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Abstract: The scientific assessment and prediction of nearshore water quality are crucial for marine
environment protection efforts. This study is based on a comprehensive analysis of existing assess-
ment and prediction methods and considers the regular and random characteristics of nearshore
seawater quality due to both natural and anthropogenic influences. It proposes a new method that
applies the kriging interpolation algorithm to empirically generated spatio-temporal semivariograms
to assess and predict seawater quality. The application of this method in Fujian coastal areas shows
that it is able to flexibly and scientifically estimate the variations in various indicators in the region.
Combined with GIS spatial data overlay analysis operations, it can be used to quantitatively evaluate
different qualities of seawater and provide scientific guidance for marine environmental protection.
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1. Introduction

The quality of seawater has a direct impact on marine ecosystems and human health [1].
Pollutants and contaminants in seawater can seriously harm marine life and ultimately
disrupt the stability of the entire marine ecosystem. Pollutants in seawater can also enter
the human body through the food chain, posing a potential threat to human health [2,3].
The comprehensive monitoring of changes in the quality of seawater, especially coastal
seawater, along with the accurate and quantitative scientific assessment and prediction
of the quality of seawater, can provide a scientific basis for rational and effective ocean
management. However, due to the joint influences of natural factors—such as tides, ocean
currents, hurricanes, and river inflows—and human factors—such as industrial discharges,
agricultural nonpoint source pollution, domestic sewage, and marine debris, changes in
the quality of water in nearshore areas exhibit both regularity and randomness. This poses
numerous challenges for timely scientific and quantitative assessments and predictions of
the quality of nearshore seawater [4–6].

Based on the regularity of changes in nearshore seawater quality, many recent studies
have introduced machine learning (ML) and artificial intelligence (AI) technologies for
assessing and predicting nearshore seawater quality. By analyzing and studying a large
volume of existing sample data, ML and AI technologies can reveal underlying patterns
of changes in water quality and thereby assess and predict the quality of water. The
study in [7] uses AI technology that includes multi-layer perceptrons and support vector
machines to predict aspects of water quality. The study in [8] improves the accuracy of
various ML models through optimization and parameter adjustment. The study in [9]
proposes advanced AI algorithms to predict the water quality index (WQI) and classify
water quality based on its robustness. The study in [10] presents an AI-based binary
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classification model, Easy Ensemble, that uses class imbalance learning to predict “very
bad” situations, and it achieves accurate predictions for beach closing times. In general,
the current applications of ML and AI technologies in water quality prediction focus on
exploring internal regularities within large-scale data to achieve scientific quantitative
evaluations of changes in water quality. However, due to the influence of various human
factors, changes in coastal seawater quality also exhibit a certain degree of randomness
within regions. Thus, the exploration of regularity alone does not fully reflect the actual
changes in seawater quality. Furthermore, due to the inability to provide large-scale sample
data for ML or AI in practice, the predicted values obtained using ML or AI methods cannot
obtain the required accuracy.

Therefore, many studies on assessing and predicting changes in seawater quality also
consider the random components that are influenced by human activities and sudden
pollution events based on small-scale data sets. Although there is relatively little research
on the application of geostatistical methods in predicting seawater quality, such methods
have been widely used in monitoring and predicting environmental quality factors. These
studies are mostly based on statistical analysis and techniques from the field of geostatistics,
such as regression analysis, time series analysis, and factor analysis, using the theory and
technology of regionalized variables. The study in [11] combines chemometrics and geo-
statistics to characterize soil geochemistry and microspatial variability along groundwater
flow paths, illustrating that chemometric and geostatistical analyses can be powerful tools
for studying biogeochemical cycles and sources of groundwater pollutants. The study
in [12] uses geostatistical methods to characterize the spatial distribution of groundwater
quality parameters and assess the suitability of groundwater for drinking and irrigation.
The study in [13] applies comprehensive statistical, geostatistical, and spatial interpolation
methods to analyze groundwater hydrochemistry data from 79 boreholes near Leliefontein
in the South African Kamiesberg Local Municipality, using inverse distance weighting for
major cations and major anions, the sodium adsorption ratio, electrical conductivity, and
the WQI for geostatistical and spatial analysis interpolation. The study in [14] compre-
hensively analyzes the main factors and processes controlling the water quality of some
coastal aquifers through a combination of principal component analysis, cluster analysis,
geostatistical analysis, and an entropy-based groundwater quality index, along with a de-
tailed hydrogeochemical assessment. In general, the research that uses statistical analyses
is based on the theory of regionalized variables, that is, that water quality changes are
random in space. The advantage of this theory is that it reveals not only the regularity of
water quality distribution, but also the randomness of water quality changes. Introducing
the theory and technology of statistical analysis in the assessment and prediction of coastal
seawater quality can compensate for the shortcomings of ML or AI technology in detecting
random characteristics based on a large-scale data set.

The present study considers both the regularity and the randomness of changes in
nearshore seawater quality, incorporates the theory of regionalized variables in geostatis-
tics, and scientifically evaluates and accurately predicts the nearshore seawater quality.
Specifically, the objectives of this study are as follows: (1) to use the theory and technol-
ogy of regionalized variables to study the spatial and temporal correlations of historical
seawater quality data; (2) to use historical data on nearshore water quality observations
as the research object to uncover both the regular and the random components of water
quality changes, thereby achieving trend predictions for changes in water quality; and
(3) to conduct a comprehensive evaluation and quantitative analysis of seawater quality
through the use of GIS overlay analysis technology. We expect that the results of this
study will provide a scientific basis for the accurate evaluation and prediction of coastal
seawater quality.
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2. Methods
2.1. Semivariograms

Geostatistical methods such as empirical means, empirical covariances, and semivar-
iograms are widely used to map environmental factors and estimate the areal values of
environment factors [15]. Investigating spatio-temporal data through empirical means and
covariances offers valuable insights [16,17].

To obtain accurate predictions for a spatio-temporal process, it is imperative to un-
derstand its joint spatio-temporal dependence structure [18]. Therefore, empirical spatio-
temporal covariograms and semivariograms are considered to measure the joint spatio-
temporal dependence. The characterization of the covariability within the spatio-temporal
data, as a function of specific lags in time and space, is of paramount importance.

Consider the empirical spatio-temporal covariance function for various space and
time lags. The empirical spatio-temporal covariogram for spatial lag h and time lag τ is
then given by

⌢
Cz(h; τ) =

1
|Ns(h)|

1
|Nt(τ)| ∑

si ,sk∈Ns(h)
∑

tj ,t↕∈Nt(τ)

(Z(si; tj)−
⌢
µ z,s(si))(Z(sk; t↕)−

⌢
µ z,s(sk)), (1)

where
⌢
µ z,s(si) = (1/T)∑T

j=1 Z(si; tj),
Ns(h) refers to the pairs of spatial locations with a spatial lag within some tolerance h,
Nt(τ) refers to the pairs of time points with a time lag within some tolerance τ, and
|N(·)| refers to the number of elements in N(·).
A semivariogram is used to quantify the spatial and/or temporal autocorrelation

between sample points in a spatial data set. It can characterize the degree of spatial and/or
temporal variation in the variables of a geographical process within a given distance and/or
over a certain period of time. In short, it can help to show how sample data are correlated
with each other as distance and/or time change [19,20]. The semivariogram is defined as

γz(si, sk; tj, t↕) ≡
1
2

var(Z(si; tj)− Z(sk; t↕)). (2)

When the covariance depends only on the displacements in space and differences in
time, this can be written as

γz(h; τ) ≡ 1
2

var(Z(s + h; t + τ)− Z(s; t)), (3)

where
h = sk − si is a spatial lag and
τ = t↕ − tj is a temporal lag.
If the covariance function of a process is well defined, then the semivariogram is

generally characterized by the nugget effect, the sill, and the partial sill. The nugget effect
is given by γz(h; τ) when h → 0 and τ → 0 , the sill is γz(h; τ) when h → ∞ and τ → ∞ ,
and the partial sill is the difference between the sill and the nugget effect. Figure 1 shows
these components of a semivariogram as a function of the spatial distance ||h||.
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Figure 1. Parameters of a semivariogram [21].

The shape of the semivariogram function is critical for understanding and modeling
the correlation structures of the spatial and temporal data, which is essential for accurately
predicting values at unsampled locations through interpolation methods [19]. In addition,
semivariograms can help identify outliers, trends, periodicity, and other structural features
within the data set. More generally, modeling spatio-temporal data by combining covari-
ance functions with semivariograms can provide a more complete understanding of the
intrinsic relationships within the data, which, in turn, facilitates the effective prediction
and simulation of complex spatio-temporal processes [22].

2.2. Spatio-Temporal Separable Model

In this study, the spatial and temporal influences are independent events, and their
joint effect is expressed by multiplication, thereby capturing the overall correlation of the
spatio-temporal factors. The spatio-temporal separable model can be described by the
following formula [23,24]:

Csep(h, u) = Cs(h) · Ct(u), (4)

where
Cs(h) represents the spatial semivariogram, which changes with the difference in the

spatial distance h, and
Ct(u) represents the temporal semivariogram, which changes with the difference in

the time u.
Fitting a theoretical variogram to an empirical variogram is a key step in spatio-

temporal data prediction. First, it helps in understanding and quantifying the spatial
relationships between samples and the variability of sample variables through a parameter-
ized theoretical function. In the spatio-temporal separable theoretical model, the parameters
involved include the nugget, sill, and range. Second, a description of the variability that
is valid for the entire data set can be obtained through model fitting. Compared to the
empirical semivariogram, which can be affected by data sampling errors and may be noisy
and discontinuous, the theoretical variogram provides a smooth, continuous estimate. Next,
predictions of values are made by interpolation operations in the spatio-temporal domain.
The interpolation is based on the weighted average of adjacent sample values, with weights
determined by the semivariogram relationship between samples, all of which require a
theoretical model. Finally, the variogram model can be used to assess the uncertainty of
predictions for unknown sample locations. From the characteristics of the variogram, the
variance in the prediction error can be calculated in order to understand the reliability of
the prediction. A well-fitted theoretical variogram provides a standardized way to describe
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the spatial correlation of a data set, rendering results more comparable across studies
and applications.

2.3. Overlay Analysis with Customized Rules

According to the seawater quality evaluation standard, when evaluating seawater
quality, it is necessary to make give comprehensive consideration to multiple observation
indicators at a certain point. In order to ensure the accuracy and scientificity of the seawater
quality assessment, the evaluation area is first divided into a number of n × n small cell
grids, and the center point of each grid is regarded as the unknown point to be sought
in the subsequent interpolation prediction. Next, using the acquired observation point
data, the spatio-temporal Kriging interpolation algorithm is used to calculate a certain
estimated value of the unknown point. For each small cell within the evaluation area,
the data of multiple indicators are analyzed one by one in accordance with the seawater
quality evaluation criteria, and the seawater quality grade within each small square is
finally determined.

Since the overlay analysis function provided by general GIS software cannot easily
meet the complexity of the seawater quality evaluation standards, it is necessary to define
the overlay rules through customized methods to perform an overlay analysis of multiple
indicators, and ultimately determine the seawater quality level in each small area. The
process of overlay analysis is depicted in Figure 2.
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3. Implementation
3.1. Study Area

This article focuses on the coastal waters of Fujian Province, China, as the area of the
study. The Fujian marine area includes subtropical ocean and a shallow continental shelf
sea, forming a junction of cold and warm currents. The coastal waters under study cover an
area of 36,000 square kilometers, with a diversified marine ecosystem that is rich in various
marine resources, including abundant fishery resources and seabed minerals. The locations
of the region and of the water quality monitoring stations are shown in Figure 3.

The Fujian Sea area, influenced by the Kuroshio Current and the diluting effects
of the Yangtze River’s waters, possesses robust seawater exchange capabilities for self-
purification [25]. However, given the rapidly developing marine economy and the in-
dustrialization and urbanization of coastal areas, the seawater quality of coastal waters is
significantly affected by the byproducts of human activities, including industrial discharges,
agricultural non-point source pollution, domestic sewage, and marine debris. Seawater
quality therefore faces tremendous challenges [26,27]. In order to ensure the sustainable
utilization of marine resources, protect the ecological environment of coastal waters, and
ensure the diversity of marine life and the long-term development of fisheries, Fujian
Province has established 235 water quality monitoring sites to monitor multiple chemical
indicators in real time in its coastal waters.
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3.2. Spatio-Temporal Data Set

The water quality monitoring data used in this study come from the 235 water quality
monitoring points along the coast of Fujian Province that collect data on eight indicators:
the concentrations of suspended solids, dissolved oxygen, reactive phosphates, chemical
oxygen, nitrite nitrogen, nitrate nitrogen, ammonia nitrogen, and total inorganic nitrogen.
To produce quarterly seawater quality indicator data, the province’s Seawater Quality
Control Division collects seawater samples at various locations on a quarterly basis and
measures the concentrations of these indicators in a laboratory environment. The quarterly
data are averaged by indicator to form a data set that reflects the annual change in water
quality. We use the last five years (2019–2023) of annual water quality data as the research
data set for this study. Figures 4 and 5 show the overall spatial distributions of the annual
water quality monitoring data for reactive phosphate and inorganic nitrogen, respectively.
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3.3. Empirical Semivariogram

Using the variogramST () method of the R language package gstat, we can compute
an empirical spatio-temporal semivariogram (or sample variogram) from spatio-temporal
data [28,29]. Figure 6 provides a multi-view visualization of the empirical spatio-temporal
semivariogram. Such visualizations are typically used to show how semivariograms vary
with distance and time, providing insights into the spatial and temporal continuity of the
monitored environmental variables.
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In the empirical variograms of inorganic nitrogen content shown in Figure 6a,d, it
can intuitively be observed that there is a correlation in the seawater concentrations of
inorganic nitrogen and reactive phosphates along the spatial dimension. As the value on
the horizontal axis (distance) increases, the value on the vertical axis (gamma) increases
significantly. For inorganic nitrogen, the semivariogram value reaches its maximum when
the spatial distance reaches about 80 km and remains flat thereafter. This indicates that
the inorganic nitrogen monitoring data have significant spatial correlation characteristics
within a range of 80 km, that is, spatial location has a significant effect on the inorganic
nitrogen within an 80 km range. For reactive phosphates, the semivariogram value increases
significantly within a 10 km range, indicating a significant spatial correlation characteristic
for reactive phosphates within a 10 km range.

Turning to the temporal dimension, it can intuitively be observed in Figure 6b,c,e,f
that the seawater quality observation data also show a certain degree of correlation over
the years. As the number of years in each time lag increases, the data correlation (gamma)
shows some degree of change. This suggests that changes in the seawater quality show
trends over time.

3.4. Semivariogram Fitting

The key to fitting a theoretical semivariogram model lies in estimating the range,
sill, and nugget values. In this study, the empirical semivariogram and the method of
minimizing the Mean Squared Error (MSE) index are used to determine the nugget value,
sill value, and range value. Firstly, the empirical semivariogram is used to make an initial
estimate of these values. The nugget value can be approximated as the intercept on the
y-axis, i.e., when x = 0, the value on the y-axis represents the estimated nugget value.
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The sill value corresponds to the y-axis value when the curve tends to stabilize, which
typically occurs at a larger distance h, where the semivariogram value no longer increases
significantly with increasing distance. The range can be estimated by finding the x-axis
value at which the curve rises from the origin to half the sill value. By observing the
empirical semivariogram plots, Figure 6a,d, and referring to the methodology shown in
Figure 1, an initial range for the parameters is determined. Subsequently, the parameters
are fine-tuned and the MSE is minimized to determine the final and accurate values of the
range, sill, and nugget.

Figure 7 shows the visualization effect of the theoretical variogram fitted to the empir-
ical semivariogram using a separable spatio-temporal model.
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inorganic nitrogen empirical variogram model; (b) theoretical variogram function curve fitted for the
reactive phosphate empirical variogram model.

The analysis of the empirical semi-variogram functions of inorganic nitrogen and
active phosphate data determined that the parameters of the theoretical variogram function
models of inorganic nitrogen and active phosphate are as shown in Table 1.

Table 1. Theoretical variogram function parameters.

Category
Parameters

Range Partial Sill Nugget

Inorganic nitrogen (spatial) 80,000 m 0.0001 0.0001
Inorganic nitrogen (temporal) 5 years 0.00005 0.00001
Reactive phosphate (spatial) 40,000 m 0.0001 0.0001

Reactive phosphate (temporal) 5 years 0.00005 0.00001

The different values of the range parameters in Table 1 indicate that the diffusion
capabilities of reactive phosphate and inorganic nitrogen in seawater are different.

3.5. Generation of a Prediction Grid

Given that the sea area under evaluation near the coast of Fujian is 36,000 square
kilometers and considering the evaluation accuracy requirements of this study, it was
determined that the monitoring sea area should be divided into 500 m × 500 m grids.
Using the center points of the grids as interpolation points, the spatio-temporal kriging
interpolation algorithm was applied to compute the values at unknown points. We used the
“raster()” method from the raster package of the R language to generate the prediction grid.

4. Results
4.1. Spatio-Temporal Kriging Interpolation

In this research, we utilize the krigeST method from the gstat package for interpolating
monitoring data on bioactive phosphates, inorganic nitrogen, and other substances within



ISPRS Int. J. Geo-Inf. 2024, 13, 292 9 of 14

the spatio-temporal domain. KrigeST can manage data points that include both temporal
and spatial coordinates, and it can interpolate predictions for locations in time and space
that have not been sampled [28]. The annual fluctuations in the concentrations of bioactive
phosphates and inorganic nitrogen in the coastal waters of Fujian from 2019 to 2024 are
depicted in Figures 8 and 9, respectively. Importantly, these figures include predicted data
for the year 2024.
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Figure 8. Visualization of changes in the inorganic nitrogen content in the nearshore waters of Fujian
Province from 2019 to 2024: (a) 2019; (b) 2020; (c) 2021; (d) 2022; (e) 2023; (f) 2024.
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Figure 9. Visualization of changes in the reactive phosphate content in the nearshore waters of Fujian
Province from 2019 to 2024: (a) 2019; (b) 2020; (c) 2021; (d) 2022; (e) 2023; (f) 2024.
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4.2. Overlay Analysis

According to the National Seawater Quality Standard (GB-3097-1997) [30], seawater
quality can be divided into four grades: Grade I, Grade II, Grade III, and Grade IV. The
numerical values for inorganic nitrogen and bioactive phosphate indicators are shown in
Table 2.

Table 2. Inorganic nitrogen and reactive phosphate concentration standards (mg/L).

No. Item Grade I Grade II Grade III Grade IV Below Grade IV

1 Inorganic nitrogen ≤0.20 >0.20, ≤0.30 >0.30, ≤0.40 >0.40, ≤0.50 >0.50
2 Reactive phosphate ≤0.015 >0.015, ≤0.030 >0.030, ≤0.045 >0.045

The evaluation of seawater quality levels requires comprehensive consideration of
various indicators. Since inorganic nitrogen and reactive phosphate are the primary factors
that exceed the secondary category in the coastal waters of Fujian, the indicators of inorganic
nitrogen and reactive phosphate are superimposed to obtain the cumulative comprehensive
evaluation results.

In this study, the overlay function in the raster package of the R language is utilized
to superimpose the data layers of two water quality indicators: inorganic nitrogen and
reactive phosphate. Specifically, it reads and compares the interpolation results of each pixel
point in two TIFF files (i.e., the concentration values of these two water quality indicators
at each geographical location). Then, based on the criteria in Table 2, it determines the
seawater quality grade of each pixel point and assigns a numerical value between 1 and
5 to these pixel points as the grade label. In this way, the distribution of seawater quality
grades in different regions can be visually observed. Figure 10 shows the visualized results
of the comprehensive assessment of seawater quality.
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We extract the number of grid cells representing different seawater quality levels from
the raster image in Figure 7 and multiply it by the actual sea area represented by the grid
(500 m × 500 m) to calculate the actual area of different classified sea regions. Table 3 shows
the actual area conditions of the different classified sea regions in the coastal waters of
Fujian Province (annual data for 2019 to 2024).

Table 3. Area of seawater classified by different quality levels (square kilometers).

Year Grade I Grade II Grade III Grade IV Below Grade IV

2019 23,270.2 8914.4 1169.2 962.8 2196.8
2020 29,638.6 4415.6 506 437.6 1515.6
2021 27,759.8 6015.6 520.4 734.6 1483
2022 28,129 5877.6 558 698 1250.8
2023 29,907.4 4123.8 807.8 683.6 990.8
2024 27,962.8 6085 967.2 641.2 857.2

Figure 11 shows the trend of seawater quality changes in the coastal areas of Fujian
Province from 2019 to 2024. In the figure, it can be seen that the overall trend of seawater
quality in the coastal areas of Fujian Province tends to be gentle and generally improving.
However, compared to 2023, the forecast for 2024 shows a more obvious decrease in the area
of Class I seawater. Correspondingly, the area of class II seawater has increased significantly.
This indicates a deteriorating trend in water quality, with coastal marine environmental
protection facing more severe challenges.
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5. Conclusions

The assessment and prediction of seawater quality is of paramount importance in
protecting the marine environment, maintaining ecological balance, and achieving sus-
tainable development in the exploitation and use of marine resources. By continuously
improving the research and application of assessment and prediction methods, we can
effectively guide the scientific management of the marine environment and promote a
deeper understanding and protection of our blue planet. The quality of coastal seawater
is influenced by both natural factors, such as tides, ocean currents, hurricanes, and river
discharges, and anthropogenic factors, such as industrial emissions, agricultural non-point
source pollution, domestic sewage, and marine debris. As a result, changes in coastal
seawater quality within a region exhibit both regularity and randomness. Given the limited
amount of observational data, the use of small-scale data sets to achieve the scientific and
quantitative assessment and prediction of coastal seawater quality within a given region
has significant practical value in marine environmental management.
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This paper presents a seawater quality assessment and prediction method based on
the spatio-temporal semivariogram model. This method uses small-scale spatio-temporal
data sets to assess and analyze the seawater quality in Fujian coastal waters from 2019 to
2023, and to predict the quality in 2024. By fitting theoretical semivariograms to empirical
semivariograms, this method enables the estimation of observed values for indicative
seawater quality parameters such as inorganic nitrogen and reactive phosphate at unknown
spatio-temporal locations. Through the application of GIS overlay analysis with customized
rules, a multi-indicator analysis of seawater quality is achieved, and different seawater
quality grades and areas are accurately classified according to industry standards, thereby
scientifically achieving the quantitative assessment and prediction of seawater quality and
providing scientific guidance for marine environmental protection and management.

An in-depth analysis of the evaluation and prediction results shows that this method
accurately captures the trends and randomness of the data across spatial and temporal
dimensions, demonstrating its absolute advantage in handling small-scale spatio-temporal
data. The spatio-temporal semivariogram deepens the traditional spatial semivariogram
by comprehensively incorporating the variability of sample data in both temporal and
spatial dimensions. Based on its model theory and parameter foundation, the spatio-
temporal kriging interpolation algorithm achieves the optimal linear unbiased prediction
of unknown point values. As an innovative application of kriging methods, the spatio-
temporal kriging interpolation algorithm takes into account the auto-correlation in both
time and space for spatio-temporal data, enabling the accurate prediction of unknown
spatio-temporal location values. By exploiting the auto-correlation cues revealed by the
spatio-temporal semivariogram, this algorithm can accurately estimate data values at
specific spatio-temporal points that have not been directly observed.

The accurate estimation of seawater quality indicators at unknown spatio-temporal
locations using this method depends crucially on the precise determination of the range,
sill, nugget, and other parameters of the fitted semivariogram. The method described in
this paper, which is based on observations of empirical semivariograms and fine-tuning
by MSE minimization, requires extensive industry background knowledge and iterative
validation processes. Significant research efforts are still needed to accurately and efficiently
determine function parameters. In future studies, AI algorithms should be integrated to
automate the determination of fitted semivariogram parameters, replacing complex and
repetitive manual work and improving parameter accuracy.

In summary, this paper effectively addresses the issues of the quantitative assessment
and prediction of seawater quality through the integrated use of semivariogram models and
GIS overlay analysis with customized rules. Unlike machine learning and AI techniques
that rely on massive sample data, this method can fully reflect the internal regularity
and randomness of data in small-scale spatio-temporal datasets, thus providing relatively
accurate and scientific quantitative assessment and prediction results.
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