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Abstract: Geospatial data conflation involves matching and combining two maps to create a new
map. It has received increased research attention in recent years due to its wide range of applications
in GIS (Geographic Information System) data production and analysis. The map assignment problem
(conceptualized in the 1980s) is one of the earliest conflation methods, in which GIS features from
two maps are matched by minimizing their total discrepancy or distance. Recently, more flexible
optimization models have been proposed. This includes conflation models based on the network flow
problem and new models based on Mixed Integer Linear Programming (MILP). A natural question
is: how are these models related or different, and how do they compare? In this study, an analytic
review of major optimized conflation models in the literature is conducted and the structural linkages
between them are identified. Moreover, a MILP model (the base-matching problem) and its bi-matching
version are presented as a common basis. Our analysis shows that the assignment problem and all
other optimized conflation models in the literature can be viewed or reformulated as variants of
the base models. For network-flow based models, proof is presented that the base-matching problem
is equivalent to the network-flow based fixed-charge-matching model. The equivalence of the MILP
reformulation is also verified experimentally. For the existing MILP-based models, common notation
is established and used to demonstrate that they are extensions of the base models in straight-forward
ways. The contributions of this study are threefold. Firstly, it helps the analyst to understand the
structural commonalities and differences of current conflation models and to choose different models.
Secondly, by reformulating the network-flow models (and therefore, all current models) using MILP,
the presented work eases the practical application of conflation by leveraging the many off-the-shelf
MILP solvers. Thirdly, the base models can serve as a common ground for studying and writing new
conflation models by allowing a modular and incremental way of model development.

Keywords: data fusion; conflation; optimization; geographic information systems

1. Introduction

In GIS(Geographic Information System) data production, planning, and many areas of
spatial studies, it is often necessary to combine map data from different sources, including
maps produced by different agencies and at different times. One of the main difficulties lies
in identifying the corresponding geospatial features (objects) in different maps. This process,
known as matching, is often error-prone and unreliable, and conventionally requires a large
amount of human intervention and manual labor. Consequently, numerous research efforts
have been devoted to developing reliable methods for computerized map matching and
conflation over the past four decades [1,2]. Conflation has been applied in the production
of different types of data such as administrative boundaries [3–6], point features such as
gazetteers [7], and networks such as roads and rivers [8–12].

One of the earliest attempts at automated conflation is the conceptualization of the
Map Assignment problem [13] in the 1980s. It is based on a classic crew scheduling model
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called the “assignment problem” (see, e.g., [14]), which seeks a minimum cost plan to assign
workers to jobs on a one-to-one basis. Simple as it is, it embodies a natural strategy for
map matching: assigning geospatial features in one map to features in another map based
on minimizing their total discrepancies (or “cost” in terms of the assignment problem).
Although there are other approaches to conflation, the natural optimization perspective is
inherited in numerous recent research endeavors due to its simple assumptions and expres-
sive power. As will be discussed in the next section, there are three classes of optimized
conflation models. The first is the assignment problem-based models. This was the main
model in the literature until the late 2010s. Due to some of the limitations of the assignment
problem, a new class of conflation models was developed circa 2020 based on the minimum
cost network flow problem (network flow problem for short hereafter). These new mod-
els [11,12,15] were more flexible than the assignment problem due to the increased power
of the underlying network flow model. More recently, a third type of conflation model
called the topological conflation model appeared in the literature. Unlike conventional
models, the topological conflation model can preserve certain topological relationships,
such as connectivity or node-arc incidence relationships during the conflation process. To
enforce these new requirements, neither the assignment problem nor the network flow
problem has sufficient structural flexibility. Consequently, these more advanced models
were formulated using more general mathematical programming languages involving
Mixed Integer Linear Programming (MILP).

Given the many seemingly different conflation models, a natural question is how the
models compare structurally and which model should be chosen given such knowledge.
To address this issue, this study identifies the fundamental linkages between the major
optimized conflation models in the literature. In particular, a base MILP model is presented,
from which all other conflation models can be built by adding constraints and parameters.

The main goal of the paper is to help understand the multitude of optimized conflation
models in the literature. By means of the common base, one can see the difference between
models in terms of what is added to the base. The base model also allows all existing
models to be expressed in the same mathematical language (MILP), and may facilitate the
development of conflation models in a modular and incremental way.

In the remainder of this paper, Section 2 provides an in-depth analytical review of
optimized conflation models in the literature, with a focus on their structures and prop-
erties. The Method section presents the base MILP model base-matching and shows that it
is equivalent to the network flow-based fixed-charge-matching (fc-matching) model. Based
on this equivalence, it is further demonstrated how existing optimized conflation models
(network-flow or MILP-based) are related to or differ from the base model. It is demon-
strated that most models can be formulated by extending the base model with additional
constraints or objective function terms. In the Experiment section, the equivalence between
the base-matching model and the network-flow based model is verified numerically. This
article then concludes with a summary of the findings.

2. Geospatial Data Conflation Methods

Geospatial conflation involves various processes and stages. Roughly speaking, one
can decompose the conflation problem into two main stages. In stage one, the similarity
or spatial offset between geographic features is measured, which expresses the likelihood
that an individual feature pair from two datasets should match. This is the similarity
measurement stage. It is important in that a strong similarity measure can produce high
scores for a corresponding features pair that represent the same object, and therefore,
increase their likelihood of being matched. The second stage is match selection, in which,
given all the similarity/distance metrics in stage one, one selects a set of feature pairs to
conflate. Optionally, there is a third stage in which one merges the geometries or attribute
sets of the matched feature pairs in stage two.

Among these two stages, the similarity measurement problem has been extensively
studied in the literature. A classic similarity metric is the Hausdorff distance. Given two
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GIS features A and B, it measures the maximum deviation of any point of p ∈ A to feature
B as a point set, and vice versa, the maximum deviation of any point in B to A as a set.
Mathematically, the Hausdorff distance is defined as:

H(A, B) = max
(
minp∈Ad(p, B), minq∈Bd(q, A)

)
This definition is faithful and the greater the difference between A and B, the greater

their distance metric. When the distance metric is zero (or close to zero), the two features
must be the same. In addition to the Hausdorff distance, numerous other similarity metrics
have been employed in the literature, involving spatial offset and separation [9], angular
distance and orientation [10,12,16], shape [16,17], and topological measurements such as
the degree of nodes. While these metrics differ in details, they embody the same principles
as the Hausdorff distance: GIS features that are close in location or other aspects should
have a low distance/dissimilarity value. The reader is referred to the reviews in [1,2,16]
for detailed coverage of the (dis)similarity metrics. That being said, the remainder of this
section is focused on the second stage, match selection.

2.1. Heuristic vs. Optimized Conflation Methods

The simplest match selection method is based on a greedy strategy of matching the
closest or most similar features. Depending on the order of data processing, there are a
number of variant strategies. For example, one can sequentially match each feature in one
dataset to its closest candidate feature in the other dataset. This strategy is the nearest
neighbor join method and can be directly carried out using most existing GIS packages.
Such spatial join strategies, as pointed out in [18], could lead to logically inconsistent
matches. The closest relationship may not be reflexive. That is, the closest feature in J for a
feature i ∈ I may have the closest feature in I that is different from I.

There are different ways to address conflicts in match results. For example, one could
select the pair of closest features to match and then exclude them in future steps. This
is called the k-Closest Pair Query (KCPQ) [19] and is widely used in database research.
Beeri et al. [18] proposed a two-sided nearest neighbor join method, in which they choose
among possibly conflicting pairs of candidate matches of a local area using a probabilistic
score between 0 and 1. This is followed by subsequent studies by Tong et al. [20]. Another
method for coping with map conflicts is to eliminate them in advance. This is exemplified
by a general technique called the Rubbersheeting process, which dates back to the early
days of conflation research [3,4]. The general idea is to reduce the spatial displacement
between two maps by iteratively identifying and merging control points (called “anchors”)
on the two maps, and then applying a continuous transformation (e.g., affine) to the local
regions between these anchors. The anchor points are typically points that are easily
identifiable by the human expert (road junctions, land marks, etc.). After the spatial
displacement is reduced, a simpler method, such as spatial join and polygon overlay, is
used for match selection.

Generally, the aforementioned methods are greedy and sequential in nature [9,10].
They make match selections one by one and cannot undo an erroneous match once it is
made. In comparison, a different type of match selection method, called optimization-based
conflation method, does not suffer from these issues. As will be discussed shortly, they
match all features “simultaneously” by treating the match selection as an optimization
problem of minimizing the total discrepancy between two maps.

The heuristic methods are fundamentally different from the optimization-based meth-
ods in that the match solution for such an algorithm is not unique in nature. For example,
the match produced by the nearest neighbor join (i.e., greedy) method may well depend on
the order in which the data are processed. It even depends on which dataset is used as the
source dataset and which is used as the target (see [18]). In contrast, any optimization based
conflation model has a unique solution with respect to the pre-specified match condition:
the optimal solution. Therefore, one cannot generally express a heuristic conflation method
as an optimized conflation model.
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2.2. Existing Optimized Conflation Models

This subsection presents an analytical review of the main optimized conflation models
in the literature, starting with the map assignment problem in the 1980s. This includes the
formulation of the optimization problem for each conflation model, as well as a discussion
of its functional features and structural characteristics. The models presented include (1) the
original assignment problem and a set of common notation for the assignment problem
and all subsequent models, (2) the network-flow based fixed-charged matching problems
which offer more structural flexibility, (3) a unified bidirectional matching model aimed at
reconciling m:1 (and 1:n) matches in the two opposite directions of match, (4) a topological
conflation model aimed at preserving edge-to-edge connectivity during the match, and
(5) a node-arc topological model aimed at preserving the node-arc incidence relation during
the matching.

2.2.1. Common Notation

Throughout this paper, MILP is used as a common language to express new and
existing optimized conflation models. Generally speaking, MILP is a high-level alge-
braic modeling language in which the decision problem (i.e., choice of match relation
in this context) is expressed in terms of sets and decision variables. The sets contain
constants/parameters describing the objects involved in the optimization model and the
attributes of these objects, while the decision variables describe the actions/outcome of the
model (e.g., which objects are matched). The MILP model itself is in essence a set of linear
equations about the requirements that the final solution (e.g., match relation) must satisfy.

For consistency, a set of common definitions for both the constants and variables are
presented below, which will apply to all conflation models in this article. Variables and
parameters in the original articles of conflation models may be renamed, if necessary, to
conform to the common notation defined here.

I, J are the two geospatial datasets to be matched and conflated. dij is a directed
distance or dissimilarity metric (such as the directed Hausdorff distance) that supports
membership relation decisions. The directed distance dij is zero if the feature i ∈ I coincides
with a part of the feature j ∈ J. d′ij is the same distance/dissimilarity metric measured
in the opposite direction ( J → I ) Dij = max

(
dij, d′ij

)
is the total distance, defined as the

greater of the two directional distances. c is a cutoff distance, beyond which two features
are considered too distant/dissimilar to be a potential match. M is a sufficiently large
number that ensures that all coefficients of the form M − · · · in a given model are positive.

With the above distance definitions, one can define the sets of potential matches:
F =

{
(i, j)

∣∣dij < c, i ∈ I, j ∈ J
}

is the set of potential forward partial matches from I
to J where the directed distance dij is less than the cutoff distance c.

G =
{
(i, j)

∣∣d′ij < c, i ∈ I, j ∈ J
}

is the set of potential partial backward matches from
features in J to features in I

E =
{
(i, j)

∣∣Dij < c, i ∈ I, j ∈ J
}

is the set of potential partial full matches between
features of I and J.

The decision variables are:
xij = 1 if feature i is considered the same object as j, and 0 otherwise.
yij = 1 if feature i ∈ I corresponds to part of feature j ∈ J, and 0 otherwise.
zij = 1 if feature j ∈ J corresponds to part of i ∈ I, and 0 otherwise.

2.2.2. The Assignment Problem (AP)

The Map Assignment problem [13], is the first optimized conflation model in the
literature. As mentioned in Section 1, it is inspired by the classic job assignment problem
in operations research for assigning a set of n workers to the same number of jobs. The
goal is to find a minimum cost match plan (in terms of time) while respecting the 1:1
relation between the two sets. In the map assignment problem, the distance/dissimilarity
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between two features has been used as the assignment cost (instead of time). Using the
aforementioned common notation, the assignment problem can be expressed as:

minimize ∑
i∈I,j∈J

dij · xij (1)

Subject to:
∑
j∈J

xij = 1 ∀i ∈ I (2)

∑
i∈I

xij = 1 ∀j ∈ J (3)

The objective Function (1) is aimed at minimizing the total matching distance. It is
expressed as the sum of distances ∑i∈I,j∈J dij · xij for the matches that have actually been
selected (those for which xij = 1). Constraints (2) and (3) maintain that the match relation
xij is one-to-one. That is, each feature i ∈ I is matched to exactly one feature in J (2) and
vice versa, each feature in J is matched to exactly one in I (3). As the constraints specify
the number of features that can be/must be assigned to each feature in I (∑j∈J xij) and
each feature in J (∑j∈J xij), they are called the “cardinality” constraints. In the assignment
problem, the cardinality constraints are the only constraints.

Li and Goodchild [8] were the first to implement and test the map assignment problem.
They found that one of the two cardinality constraints may not be feasible because the two
datasets I and J are typically not equal in size. Assuming that the size of I is smaller than
that of J, they changed constraints (3) to the following inequality form:

∑
i∈I

xij ≤ 1 ∀j ∈ J (4)

Li and Goodchild [9] extended the basic assignment model by considering partial
matches. To this end, they used the directed Hausdorff distance instead of the full Hausdorff
distance to measure distance. Being a half distance, the directed Hausdorff distance is
zero when one feature coincides with part of a target feature. Additionally, they defined
and used a cutoff distance c, and defined the similarity of a feature i ∈ I to a feature j ∈ J
as follows:

sij =

{
0 if dij > c
c − dij otherwise

where dij denotes the directed Hausdorff distance. They then defined a model as follows
(with a slight change in notation):

maximize ∑
i∈I

∑
j∈J

sij · yij (5)

s.t.
∑
j∈J

yij ≤ 1, ∀i ∈ I (6)

∑
i∈I

liyij ≤ αlj, for each j ∈ J (7)

∑
i∈I

yij + δj ≥ 1, for each j ∈ J (8)

where li, lj are the lengths of features (roads in [9]). δj is a parameter defined to be 1 if j has
no nearby feature (within the cutoff distance c), and zero otherwise.

Constraints (6) are similar to the cardinality constraints (4) of the assignment problem.
Constraints (7) maintain that the total length of the lines assigned to a target line should
not exceed the target’s length. α is a parameter used to allow for errors in the lengths of the
involved features. Constraints (8) maintain that if there are nearby features to j (i.e., δj = 1),
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then one of these nearby features must be assigned to j. Li et al. [9] defined an analogous
model for the reverse direction of matching from J to I. They called these two models
sub-model 1 and sub-model 2. They then applied the two sub-models one by one and
solved any inconsistencies between the two sub-models in a post-processing procedure.
It should be noted that the constraint sets (7) and (8) could lead to infeasibility. In some
occasions, constraints (8) could be used to force one feature i ∈ I to be assigned to two
different target features j and j′ (therefore violating (6)).

The assignment problem formulation was followed in the subsequent research. For
example, Tong et al. [10] applied the original assignment model to their road network data
and reported a low match rate of 56.5%. Although simple in structure, the assignment
problem formulation has its limitations. It has a strong requirement that all features in
(one of) the datasets must be assigned (constraint (2)). Li et al. [9]’s work, while enhancing
the assignment problem in several directions, introduced its own issues. Such issues are
further discussed in [15].

2.2.3. The Fixed-Charge Matching (fc-Matching) Problems

The fixed-charge matching (fc-matching) problems represent an improvement over the
assignment problem with less stringent requirements and a more flexible structure. This
is achieved by replacing the underlying optimization model in the assignment problem
with a more powerful model called the minimum cost network-flow circulation problem
(network flow problems for short).

To address the limitations of the assignment problem formulation, Lei et al. [11,15]
proposed two new optimized conflation models based on the network flow problem.
The network flow problem is a more powerful and flexible model than the assignment
problem as it can express a range of optimization problems including the shortest path, the
assignment problem itself, and the fixed-charge matching problems, among many others.
One advantage of the network-flow based conflation models is that they can be solved
using fast specialized algorithms such as the push-relabel algorithm. However, the problem
format of the network flow is different from the commonly used MILP models and may
require a separate optimization package to solve.

The fixed-charge matching problems, first defined in [11] include two models called
the fc-matching and the fc-bimatching models. They differ in that the fc-matching model
assumes a one-to-one correspondence between the two matched GIS datasets, whereas
the fc-bimatching model allows many-to-one (and one-to-many) correspondence. The
fixed-charge-matching models are special instances of the network problem. The net-
work problem by definition, optimizes the number of flows along the edges of a specially
designed network. Each edge in the network is directed and has an associated cost for
carrying a unit amount of flow, an upper bound, and a lower bound for the flow. The only
requirement is flow preservation at each node. That is, the amount of flow entering a network
node must be equal to the amount of flow leaving that node. The decision variables are
the number of flows fe along the network edges e, and the system objective is to minimize
the total flow cost. In the context of matching, the amount of flow represents the possible
matching of an object i in one dataset I to an object j in a second dataset J. It is 1 if i is
assigned to j and 0 otherwise.

Figure 1 presents a diagram for the one-to-one fc-matching problem. The labels on the
network edges represent their attributes: the flow cost, the lower bound, and the upper
bound. Most edges have a lower bound of 0 and an upper bound of 1 (representing an
assignment or non-assignment). On these occasions, the lower and upper bounds are
omitted and only the flow cost is shown on the label. In this network, all flows come out of
the source node s and eventually enter the sink node t, except for the rebalancing flows
from t to s. Each node in dataset I is linked to the source, and each node in J is linked to
the sink with zero-cost edges. The upper bound of 1 on these edges ensures that each i ∈ I
(and j ∈ J) can be assigned to at most one node in the other dataset. The links between the
nodes of I and nodes of J represent the actual assignment, and the edge costs represent the
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distance/dissimilarity metrics. All these costs are positive, making the model seeking a
minimum cost match plan. However, the cost of the rebalancing link ts is set to a negative
value (−F) to ensure that some non-zero flow will be generated in the network.
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Figure 2 presents a schematic view of the fc-bimatching model, structured as a min-cost
network flow problem. Structurally, the network roughly consists of two halves. The left
sub-network represents the assignment of objects from dataset I (i0, i1, · · · ) to objects in
the dataset J. The link from a node in i to a node in j represents a possible assignment from
object i in dataset I to object j in J (e.g., from i1 to j2). The right sub-network represents
possible assignments in the opposite direction from J to I. As in the fc-matching diagram,
the labels on the network edges represent their flow cost and lower/upper bounds.

There are several special source and sink nodes: s, t, r, o, a, b, e. They inject flows to and
absorb flows from the regular nodes in I and J. Links between these special nodes have
a lower bound of 0 and an upper bound of infinity (or a very large number M). Most of
them have zero flow costs. The only exceptions are the flow rebalancing link b → a and
the excess flow link e → b . The rebalancing link has a negative cost (−F) and provides
an incentive for the flow network to generate non-zero flows (assignments). In this study,
F is set to be the cutoff distance c plus one. The excess flow link has a positive cost P for
penalizing excessive multi-assignments to one object. This is because multi-assignments
represent partial matches, which are harder to characterize in terms of their match relations.
For example, in the one-to-one fc-matching problem, any feature can be matched to only
one target feature. This means that the match is exclusive. Once matched, a feature
cannot be involved in any other match. This property helps in reducing ambiguous and
erroneous matches. In comparison, no such constraints can be imposed in the many-to-one
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fc-bimatching problem. By the definition of many-to-one matching, many features may
be matched to one target. If a line is split into three parts, nothing stops the model from
matching one or two of the parts to the correct target feature while mismatching the other
parts. Therefore, partial matches are more error-prone. This is why the penalty factor P is
imposed to discourage multi-assignments.
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Two earlier versions of the fixed-charge matching problems called the p-matching
problems, were defined in [15]. They are similar in structure to the fc-matching models,
except that they pre-define the number of matches to p. This is enforced by setting both
the upper and lower bounds of the flow rebalancing link to p. The p-matching requires
a search for an appropriate value of p based on the level of matching errors at each p.
The fc-matching models improve the p-matching model by allowing p to be automatically
determined by optimization.

Wu et al. [12] developed a modified version of the network flow based road conflation
model, which is similar in structure to the fc-matching problem. However, they defined
the capacity of an edge ij based on the lengths of the two roads being matched. More
specifically, they defined the capacity for edge (i, j) ∈ E to be: lij = max

(
leni, lenj

)
, where

leni, lenj are the lengths of i and j. Additionally, they used a hypothetical null object in
each dataset to represent non-matches. They also used a pre-processing step to preclude
unlikely edges from the flow networks based on a number of characteristics of the pair
of candidate roads. This includes their angle, length capacity (similar to (7)), etc. Their
experimental results showed that these modifications reportedly improved the accuracy of
matching compared with fc-matching.
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2.2.4. The Unified Bidirectional Matching u-Bimatching Problem

The main purpose of the unified bidirectional matching problem [21] is to eliminate
potentially conflicting matches between the two opposite match directions. As discussed
earlier, these inconsistencies between the two match directions may occur in m:1 matching
models.

In the fc-bimatching model, the partial assignments (i.e., m:1 matches) are penalized
in favor of full, one-to-one assignments. When possible, the model attempts to make full
assignments first. However, the fc-bimatching model does not preclude inconsistent partial
assignments. To address this issue, Lei et al. [21] attempted to eliminate erroneous partial
matches by imposing new constraints in optimized conflation models. They achieved this
by including full and partial matches in a new optimization model with a set of “link”
constraints to preclude inconsistent assignments. Using the common notation defined at
the beginning of this section, their model called the unified bidirectional matching model
u-bimatching, can be described in MILP as follows:

maximize Z = α · ∑
(i,j)∈F∩G

Bijxij + ∑
(i,j)∈F

bijyij + ∑
(i,j)∈G

b′ijzij (9)

Subject to:
∑

(i,j)∈F∩G
xij ≤ 1, for each i ∈ I (10)

∑
(i,j)∈F∩G

xij ≤ 1, for each j ∈ J (11)

∑
(i,j)∈F

yij ≤ 1, for each i ∈ I (12)

∑
(i,j)∈G

zij ≤ 1, for each j ∈ J (13)

xij + yij ≤ 1, for each (i, j) ∈ F ∩ G (14)

xij + zij ≤ 1, for each (i, j) ∈ F ∩ G (15)

N · yij + ∑
(k,j)∈F∩G

xkj + ∑
(i,l)∈F∩G

xil + ∑
(k,j)∈G,k ̸=i

zkj ≤ N, for each(i, j) ∈ F ∩ G (16)

N · zij + ∑
(k,j)∈F∩G

xkj + ∑
(i,l)∈F∩G

xil + ∑
(i,l)∈G,l ̸=j

yil ≤ N, for each(i, j) ∈ F ∩ G (17)

In the above, N is a sufficiently large number for formulating certain constraints such
as (16) and (17) (in the so-called “big M” method in operations research [14]). α is a relative
weight value for emphasizing full assignments xij (as compared to partial assignments,
α ≥ 2).

In the u-bimatching formulation, the objective function maximizes the benefits Bij, bij, b′ij
associated with making full, forward, and backward partial assignments, respectively. Con-
straints (10) and (11) are cardinality constraints stating that each feature in I can be assigned
to at most one target feature in J, and vice versa each j ∈ J can be assigned to at most
one i ∈ I. They establish a one-to-one correspondence with the decision variable xij. Con-
straints (12) and (13) are the cardinality constraints for the forward partial assignments
yij and backward partial assignments zij, respectively. Either establish unilaterally that a
source feature can “belong” to at most one target feature. Constraints (14) and (15) maintain
that a source feature can not be assigned to a target both as a full assignment and as a
partial assignment.

Constraint (16) is a link constraint that ensures the compatibility of the forward/
backward partial assignments as well as the full assignments. The left-hand-side (LHS)
has four terms. Clearly, if any of the last three terms are positive, then it forces yij to be
zero. That is, i cannot be assigned as a part of j. If all of them are zero, then yij is allowed
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to be one. The three terms represent three occasions in which the assignment yij should
not happen. This includes: (a) if j is assigned in a full match, (b) if i is assigned in a
full match, and (c) j is assigned to some feature k ∈ I. Obviously, the first two cases are
incompatible with yij = 1. The last case (c) is also incompatible because it forms a chain of
transitive assignments i → j → k , implying that i ∈ I is part of a different feature k ∈ I,
which is absurd. Constraint (17) is similar to constraint (16), except that the roles of I and J
are swapped.

2.2.5. The Edge Connectivity Based Matching (ec-Matching) Problem

The edge connectivity based matching (ec-matching) problems (introduced in [22])
are an extension of the previous conflation models in that they can ensure that the edge-
to-edge connectivity relation is preserved between the two matched datasets (as it should
be). The conflation models reviewed so far match the features of the two datasets at
the individual feature level. Certain consistency conditions have been enforced. This
includes, for example: cardinality constraints (one feature may not be assigned to two
different targets), consistency between opposite assignments (transitive assignment is not
allowed), and the penalty on multi-assignments. However, no attention has been paid
to the consistency between inter-feature relationships, such as adjacency and incident
relations. Such relationships are often used by human experts to match difficult cases. For
example, when there are large spatial offsets, one may need to check nearby neighbors to
determine whether a pair of features is a true match. If the neighbors all match, then it is
likely that they should match as well. Such “tracing” reflects the fact that human experts
use topological relations during conflation. By analogy, conflation models should also
respect the topological relations so that they are the same on either side of the match. For
linear networks, there are at least two types of topological relations: edge connectivity
and edge-node incident relations. Two types of optimized conflation models have been
developed in the literature.

The first type of topological relation is edge connectivity. If two roads are connected in
reality, they should be so in both GIS datasets. Consequently, it would be an error to match
a pair of connected roads in I to a pair of disconnected roads in J. Based on this notion
of preserving connectivity, Lei et al. [22] proposed the edge connectivity based matching
ec-matching problem. In addition to the common notation established earlier, the following
are needed:

rik = 1 if i, k ∈ I, k ̸= i are connected, and 0 otherwise.
tjl = 1 if j, l ∈ J, j ̸= l are connected, and 0 otherwise.

Pijk =
{

l ∈ J
∣∣∣(k, l) ∈ E, tjl = 0

}
, for each (i, j) ∈ E, k ∈ I, rik = 1.

Qijl = {k ∈ I|(k, l) ∈ E, rik = 0} , for each (i, j) ∈ E, l ∈ J, tjl = 1

Pijk is a (forward) incompatibility set containing all the edges l ∈ J for which i, k are
connected in I and j, l are not connected in J. For the aforementioned reasons for topological
consistency, one can see that if the assignment xij is made, then the assignment xkl cannot
happen. Similarly, Qijl is a backward incompatibility set containing the set of elements in I
that cannot be assigned to l if the assignment xij = 1.

With the addition notation, the ec-matching model [22] is formulated in MILP as:

maximize Z = ∑
(i,j)∈E

Bijxij (18)

Subject to:
∑

(i,j)∈E
xij ≤ 1, for each i ∈ I (19)

∑
(i,j)∈E

xij ≤ 1, for each j ∈ J (20)
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∣∣∣Pijk

∣∣∣ · xij + ∑
l∈Pijk

xkl ≤
∣∣∣Pijk

∣∣∣ , for each (i, j) ∈ E, k ∈ I, rik = 1 (21)

∣∣∣Qijl

∣∣∣ · xij + ∑
k∈Qijl

xkl ≤
∣∣∣Qijl

∣∣∣ , for each (i, j) ∈ E, l ∈ J, tjl = 1 (22)

Constraints (19) and (20) are cardinality constraints. Constraint (21) embodies the
aforementioned connectivity preservation idea. For a pair of candidate features i, j, if
any assignment in the incompatibility set Pijk happened, then xij is forced to be zero. By
enumerating all possible incompatible sets, the model makes it impossible to match a
connected pair i, k ∈ I to a disconnected pair j, l ∈ J. Symmetrically, constraint (22) forbids
any connected pair in J to be matched to disconnected pairs in I.

2.2.6. The m:1 (1:n) Element Connectivity Bi-Matching Problem (ec-Bimatching)

Lei et al. [22] also proposed a many-to-one version of the connectivity based conflation
model, called the ec-bimatching problem. The model is similar in structure to the ec-matching
model except that it deals with m:1 (and 1:n) matches. Therefore, directed distances are
used instead of full distances. Accordingly, the two incompatibility sets are modified to the
following forms:

Aijk =
{

l ∈ J
∣∣∣(k, l) ∈ F, tjl = 0

}
, for each (i, j) ∈ F, k ∈ I, rik = 1

Bijl = {k ∈ I|(k, l) ∈ G, rik = 0} , for each (i, j) ∈ G, l ∈ J, tjl = 1

With the modified incompatibility sets and partial assignment variables, the ec-
bimatching problem [22] can be formulated in MILP as:

maximize Z = ∑
(i,j)∈F

bijyij + ∑
(i,j)∈G

b′ijzij (23)

Subject to:
∑

(i,j)∈F
yij ≤ 1, for each i ∈ I (24)

∑
(i,j)∈G

zij ≤ 1, for each j ∈ J (25)

∣∣∣Aijk

∣∣∣ · yij + ∑
l∈Aijk

ykl ≤
∣∣∣Aijk

∣∣∣ , for each(i, j) ∈ F, k ∈ I, rik = 1 (26)

∣∣∣Bijl

∣∣∣ · zij + ∑
k∈Bijl

zkl ≤
∣∣∣Bijl

∣∣∣ , for each(i, j) ∈ G, l ∈ J, tjl = 1 (27)

The constraints above are similar to those of the ec-matching model, except for the use of
partial assignment variables. The original formulation of [22] included link constraints of a
form similar to (16) and (17), which are omitted here for simplicity and ease of comparison.

2.2.7. The Edge-Node Matching (en-Matching) Problem

The edge-node matching (en-matching) problem [23] introduces a second type of topo-
logical condition, namely, the node arc incidence relationship, into optimized conflation. As
an example of such conditions, if a road i ∈ I is matched to a road j ∈ J, then the end nodes
of i and j as road junctions must match. Otherwise, the match relation is topologically
incorrect, and should not be made. To preserve the node-arc relation during matching,
the nodes and the edges of the two linear networks must be matched simultaneously and
consistently. To this end, Lei et al. [23] proposed an edge-node matching (en-matching)
model, which requires additional definitions as follows:

Let V(I) be the vertex set of I, and V(J) be vertex set of J,
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N = {(r, s)|d(r, s) < c, r ∈ V(I), s ∈ V(J)} is the set of candidate node pairs whose
distances are less than the cutoff distance.

Given an edge in I (or J), let f (i) denote its from-node, and t(i) denote its to-node.
Drs is a distance metric between the nodes in V(I) and V(J).
brs = M − Drs is the benefit or similarity metric for matching nodes r and s.
β is a weight value for making nodal matches (vs. making edge matches). Lei et al. [23]

assumed β = 4 based on the assumption that each junction is associated with four roads on
average. Lei et al. [23] also used a parameter γ to prioritize the matching of higher-degree
nodes. This is to avoid isolated “islands” of matched cliques (see [23] for details).

A new decision variable for matching two nodes is needed:
urs = 1 if r ∈ V(I) is assigned to s ∈ V(J), and 0 otherwise.
Now the en-matching problem can be formulated in MILP as:

MaximizeZ = ∑
(i,j)∈E

(
M − Dij + γ · M

)
xij + β · ∑

(r,s)∈N

(
M − Drs

)
urs (28)

Subject to:
∑

(i,j)∈E
xij ≤ 1 for each i ∈ I (29)

∑
(i,j)∈E

xij ≤ 1 for each j ∈ J (30)

∑
s∈M

urs ≤ 1 for each r ∈ V(I) (31)

∑
r∈N

urs ≤ 1 for each s ∈ V(J) (32)

u f (i) f (j) + u f (i)t(j) ≥ xij for each (i, j) ∈ E (33)

u f (i) f (j) + ut(i) f (j) ≥ xij for each (i, j) ∈ E (34)

ut(i)t(j) + u f (i)t(j) ≥ xij for each (i, j) ∈ E (35)

ut(i)t(j) + ut(i) f (j) ≥ xij for each (i, j) ∈ E (36)

xij ∈ {0, 1} for each (i, j) ∈ E (37)

urs ∈ {0, 1} for each (r, s) ∈ N (38)

In the above, the objective function (28) maximizes the total weighted similarity
between matched edges and between matched nodes. Constraints (29) through (32) are
the cardinality constraints for the nodal and edge assignments, as before. Constraint (33)
is one of the topological constraints. It states that if the edge assignment xij is made, then
its from-node f (i) should be matched to either the from-node of j or the to-node of j.
Constraints (34), (35), and (36) express similar conditions. Collectively, constraints (33)
through (36) maintain that if i is matched to j, then their from- and to-nodes must match.

In the existing literature, most optimized conflation methods are developed for linear
features such as roads [9–11,20,24–27]. This is probably due to the importance of roads
as a spatial reference and their use in early studies by the US Census. By comparison,
optimized conflation for point and polygon features received less research attention. For
point features, Li and Goodchild’s work [8] used a hypothetical point dataset (along
with a road dataset) to compare the optimization-based assignment problem and two
greedy matching algorithms for conflation. However, it was not followed by others in
the literature. This is probably due to the fact that point features are relatively simple
in structure. Conflation for polygon features is pre-dominated by heuristic methods. A
common example is the polygon overlay method (see e.g., [28,29]) in which two polygon
features from different sources are considered the same if their geometric intersection is
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large enough (compared to the two original features). To the best of our knowledge, no
optimized conflation studies have been published for polygon data so far.

2.2.8. M:N Matching Methods

So far, this article has considered the optimized conflation model in the more strict
sense of [9,11]. That is, only models that can find the optimal match plan (i.e., minimum
distance match) are discussed. In the literature, some scholars (see e.g., [26]) also consider
a broader class of conflation algorithms as optimization based, in a weaker sense that
they reduce the distance or some other metrics (without necessarily finding the optimal
solution). In this broader category, some of the conflation algorithms can consider the more
complex m:n match case.

For example, the “heuristic probabilistic relaxation” method [24,30] can take into
account spatial context and therefore, can handle the m:n match cases. In [30], a confidence
matrix is computed between pairs of road intersections using relative distances. Then,
repeatedly, joint compatibility of two neighboring features is computed and used to update
the confidence of matches until the confidence level is sufficiently high. Yang et al. [24]
extended the work of [30] to match road features.

Fu et al. [31] adopted a multi-variable logistic regression approach for conflation, in
which the Hausdorff distance, string distance, and the direction difference of two roads were
used to classify candidate road pairs into two classes: match and unmatch. Guo et al. [26]
extended logistic regression based conflation by using the so-called “strokes” (or sequences
of road segments) as the candidates for matching. Consequently, their method can also
handle the m:n matching case.

It should be noted that the heuristic probabilistic relaxation and logistic regression
methods are heuristic in nature, and cannot guarantee to find the minimum discrepancy
match plan as the mathematical programming based models reviewed in the previous
subsections. Nonetheless, they are briefly discussed here due to their similarity to (strictly)
optimized conflation models.

3. Method

From the previous section, one can see that there are many different optimized con-
flation models, starting from the simple assignment problem to the complex topological
conflation models. In this section, a base model, formulated in MILP, is presented as a
common foundation for all the above models. The base model, including a 1:1 version and
a m:1 version, can be used to build the other optimized conflation models in the literature
by appropriate transformations or the addition of constraints. It is also demonstrated in
this section that the 1:1 version of the base model is equivalent to the fc-matching problem.
At the end of the section, Table 1 summarizes the connection between each existing model
and the base models.

Table 1. Link between existing conflation models and the base models.

Model Base Model Added Constraints Additional Modifications

Assignment base-matching set c = ∞ input I, J are filtered by c as in Obs. 1

fc-matching base-matching None

fc-bimatching base-bimatching Equations (52)–(55) added penalty term in objective

u-bimatching base-(bi)matching Equations (14)–(17) two base models are merged with
priority to full assignments

ec-matching base-matching Equations (21)–(22)

ec-bimatching base-bimatching Equations (26)–(27)

en-matching base-matching Equations (33)–(36) base model is replicated for nodes
and arcs
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3.1. A Base MILP Model

Let Bij = M − Dij be the similarity measure (or “benefit”) associated with making the
full match xij.

The common base model (called base-matching) can be formulated in MILP using the
common notation established in Section 2.2.1 as follows:

maximize Z = ∑
(i,j)∈E

Bijxij (39)

Subject to:
∑

(i,j)∈E
xij ≤ 1, for each i ∈ I (40)

∑
(i,j)∈E

xij ≤ 1, for each j ∈ J (41)

The base model maximizes the total benefit in the objective function (39) and the only
constraints are the two cardinality constraints (40) and (41) stating that the total number of
assignments from each feature in I (or to each feature in J) can be at most one. Together,
they enforce the 1:1 matching relation between I and J.

3.1.1. Equivalence to fc-Matching

It can be shown that the base model above is equivalent to the fc-matching problem
described in Section 2 if one sets M in the base model as the fixed charge F in fc-matching.
The proof is as follows:

Observation 1. The base model (39) through (41) generates the same optimal solutions as the
fc-matching problem.

Proof. Note that there is a one-to-one correspondence between the xij variable in the base
model and the network edge leading from i to j in the network flow diagram of fc-matching
in Figure 1.

Let I′ = {i|(i, j) ∈ E} and J′ = {j|(i, j) ∈ E}, and suppose that without loss of gener-
ality, |I′| ≤ |J′|. At optimality, one must have

∑
(i,j)∈E

xij = 1, for each i ∈ I′

There should be exactly |I′| assignments in the optimal base solution. This is because
one can always make additional assignments to get more benefit in the objective if the
number of matches is less than |I′|. On the other hand, there cannot be more than |I′|
assignments as it will break the cardinality constraint.

One can rewrite the objective as

maximize Z = M · ∑
(i,j)∈E

xij − ∑
(i,j)∈E

Dijxij

Since at optimality the first term:

∑
(i,j)∈E

xij = |I′|

is a constant, the base model is equivalent to:

minimize Z = ∑
(i,j)∈E

Dijxij (42)
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Subject to:
∑
j∈ J′

xij = 1, for each i ∈ I′ (43)

∑
i∈I′

xij ≤ 1, for each j ∈ J′ (44)

This model can be viewed as a restricted assignment problem instance defined on I′

and J′.
Likewise, for the fc-matching problem in Figure 1, at optimality, the left column of

nodes corresponds to I′, and every node in I′ must have a non-zero outgoing flow (again
assuming |I′| ≤ |J′|). There will be exactly |I′| non-zero outgoing flows due to the defined
edge capacities. In addition, at the flow rebalancing link, there will be exactly |I′| amount of
flow, each costing −M, a constant. Therefore, the optimal solution value is determined by
the minimum cost assignments between I′ and J′. This is also equivalent to the restricted
assignment problem in (42) through (44).

Since both the base-matching and the fc-matching models are equivalent to the restricted
assignment problem, one can conclude that the base-matching model and the fc-matching
model themselves are equivalent.

Q.E.D. □

Compared with the assignment problem, the base model is more flexible. It is not
necessary to figure out whether |I′| ≤ |J′| or |J′| ≤ |I′| before writing out the model
constraints. Instead, one can consistently use the ≤- form of cardinality constraints.

In the literature, the authors often did not provide a specific value of M. A corollary of
Observation 1 is that the specific value of M in the fc-matching problem does not matter, as
long as it is greater than the cutoff distance c. The condition M > c is necessary to ensure
that exactly |I′| assignments will be made. Otherwise, in the fc-matching problem, there will
not be sufficient incentive to have any non-zero flows; and in the base-matching model, the
conversion of constraint (40) to constraint (43) cannot happen.

3.1.2. A m:1 (1:n) Version of the Base Model

For exposition, a second base model for making m:1 and 1:n matches is also presented.
Using the common notation in Section 2.2.1, the base-bimatching model can be defined in
MILP as follows:

maximize Z = ∑
(i,j)∈F

bijyij + ∑
(i,j)∈G

b′ijzij (45)

Subject to:
∑

(i,j)∈F
yij ≤ 1, for each i ∈ I (46)

∑
(i,j)∈G

zij ≤ 1, for each j ∈ J (47)

The base-bimatching model is basically a fusion of two sub-models that maximize the
total benefit of making forward assignments yij and backward assignments zij, respectively.
The two sub-models are merged such that the objective function (45) maximizes benefits for
both assignments simultaneously. Both the forward and backward assignments are partial
assignments. Therefore, in (46), one can only require that the source object i ∈ I should
be assigned no more than once, and similar cardinality constraints cannot be imposed on
the target j ∈ J. Likewise, for the backward assignments zij, one can impose cardinality
constraints in only one direction.

The basic base-bimatching model is rather weak, as the model is free to make opposite
assignments yij, zij without regard to each other. If a target j ∈ J has been assigned to (with
yij), nothing stops it from being assigned again as a source (via zij). Nonetheless, it is a
common basis on which the many-to-one conflation models in the literature are formulated.
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3.2. Link to the Assignment Problems

Next, this section presents an analysis of the links between existing optimized confla-
tion models and the base models described above. From the proof of Observation 1, it is
clear that the base-matching model is equivalent to a restricted assignment problem. This
means that the assignment problem is equivalent to a base-matching model with appropriate
modifications. In particular, if one sets the cutoff distance c to infinity, then the base-matching
problem reduces to an assignment problem (1), (2) and (4), assuming |I| ≤ |J|. If |I| ≥ |J|,
the roles of I and J must be swapped to obtain an assignment problem.

3.3. Link to the Network Flow Models

First of all, it should be noted that the general network flow problem can already be
expressed as an MILP problem as follows:

minimize ∑
e∈E

ce fe (48)

Subject to
∑

e∈In

fe − ∑
e∈On

fe = 0 for each n ∈ N (49)

le ≤ fe ≤ ue for each n ∈ N (50)

fe = amount of flow in e ∈ E

where fe is the amount of flow along e ∈ E, N is the node set, E is the edge set, In, On are
the sets of incoming and outgoing edges for the node n, respectively. While the objective
(48) minimizes the total flow cost ce, the only constraint (49) maintains flow conservation at
each node.

However, the above formulation is not very useful, because it does not specify the
specific network structure (in N and E) that is necessary for conflation. Any network
flow based model could be expressed using the same MILP formulation in (48)–(50). A
more useful connection to MILP models is the equivalence between the base-matching and
fc-matching problems in Observation 1. By that proof, the base-matching problem is the same
as the fc-matching problem.

3.3.1. Connection between fc-Matching and Base-Matching

As is proven in Section 3.1.1., the fc-matching is functionally the same as the base-
matching model. They are essentially the same model expressed in two different formats
(network flow and MILP, respectively).

3.3.2. Connection between fc-Bimatching and Base-Bimatching

maximize Z = ∑
(i,j)∈F

bijyij + ∑
(i,j)∈G

b′ijzij − β ·

 ∑
(i,j)∈F

ej + ∑
(i,j)∈G

e′i

 (51)

Subject to: (46), (47), and multi-assignment definitions
In the above, “multi-assignment definition” is a set of constraints that can correctly

define two new variables sj, ej where
sj = 1 if at least one source object i is assigned to j, or zero otherwise (for each j ∈ J).
ej = the amount of assignment to j that exceeds 1
Then, in the objective function (51), penalty terms were added to discourage excess

assignments (ej), as with the fc-bimatching problem. The decision variables for the primary
assignment sj and excess assignments ej are characterized by two new constraints:

∑
(i,j)∈F

yij = sj + ej, for each j ∈ J (52)
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M ×
(
1 − sj

)
+ ej ≤ M, for each j ∈ J (53)

Constraint (52) states that, for a target feature j ∈ J, the sum of the primary and
excess assignments is the same as the total number of assignments. Constraint (53) uses the
“big M” method and maintains that if there are non-zero excess assignments, the primary
assignment variable sj must be one.

Symmetrically, the primary assignment s′i and excess assignments (e′i) can be defined
for backward assignments.

∑
(i,j)∈F

zij = s′i + e′i, for each i ∈ I (54)

M × (1 − s′i) + e′i ≤ M, for each i ∈ I (55)

With the new variable for excess assignments and the associated penalty terms in
the objective function, the fc-bimatching problem can be expressed as a variant of the
base-bimatching problem.

3.4. Link to the Unified Bidirectional Matching u-Bimatching Problem

The unified bidirectional matching problem can be viewed as a merge of the two base
models base-matching, base-bimatching plus additional constraints to maintain consistency
between the full and directional assignments xij, yij and zij. The objective function (9) is a
weighted sum of the objectives of the two base models. The additional constraints are the
forward-backward compatibility constraints (16) and (17) plus constraints (14) and (15) as
defined in Section 2.2.4.

3.5. Link to the Edge Connectivity Based Matching (ec-Matching) Problem

The ec-matching problem is a direct extension of the base-matching problem with added
adjacency constraints (21) and (22) defined in Section 2.2.5.

The ec-bimatching problem is a direct extension of the base-bimatching problem with
similar adjacency constraints (26) and (27) defined in Section 2.2.6.

3.6. Link to the Edge-Node Matching (en-Matching) Problem

The en-matching problem is a combination of two versions of the base-matching problem
plus incidence constraints (33), (34), (35), and (36) as defined in Section 2.2.7. The two
versions of base-matching are for matching the edges and the junctions of two networks,
respectively.

As a summary of this section, Table 1 presents the main points about the relation
between the existing models and the two base models. Column 1 presents the name of an
existing model. Column 2 presents the base model based on which the said model can be
built. Column 3 tabulates the additional constraints that are necessary during the model
transform. Lastly, column 4 presents additional modifications in the objective function or
the overall structure of the model.

4. Experiments
4.1. Experimental Settings

This section presents experiments that verify the theoretical links between existing
conflation models and the properties of the two common base models. As detailed in the
previous section, the existing MILP based conflation models in the literature are linked
to the two base models in a straight-forward way: by adding additional constraints and
merging objective function terms. Anyone interested in implementing one of these models
can implement the base-matching models first, and then incrementally add the constraints
and the objective function terms. What remains to be verified is the connection between
the network-flow based fc-matching models and the base models. While it was argued that
the fc-matching and base-matching models are equivalent, and their bi-matching versions
are compatible, this needs to be verified computationally, since they are based on different
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optimization algorithms. After all, the fc-matching models are based on network-flow
solvers (such as the lemon C++ library), whereas the base-matching models are formulated
and solved in MILP. Some of the implementation issues encountered during this cross-
comparison are also discussed.

In order to verify the equivalence and relationships between the models, this article
uses the recall and precision metrics and check whether the involved models generate the
same outcome. The recall rate is used to measure the ability of the conflation algorithm to
capture true matches. Given the number of true matches (TM), false matches (FM), and
False Unmatches (FU), it is defined as:

Recall =
TM

TM + FU

The precision rate is used to measure the algorithm’s ability to be selective and include
as few false matches as possible. It is defined as:

Precision =
TM

TM + FM

As mentioned in the previous section, all the main network flow and MILP based
models were implemented by the authors either by adapting existing code or developing
new code when necessary. The implementation of the network flow based fc-bimatching
models is based on the code in [11]. The remaining models were MILP-based and imple-
mented using the Relational Linear Programming (RELP) package [32]. All experiments
were conducted on a machine with an Intel i5-12400F CPU and 64 Gigabytes of system
memory. For the test data, the same Santa Barbara County dataset with six test sites was
used as in [11], as shown in Figure 3. Each site contains road networks from Open Street
Map and TIGER, respectively.
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Figure 3. Six road datasets in Santa Barbara County, CA: Open Street Map vs. TIGER.

4.2. Properties of the Base Models

The first experiment is to test whether the fixed cost F in the base model (i.e., the
fc-matching model) has any impact on the model outcome. This is important to test, as no
recommendation has been given in the literature as to how the parameter should be chosen.
A range of fixed cost values were tested ranging from 200 m to 1000 m with the original
network flow-based fc-matching model. For each value of F, a range of cutoff distances from
40 m to 200 m at 20 m intervals were tested. Results for only the largest and the smallest
sites (sites 1 and 5) are presented to save space, as the patterns are the same in all other sites.

Figure 4 presents the recall and precision curves (versus cutoff distance) at each F
value. Firstly, one can observe that the performance curves (recall or precision) for different
F values coincide. This verifies the claim made in the previous section that the fixed cost has
no impact on the model outcome, as long as it is greater than the cutoff value c. Secondly,
one can observe the general trend of recall rates increasing with the increase in the cutoff
distance value c. The precision rate generally decreases after the cutoff distance reaches a
certain level. When the cutoff distance is extremely small (e.g., Site 5 at c = 40), it may be
the case that there are so few match candidates to choose from that the fc-matching model
makes incorrect choices.
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4.3. Equivalences and Relations between the fc-Matching Problems and the
Base-Matching Problems

The next step is to verify the equivalence between the MILP-based base-matching
problem and the fc-matching problem, as well as the relations between their bi-matching
versions. Figures 5 and 6 present the recall and precision rates for the fc-matching, fc-
bimatching, base-matching, base-bimatching, as well as the MILP version of the fc-bimatching
problem in (51) through (55), called milp-fc-bimatching. The first two models (fc-matching
and fc-bimatching) are network-flow based, whereas the other three models are MILP-based.
Firstly, one can observe that in all figures, the MILP-based base-matching and the network-
flow based fc-matching models have almost identical recall and precision rates at each
cutoff distance. This fact experimentally verifies our hypothesis that the two models are
logically identical.
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For the bi-matching models, one can observe likewise that the MILP-based milp-
fcbimatching model and the original network based network flow model have identical
recall and precision rates at all six test sites, except for small differences in site 5 at cutoff
distances 40 m and 100 m, respectively. Upon closer investigation, the difference arose from
two related implementation issues: integer round-off and distance ties. More specifically,
the networkflow-based models in [11,15] are based on the Lemon C++ library for solving
network problems. As with many code bases and algorithms of its kind, the specific
minimum cost circulation algorithm from that library assumes that the flow costs on
network edges are integer valued. Therefore, the network flow models in [11,15] effectively
round off distances to integer values beforehand. To cope with this issue, the distances are
also rounded off in our MILP based models, but a new problem emerged: ties between
integer valued distances. In some sites such as site 5, the directed Hausdorff distance to two
different target features can be the same. Since the different conflation algorithms make
arbitrary choices to break the tie, the prescribed matches may be different, therefore, about
these features.

Practically, the experiment above illustrates some nuances between the solvers and
conflation models. Even though the two models are logically equivalent, the model results
may vary due to limitations in some of the solvers. In this case, the network flow-based
solver requires integer valued input, whereas the MILP based solver does not suffer from
this limitation. On the other hand, specialized network-flow based solvers are theoretically
faster than the more general MILP based solvers for the same problem at hand.

Figures 5 and 6 also demonstrate the differences between the two base models as well
as the effect of extending the base models. Generally, the plotted performance curves form
two groups based on the cardinality of matching, with the 1:1 models (fc-matching and
base-matching) being one group and the m:1 (1:n) models being the other. In terms of the
model outcome, the 1:1 models are identical, while the base-bimatching and the fc-bimatching
problems (MILP or network-based) are close but have some differences. Within the m:1
group, the recall rates for the base-bimatching problem are consistently higher than those
for the fc-bimatching problem. The only exception is at site 5 when the cutoff distance is
very small (40 m), in which case the candidate match set may have been overly cut down.
Symmetrically, the precision rates for the base-bimatching problem are consistently lower
than those for the fc-bimatching problem. This difference reveals the effect of the added
constraints (52) through (55) on the base bi-matching model. As intended, they identify
excess assignments (multi-assignments), which are then penalized in the objective. As
expected, this increases the precision as the unreliable multi-assignments are discouraged,
but reduces recall (also because of the reduced multi-assignments). From a perspective, the
base-bimatching problem is the most unrestrictive model among bi-matching models and is
probably too unrestrictive. For example, at site 5, its precision is almost 20% lower than
that of the fc-bimatching problem (at a 100 m cutoff). On the other hand, this comparison
also shows the effectiveness of the various add-on features to the base models.

5. Conclusions and Future Directions

Optimized conflation is a method for GIS data conflation, which is aimed at matching
two GIS datasets by systematically minimizing the total discrepancy. First conceptualized
in the 1980s, optimized conflation has seen many different formulations of the conflation
problem, starting from the map assignment problem to the more recent network-flow based
and newer models based on MILP. This paper demonstrates that all the present optimized
conflation models are intrinsically linked. In particular, two base models are presented
(for the 1:1 and m:1/1:n matching cases), which serve as a common ground for all existing
models. One base model (the base-matching problem) is the network-flow based fc-matching
problem reformulated in MILP. The other base-model (the base-bimatching problem) is an
m:1 version of the base model. By means of the base conflation models, this article showed
that existing models can be viewed as variants of the base model(s) with either added
constraints/objective terms, or modified problem parameters.
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Since the 1:1 base model (fc-matching) was originally networkflow-based, it was nec-
essary to demonstrate that it can be succinctly expressed in MILP. The Method section
demonstrates that indeed, fc-matching can be reformulated in MILP, resulting in a model
structure that happens to be the common ground for the existing 1:1 models. It is also
experimentally verified that the network-flow-based and MILP-based versions of the base
model generated the same outcome. For the m:1 case, no existing model could serve as
a common base model. Instead, a bi-matching version of the base model was presented
(called base-bimatching), of which the existing bi-matching models can be viewed as exten-
sion models. The properties of the base models were then discussed and compared with
each other.

The contributions of this article are three fold. Firstly, the identification of the common
base model helps to understand the multitude of optimized conflation models in the
literature. In light of the base models, one can clearly see what a specific conflation model
adds to the baseline model. Secondly, the common base models ease the implementation of
optimized conflation models by promoting a modular way of model development. One can
implement a base model and then add additional features incrementally. Thirdly, practical
issues were discussed including the choice between network-flow and MILP based solvers,
as well as the choice of basic parameters, such as the fixed cost.
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