping, hotel-related, and tourist-related. This dataset
enables us to estimate the land use in the grids by measuring the density of each type
of POI [29,30]. Moreover, we computed the distance of each grid centroid to its nearest
bus stop/metro station. Furthermore, we measured the POI mix entropy in each grid
to quantify the land use mixture of different research regions, which is formulated as
Equation (16):

PMEi = −
n

∑
i=1

Pik × logPik (16)

where PMEi denotes the POI mix entropy of the study grid i; and Pik represents the ratio of
the kth POI in the study grid i. Table 2 presents the descriptive statistics of the dependent
variable and independent variables used in this study.

Table 2. Descriptive statistics of the dependent variable and independent variables.

Variables Description Data Sources Min Max Mean St. Dev

The potential GHG
emission reduction of

DBS trips

Transport-related GHG emission
reduction caused by DBS in each
study grid, kgCO2-eq

(1) DBS data of the
Shenzhen data open
platform
(2) China products
carbon footprint factors
database
(3) The Seventh
Resident Travel Survey
of Shenzhen

0 2019.04 97.29 192.13

NQPDA5000
The closeness within the network
radius R (R = 5000 m) of each
study grid, scale

(4) OpenStreetMap
geographic map
database

0 2.96 1.06 0.63

TPBtA5000
The betweenness within the
network radius R (R = 5000 m) of
each study grid, scale

0 92.52 14.20 13.04

Population density Population per km2 in each study
grid, persons/km2

(5) WorldPop
population data website 0 187,516.4 14,205.8 16,343.52

Restaurant density Number of restaurants per km2 in
each study grid, count/km2

(6) The urban POI data
from Gaode Map 0 1084 64.08 111.69

Life service density Number of life services per km2 in
each study grid, count/km2 0 612 34.16 64.26

Commercial residence
density

Number of commercial residences
per km2 in each study grid,
count/km2

0 864 23.52 36.81

Government
organization density

Number of government
organizations per km2 in each
study grid, count/km2

0 308 12.79 26.49

Enterprise density Number of enterprises per km2 in
each study grid, count/km2 0 1824 116.63 178.29

Education facility
density

Number of education facilities per
km2 in each study grid,
count/km2

0 584 23.32 43.55

Hotel facility density Number of hotel facilities per km2

in each study grid, count/km2 0 612 10.03 25.74

Sport facility density Number of sport facilities per km2

in each study grid, count/km2 0 300 14.51 25.80

https://lbs.amap.com/
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Table 2. Cont.

Variables Description Data Sources Min Max Mean St. Dev

Medical service
density

Number of medical services per
km2 in each study grid,
count/km2

0 268 17.43 31.60

Shopping density
Number of shopping services per
km2 in each study grid,
count/km2

0 88 4.37 8.21

Tourist attraction
density

Number of tourist attractions per
km2 in each study grid,
count/km2

0 152 1.83 5.80

Land use mixture
Mix entropy of various types of
POIs, calculated by Equation (16),
scale

0 2.41 1.13 0.80

Bus stop density Number of bus stops per km2 in
each study grid, count/km2 0 412 33.38 49.47

Distance to the
nearest bus stop

Distance from the centroid of each
study grid to the nearest bus
stop, m

2.67 3182.95 357.15 349.60

Metro station density Number of metro stations per km2

in each study grid, count/km2 0 12 0.25 1.09

Distance to the
nearest metro station

Distance from the centroid of each
study grid to the nearest metro
station, m

15.93 31,163.89 2255.06 2670.99

Distance to the
nearest city center

Distance from the centroid of each
study grid to the nearest city
center, m

43.94 41,058.5 6063.92 3938.47

5. Results and Discussion
5.1. Model Regulation

To avoid potential overfitting and obtain model results with robustness, this study
applied a five-fold cross-validation to train the GBDT model. According to previous
studies [77,78,83], we set the learning rate at 0.001. Using the “HyperOpt” package in the
Python language, two other crucial parameters were determined: the number of trees and
tree complexity. Via this powerful Python library, we finally set the maximum number of
trees at 10,000 and chose a tree complexity of 10. The pseudo R2 of the best model is 0.346.

5.2. Relative Importance of Independent Variables

Table 3 illustrates the relative importance of all the independent variables in predicting
the potential GHG emission reduction of DBS trips and their contribution rankings. Both
road network topological variables collectively contribute to 37.81% of the prediction, which
shows their important role in reducing GHG emissions and guiding the development of
DBS in Shenzhen. This partly corresponds to a study illustrating the important role of
street patterns in influencing bike-sharing usage [29]. In particular, the relative importance
of NQPDA5000 is 31.32%, while the contribution of TPBtA5000 accounts for 6.49%, ranking
first and fifth. This indicates that closeness has a stronger predictive power in predicting the
potential GHG emission reduction of DBS trips compared to betweenness. Among all the
independent variable categories, the contribution of land use attributes is second only to
road network topology, with a relative importance of 28.69%. Specifically, the contributions
of the 12 land use variables range from 1% to 4%. The relative importance of commercial
residence density, enterprise density, and POI mix entropy exceeds 3%. This finding
suggests that, compared to other land use variables, a high density of employment and
housing plays an indispensable role in predicting the potential GHG emission reduction of
DBS trips. Also, all land use variables have at least a relative importance of 1% for prediction.
Transit-related variables collectively explain 17.17% of the variation in predicting the
dependent variable, ranking third among all variable categories. Overall, bus stop density
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contributes more to predicting the potential GHG emission reduction of DBS trips than
metro station density. However, the relative importance of distance to the nearest metro
station is greater than that of distance to the nearest bus stop, consistent with previous
studies [1,30,54]. This phenomenon is probably due to bus stops being more easily available,
whereas metro stations can provide more ridership. In addition, the contribution of the
distance to the nearest station to the prediction is much higher than station density, whether
it is bus or metro. The relative importance of population density and distance to the nearest
city center account for 8.95% and 7.38%, respectively, ranking third and fourth.

Table 3. Relative importance of independent variables in predicting the potential GHG emission
reduction of DBS trips.

Categories Variables Ranking Relative Importance (%) Sum (%)

Road network topological
attributes

NQPDA5000 1 31.32 37.81
TPBtA5000 5 6.49

Population Population density 3 8.95 8.95

Land use

Restaurant density 12 2.71 28.69
Life service density 16 1.72

Commercial residence density 9 3.01
Government Organization density 13 2.53

Enterprises density 7 3.98
Education facility density 11 2.80

Hotel facility density 17 1.53
Sport facility density 14 2.41

Medical service density 15 1.77
Shopping density 19 1.12

Tourist attraction density 18 1.22
POI mix entropy 8 3.89

Transport accessibility

Bus stop density 10 2.99 17.17
Distance to the nearest bus stop 6 4.91

Metro station density 20 0.13
Distance to the nearest metro station 2 9.14

Regional location Distance to the nearest city center 4 7.38 7.38

5.3. Nonlinear Effects of Independent Variables

By visualizing the marginal effects of road network topological variables and built en-
vironment variables with PDPs, we further investigated the effective ranges and threshold
effects of each independent variable on predicting the potential GHG emission reduction
of DBS trips. As is shown in Figure 6, we plotted the PDPs of the eight most important
variables tested in the GBDT model.
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5.3.1. Road Network Topological Variables

Figure 6a illustrates the nonlinear impacts and threshold intervals of NQPDA5000
when predicting the potential GHG emission reduction of DBS trips. As NQPDA5000
increases from 0.6 to 1.75, the predicted value rapidly increases from 39 to 180 kgCO2-eq.
In this interval, NQPDA5000 is positively related to the predicted value. When the value of
NQPDA5000 is within the ranges of 0 to 0.6 and 1.75 to 1.87, the predicted value decreases,
but the change is relatively small (the former is about 10 kgCO2-eq, the latter is about
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6 kgCO2-eq). When the value of NQPDA5000 exceeds 1.87, the predicted value increase
slightly. Overall, there is a positive correlation between NQPDA5000 and the predicted
value. The reason is that as the value of closeness increases, the accessibility of the road
networks gradually improves. Previous studies have proven that road networks with better
accessibility can promote bike usage [41,54]. Moreover, multitudinous commercial centers,
recreation places, office buildings, catering, and other facilities are located in the adjacent
areas where the closeness of road networks is high. These factors stimulate bike-sharing
travel and corresponding GHG emission reduction. In addition, 1.75 may be a critical value
for the effective range of NQPDA5000. The impact of NQPDA5000 becomes trivial when it
exceeds 1.75. Furthermore, whether in the design or construction stages, the closeness of
road networks cannot increase indefinitely. In Shenzhen, government managers should
focus on the changes in DBS’s GHG emission reduction with NQPDA5000 ranging from 0.6
to 1.75. Correspondingly, planners should also refer to the value of closeness in Shenzhen
when designing bike lanes and road networks. Meanwhile, bike-sharing enterprises should
appropriately expand the service scope of shared bikes in areas where NQPDA5000 is less
than 0.6. For areas where NQPDA5000 exceeds 1.75, the number of shared bikes should
be increased.

As shown in Figure 6b, the nonlinear association between TPBtA5000 and the potential
GHG emission reduction of DBS trips presents a U-shaped relationship. As TPBtA5000
increases from 0 to 10.5, the predicted value of DBS decreases rapidly. Subsequently, it
becomes flat with a slight decrease when TPBtA5000 increases from 10.5 to 36. By contrast,
when TPBtA5000 exceeds 36, the predicted value increase rapidly again. Overall, when
the value of TPBtA5000 is larger or smaller, nearby DBS orders often have relatively high
GHG emission reduction potential. For these areas, the number of shared bikes should be
increased. In fact, urban expressways, arterial roads, or the roads which locate in urban
core areas often have a higher value of betweenness. In general, the closeness of the road
networks in such areas is also relatively high. Furthermore, the street links which have
a lower betweenness are mainly situated in the suburban areas of the urban periphery
or the branch roads connected to the main roads of the urban core areas. For the former,
travelers frequently need to ride longer distances to complete the “first mile” and “last
mile” of their trips. For the latter, the branch roads bear the microcirculation function of the
urban transport system and are close to the main roads, transport stations, and commercial
districts. Nearby areas have the potential to form more DBS orders.

5.3.2. Built Environment Variables

The relationship between the potential GHG emission reduction of DBS trips and the
distance to the nearest metro station shows a V-shaped curve, and the turning point is
about 2500 m (Figure 6c). When distance to the nearest metro station increases from 0 to
1000 m, the predicted value is limited at a higher level, and its change is trivial. As the
distance to the nearest metro station increases from 1000 to 2500 m, the predicted value
sharply decreases by about 33 kgCO2-eq. For the previous interval, the number of shared
bikes should be increased to maximize GHG emission reduction potential. For the latter
interval, bike-sharing enterprises should appropriately expand the service scope of shared
bikes. When distance to the nearest metro station exceeds 2500 m, the predicted value
increases again and gradually levels off. In this interval, bike-sharing enterprises should
further adjust their electronic fence and rebalance scheme to enhance the potential GHG
emission reduction of DBS trips.

As shown in Figure 6d, the relationship between the potential GHG emission reduction
of DBS trips and the distance to the nearest bus stop shows a V-shaped curve, and the
turning point is about 320 m. As the distance to the nearest bus stop increases from 0
to 320 m, the predicted value decreases by about 4 kgCO2-eq. Some travelers whose
destinations are bus stops tend to walk within this distance range. The trip distance of
bike-sharing users who complete their “last mile” between bus stops and their residences is
usually relatively short. To some extent, this inhibits the potential GHG emission reduction
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of DBS trips. Bike-sharing enterprises should appropriately expand the service scope of
shared bikes within this distance interval. When distance to the nearest bus stop increases
from 320 to 770 m, the predicted value rapidly increases from 84 to 98.7 kgCO2-eq. In this
range, bike-sharing enterprises should further adjust their electronic fence and rebalance
scheme to increase the potential GHG emission reduction of DBS trips. The impact of the
distance to the nearest bus stop becomes trivial when it exceeds 770 m. In this interval,
the number of shared bikes should be increased to maximize GHG emission reduction
potential. It is worth noting that compared to bus stops, the distance critical value for metro
stations to have a positive impact on the potential GHG emission reduction of DBS trips
is larger. This phenomenon is reasonable because the service scope of metro stations and
their ability to attract DBS trips are significantly higher than that of bus stops [28,84].

The nonlinear association between the potential GHG emission reduction of DBS
trips and population density presents an inversely N-shaped relationship (Figure 6e). This
finding is not consistent with other empirical studies, which implies that population density
is positively associated with bike-sharing usage [21,28]. As population density increases
from 0 to 5000 persons per km2, the predicted value decreases for unknown reasons.
When population density ranges from 5000 to 37,500 persons per km2, the predicted value
fluctuates but shows a trend of continuous growth. In contrast, when population density
exceeds 37,500 persons per km2, the predicted value decreases again. This may be due
to excessive population density leading to a decrease in cycling comfort within areas.
Therefore, some bike-sharing cyclists choose other transport modes or use shared bikes in
other areas. Overall, when the population density is about 37,500 persons per km2, the
predicted value reaches its peak. Bike-sharing enterprises should rebalance shared bikes
in areas with higher population density. By appropriately reducing the number of shared
bikes in these areas during peak hours, the waste of traffic resources can be avoided.

As shown in Figure 6f, the nonlinear association between the potential GHG emission
reduction of DBS trips and the distance to the nearest city center presents an inversely
N-shaped relationship. When distance to the nearest city center is lower than 2000 m, it has
a negative association with the predicted value. This is consistent with our understanding
that the attraction of city centers for bike-sharing trips gradually diminishes as distance
increases. When the distance to the nearest city center ranges from 2000 to 3000 m, it has a
positive effect on the predicted value. This distance range corresponds to the optimal travel
distance for bike sharing, while travelers are attracted to city centers. Travelers with trip
starting points within this range will have to walk longer distances to reach city centers.
Moreover, the usage of public transport and private cars may hinder their travel experiences
and convenience because of issues such as traffic congestion and difficulty finding parking.
Therefore, bike sharing has emerged as the optimal solution. In this distance range, the
number of shared bikes should be increased to enhance GHG emission reduction potential.
Notably, as the distance to the nearest city center increases from 3000 to 6800 m, the
predicted value decreases drastically. When the distance to the nearest city center is 3000 m,
the predicted value seems to be a local peak. In this interval, bike-sharing enterprises
should appropriately decrease the number of shared bikes. Furthermore, when distance to
the nearest city center exceeds 6800 m, the association between it and the potential GHG
emission reduction of DBS trips presents an inversely U-shaped relationship. In this range,
the change in the predicted value is relatively small (about 4 kgCO2-eq). The service scope
of shared bikes should be appropriately expanded within this distance interval.

The relationship between enterprise density and the potential GHG emission reduction
of DBS trips shows a V-shaped curve, and the turning point is about 90 counts per km2

(Figure 6g). When enterprise density increases from 0 to 90 counts per km2, the predicted
value rapidly decreases by about 16 kgCO2-eq. In contrast, as enterprise density exceeds
90 counts per km2, the predicted value continuously increases. There are inherent reasons
for the emergence of this phenomenon. On the one hand, some areas with a lower enterprise
density are located at the urban fringe and in suburbs. Public transport commuters in
these areas may need to use DBS to complete the “first mile” and “last mile” of their trips.
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Moreover, they usually ride a long distance. On the other hand, although enterprise density
in some areas is low, there are more job opportunities in the adjacent areas near them. This
means that travelers in these areas can use bike sharing to complete commuting, which
will enhance the probability to form more bike-sharing orders. Notably, when enterprise
density ranges from 250 to 270 counts per km2, the predicted value increases at the fastest
rate. When enterprise density exceeds 390 counts per km2, the increase rate of the predicted
value ranked second. Therefore, bike-sharing operators should focus on the reasonable
allocation of shared bikes and the optimization of their electronic fence in areas with an
enterprise density ranging from 250 to 270 counts per km2, rather than only focusing on
areas with the highest enterprise density. In addition, encouraging new companies to settle
in the areas corresponding to this range is also one of the options to increase the GHG
emission reduction potential of bike sharing in these areas.

Figure 6h depicts that POI mix entropy has a positive association with the potential
GHG emission reduction of DBS trips. This is in accordance with the current literature that
has examined the relationships between land use and bike-sharing trips [31,52]. When the
entropy index increases from 0 to 1.7, the predicted value fluctuates, and the largest change
is only about 2.5 kgCO2-eq. Subsequently, as the entropy index exceeds 1.7, the predicted
value starts to increase. In particular, the predicted value increases with the greatest rate of
rise when the entropy index exceeds 2.05. This indicates that 2.05 may be a critical value for
the effective range of POI mix entropy. Bike-sharing trips and their related GHG emission
reduction effect increases substantially when the entropy index exceeds this critical value.
For areas with entropy values less than 1.7, the service scope of shared bikes should be
appropriately expanded. Furthermore, the areas with an entropy value ranging from 1.7 to
2.05 are potential areas for increasing various service facilities and POIs. In addition, for
areas with an entropy value exceeding 2.05, the number of shared bikes should be increased
to enhance GHG emission reduction potential.

5.4. Interaction Effects between Road Network Topological Variables and Built
Environment Variables

PDPs with two input features can help us further examine how some variables moder-
ate the effects of the other variables in predicting the potential GHG emission reduction
of DBS trips. Figure 7 presents these interaction effects between road network topological
variables (NQPDA5000 and TPBtA5000) and the other six most important variables. For
different built environment variables, the same road network topological variable shows
similar moderating effects as follows. Overall, the impact of each variable on the potential
GHG emission reduction of DBS trips increases as the value of the closeness variable in-
creases. In contrast, when the value of the betweenness variable is too large or too small,
it presents evident moderating effects on each variable. These findings correspond to the
effective ranges of NQPDA5000 and TPBtA5000, as illustrated in Section 5.3. Notably,
compared with betweenness, closeness has a greater moderating effect on the nonlinear
associations between each variable and the potential GHG emission reduction of DBS
trips. For example, the variation in the predicted GHG emission reduction of DBS trips
exceeds 200 kgCO2-eq when the input features are NQPDA5000 and population density
(Figure 7(a1)). However, the variation in the predicted GHG emission reduction of DBS
trips is less than 60 kgCO2-eq when the input features are TPBtA5000 and population
density (Figure 7(b1)). This indicates that closeness may have a more significant inter-
action effect on the other independent variables than betweenness. The reasons for this
phenomenon are elucidated in the following. For one thing, due to the better performance
in topological centrality and integration, the road networks with the higher closeness have
become a more attractive option for bike trips and other traffic flows in adjacent areas. In
the meantime, the potential for experiencing traffic congestion is more likely to occur on
these road networks. Thus, to avoid excessive queues and slower vehicle speeds, some
travelers prefer to adapt to bike sharing rather than a motorized travel mode. For another,
the POIs with multiple service functions are often distributed in the road networks with the
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higher closeness, and cyclists can easily reach their potential destinations. Consequently,
there is a greater probability that the DBS orders with shorter trip distances and shorter
trip durations are formed in adjacent areas.
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5.5. Comparison with Linear Regression

To verify the rationality of the nonlinearity assumption between independent variables
and the dependent variable, we developed an ordinary least squares (OLS) model and
compared it with the GBDT model. Table 4 shows the estimated coefficients and the relative
importance of all the independent variables in the OLS model. With respect to the research
topic of this study, the GBDT model has obvious advantages in a few aspects. On one hand,
34.6% of the variation in the potential GHG emission reduction of DBS trips is explained by
the GBDT model. However, the R2 of the OLS model is 0.244, which means that only 24.4%
of the variation is explained by the same independent variables. The PDPs in the GBDT
model also show these nonlinear relationships and the impact threshold of each variable.
That is because GBDT does not assume any form of linear relationship between the potential
GHG emission reduction of DBS trips and independent variables. In contrast, the OLS
model has a limited capacity to reveal the potential nonlinear associations, and its PDPs can
only illustrate the positive or negative effects of each variable. Other scholars have obtained
similar results in their studies [79,83]. On the other hand, the GBDT model considers the
interaction effects among the variables at different levels of the decision trees. In Section 5.4,
we illustrated the interaction effects between road network topological variables and built
environment variables. Usually, the OLS model and other linear regression models are
unable to analyze these effects.

Table 4. The results of the OLS model.

Variables Coefficients Relative
Importance (%) Sum (%)

NQPDA5000 130.81 33.44 37.38
TPBtA5000 −1.59 3.93

Population density 0.0016 12.66 12.66
Restaurant density −0.12 2.38 38.40
Life service density 0.09 2.54

Commercial residence density 0.50 6.15
Government organization density 0.25 4.39

Enterprise density −0.05 2.42
Education facility density 0.17 6.35

Hotel facility density 0.24 1.97
Sport facility density 0.85 5.04

Medical service density −0.40 2.34
Shopping density −0.33 1.39

Tourist attraction density −0.03 0.37
POI mix entropy −15.23 3.07
Bus stop density 0.21 3.28 9.26

Distance to the nearest bus stop 0.05 2.46
Metro station density 0.83 0.94

Distance to the nearest metro station −0.0024 2.58
Distance to the nearest city center 0.0015 2.30 2.30

Sample size 4260
R-squared 0.244

6. Conclusions

This study designed a research framework to identify the nonlinear impacts of road
network topological attributes and built environment elements on the potential GHG
emission reduction of DBS trips in Shenzhen, China. Various methods were employed in
this research framework, including a GHG emission reduction estimation model, spatial
design network analysis (sDNA), gradient boosting decision tree (GBDT) algorithm, and
partial dependence plots (PDPs). Furthermore, we also assessed the interaction effects
between road network topological variables and built environment variables. The findings
contribute to the existing knowledge of bike sharing’s environmental benefits by providing
empirical evidence. In addition, the insights gained from this study may be of assistance
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to bike-sharing system planning, bike-sharing rebalancing strategy optimization, and
low-carbon travel policy formulation. The main research conclusions are summarized in
the following.

First, the eight most important variables for the potential GHG emission reduction
of DBS trips are NQPDA5000, distance to the nearest metro station, population density,
distance to the nearest city center, TPBtA5000, distance to the nearest bus stop, enterprise
density, and POI mix entropy. In particular, the total contribution of the road network
topological variables ranks first among all the variables, exceeding the land use variables
and transit-related variables. This result confirms the leading role of road network topolog-
ical attributes in determining the potential GHG emission reduction of DBS trips. In fact,
road network topological factors have often been ignored in previous studies. Therefore, it
is necessary to consider road network topological variables in the future research on the
environmental benefits of bike sharing and other travel modes.

Second, the nonlinear influences of road network topological variables and built
environment variables are prevalent and show certain threshold intervals for the potential
GHG emission reduction of DBS trips. The results show that when NQPDA5000 reaches
1.75, and the distance to the nearest metro station, population density, distance to the
nearest city center, and distance to the nearest bus stop reach 1000 m, 37,500 persons per
km2, 3000 m, and 770 m, respectively, the potential GHG emission reduction of DBS trips
in Shenzhen reaches critical values. For the sake of increasing the potential GHG emission
reduction effectively, some threshold intervals suggested by our empirical findings also
need to be considered. For example, NQPDA5000 should be within 0.6–1.75; the distance
to the nearest metro station should be within 1000 m; the distance to the nearest city
center should be within 2000–3000 m; the distance to the nearest bus stop should be within
320–770 m; enterprise density should be within 250–270 counts per km2; and the POI mix
entropy should exceed 2.05. Furthermore, TPBtA5000 becomes effective when it is within
10.5 or it exceeds 36. The threshold effects of each variable inform planners and policy
makers to meticulously adjust land use guidelines and built environments. In addition,
bike-sharing operators can utilize this quantitative evidence to design their electronic fence
and optimize their bike-rebalancing scheme.

Third, the impact of built environment attributes on the potential GHG emission
reduction of DBS trips is moderated by road network topological indicators (closeness and
betweenness). Specifically, the larger positive effect of each built environment variable
corresponds to the higher value of the closeness. In contrast, when the value of the between-
ness variable is too large or too small, the impact of each variable reaches the higher level.
In comparison to betweenness, closeness moderates the effects of the built environment
attributes in a significant way. These findings provide a new inspiration for future urban
road network planning and design. Furthermore, it also provides more opportunities for
planners to formulate a more sustainable and green transportation development blueprint.
Bike-sharing operators should pay attention to the impact of road network topological
attributes (especially closeness) on the environmental benefits of bike sharing. When con-
sidering the influence of road network topology, planners can also supply cyclists with a
more comfortable and convenient urban built environments.

Further studies are required to address the following limitations. First, the gener-
alizability of the effective thresholds found in Shenzhen should be further investigated.
Shenzhen is one of the four first-tier megacities in China, with a high level of urbanization
and a mature bike-sharing operation system. Therefore, we selected Shenzhen as a case
study to examine the capability of DBS to reduce GHG emissions. However, the road
networks of Shenzhen show typical cluster layout characteristics, and the research findings
of such cites may be unique [78]. Future work should examine more cities with other forms
of layout (such as linear layout and satellite layout). Second, existing studies have proven
that the topological features of urban road networks can affect the route choice tendency
of travelers, especially slow traffic participants [32–34]. Due to the protection of travelers’
privacy by bike-sharing operators, we are unable to contact the order users. This means that
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we cannot investigate the socioeconomic attributes of travelers and their views on how road
network topology affects travel behavior. It is recommended that researchers further extend
the results of our study from this perspective. Third, this study only evaluated the nonlinear
associations between the influencing factors and the potential GHG emission reduction
of bike-sharing operations. However, bike sharing still has environmental impacts from
the other phases of its life cycle (e.g., bike manufacturing and bike rebalancing) [12,44,45].
We encourage researchers in related fields to comprehensively analyze and compare the
life cycle GHG emission characteristics and influencing factors of bike-sharing systems.
Fourth, the computing method to assess the potential GHG emission reduction of DBS
trips needs to be further explored. On the one hand, the emerging modes of transporta-
tion (e.g., personal e-scooters, e-bikes) and the economic factors (e.g., bicycle loan costs,
public transport fares, and fuel costs for private vehicles) should also be covered by future
research. On the other hand, more precise results can be obtained if the potential travel
mode replacement of each DBS trip is estimated accurately. This would be a fruitful area
for further work. On this basis, planners can better understand the internal associations
among the environmental footprint of bike-sharing systems, urban built environments, and
socioeconomic factors. Moreover, these findings can also provide decision makers with
more refined policy recommendations.
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