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Abstract: Asset management is a process that deals with numerous types of data, including spatial and
temporal data. Such an occurrence is attributed to the proliferation of information sources. However,
the lack of a comprehensive asset data model that encompasses the management of both spatial and
temporal data remains a challenge. Therefore, this paper proposes a graph-based spatio-temporal
data model to integrate spatial and temporal information into asset management. In the spatial layer,
we provide a graph-based method that uses topological containment and connectivity relationships
to model the interior building space using data from 3D city models. In the temporal layer, we
proposed the Aggregated Directly-Follows Multigraph (ADFM), a novel process model based on
a directly-follows graph (DFG), to show the chronological flow of events in asset management by
taking into consideration the repetitive nature of events in asset management. The integration of
both layers allows spatial, temporal, and spatio-temporal queries to be made regarding information
about events in asset management. This method offers a more straightforward query, which helps to
eliminate duplicate and false query results when assessed and compared with a flattened graph event
log. Finally, this paper provides information for the management of 3D spaces using a NoSQL graph
database and the management of events and their temporal information through graph modelling.

Keywords: asset management; 3D city models; graph data model; graph database; spatio-temporal;
directly-follows graph

1. Introduction

Asset management is a subset within the Architecture, Engineering, Construction,
and Operation (AECO) [1] sector that is deeply involved in asset lifecycles. The primary
objective of an asset lifecycle is to establish guidelines for the effective management of assets,
from their acquisition to their eventual disposal. An asset lifecycle deals with numerous
types of information to facilitate effective data-driven decision-making. Examples of
such information include operational and maintenance (O&M) information, the spatial
description of the assets, and historical information regarding assets in the O&M phase of
an asset lifecycle. Effective management of this diverse range of information will allow
asset managers to establish a methodical and active asset management strategy that focuses
on predictive asset maintenance (PdM) [2].

According to the authors of [3], asset managers often struggle with the abundance
of information rather than the lack of it. A contributing factor to this phenomenon is the
proliferation of Big Data and its technologies, which have emerged as an indispensable
source of information and information management for asset management [4]. Information
management stands as a critical subject for asset managers when examining the optimal
approach to managing the heterogeneous data sources involved in asset management.
The increasing prevalence of digital asset management subsequently prompts information
management as an emerging topic in asset management research, which results from the
increasing prevalence of digital asset management. The digital and virtual transformation
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of asset management through the involvement of 3D models using the digital twinning
approach could be the key to solving data storage and data processing while fully utilising
rich information from various sources [5].

While having a wealth of information and data is advantageous for asset management
decision support tools, managing them to ensure the quality of the information is often a
challenge. Substandard information quality caused by inadequate information manage-
ment will impose significant difficulties on asset management operations [6]. The resistance
to implementing an efficient method for information management in asset management
stems from the absence of a widely accepted method for managing information originating
from multiple sources [7] and the interoperability issues of available data [1,7–9]. According
to several studies, asset and facility management operations spend approximately 80%
of their time searching for relevant information, a problem originating from inadequate
data integration [10] and poor interoperability [1,11] that hinders effective decision-making.
Therefore, it is imperative to address the issue of data interoperability in asset management
with a well-defined strategy, which can be achieved through the development of a robust
asset management data modelling approach [7,8].

Efficient operation in asset management relies on effective data exchange and shar-
ing in all phases of the asset lifecycle [7,12]. A systematic review by the authors of [7]
demonstrated several built environment data models that aim to solve the problems of
interoperability and data exchange in the asset management domain. Data modelling in
asset management can be regarded as a method to facilitate a seamless exchange of infor-
mation by establishing the classification and relationship of entities, ontology, taxonomy,
and information hierarchy of physical assets [8]. Designing and structuring are important
aspects to consider when developing an asset data model [13]. This is because a data model
that possesses a systematic conceptual and logical design is not only capable of facilitating
the smooth flow of data but also grants the ability to integrate with a database to enhance
the efficiency of data storage, data query, and data manipulation.

An essential consideration during the development of a data model is deciding which
information must be incorporated to meet the operational requirements and demands of
an asset-intensive organisation. In the context of infrastructure asset management, incor-
porating spatial information is crucial to constructing a reliable asset data model. Despite
its prominence in asset management, the integration of spatial information into asset data
models is seldom discussed. Spatial information is vital for risk management in asset
management as it can be used to determine the hotspot of risk concerning infrastructure
assets [14–16] and to assess the risk of exposure from natural disaster risks [17–20].

In asset management, specifically regarding building assets, spatial information com-
prises three distinct types of information, namely, coordinates, geometry, and space. Such
information can be obtained using 3D city models, either by visualising them or are cap-
tured within the data structure of the 3D city models themselves. Building space arrange-
ments within the buildings are classified as spatial information, which can be discerned
through the visualisation of 3D city models. Incorporating the building space information
into an asset data model could facilitate indoor navigation during a disaster risk, which
is one of the capabilities of 3D city models when they are represented and modelled at
a high level of detail (LoD) [21]. As an initial step towards developing an effective asset
data model, a technique is required for modelling high-LoD 3D city models that manage to
capture the arrangement of interior building spaces.

Asset management must also maintain records of temporal information in the form of
historical data and the progression of events from the operation and maintenance phases
of the asset lifecycle [22]. Temporal information plays a crucial role in making informed
decisions in asset management [23] and improving the reliability of available assets [24].
Historical information can also provide valuable insights to diagnose problems with an
asset, predict what will happen to an asset, and prescribe appropriate action for assets at
risk [25]. Consequently, it is clear that asset management should incorporate temporal data
and that providing strategies for managing temporal information is equally important.
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Temporal information can be captured and managed using process mining techniques.
Process mining is a discipline that facilitates the extraction of data regarding business
processes from the event log information [26]. Asset management can benefit significantly
from process mining techniques, which facilitate the discovery and modelling of event-
related information including timestamps, activities, and their flows. Process mining
identifies the flow of activity through the use of graphical representations.

The process mining domain plays a critical role in describing and analysing the flow
of process events. Understanding the sequence of events in asset management is crucial for
several reasons. Process mining techniques are designed to extract meaningful information
from recorded event logs, which document various activities and interactions within an
asset, and discover how the activities will affect asset performance. Therefore, by leveraging
process mining, asset management organisations can significantly improve performance by
analysing event sequences that can help enhance business processes [27,28]. Analysing the
events helps to uncover inefficiencies and vulnerabilities that can aid risk assessment in
asset management to prevent asset downtime.

This study aims to propose a comprehensive spatio-temporal asset data model that
incorporates the aspects of building components from 3D city models and the management
of events in the O&M phase of asset management. The proposed data model addresses
two main gaps: the absence of a bi-dimensional data model in asset management and the
insufficient focus on managing historical events within asset management.

2. Research Background
2.1. Asset Data Model

In the academic literature, asset data models are mainly discussed to support two
main aspects. The first aspect concerns the discussion of asset data models to support the
phases in asset management, predominantly the operation and maintenance (O&M) phases.
Managing data in the O&M phase of asset management can be a challenging task as it deals
with numerous data. The management of temporal information is also crucial during this
phase, which focuses on managing historical data of various activities for prediction-based
decision-making [11,13]. To manage the diverse information in asset management, Ref. [11]
proposed a two-level semantic asset data model that divides the information based on their
dynamicity characteristics. Meanwhile, Ref. [13] included historical information as one of
the main entities in their data model. However, the primary issue is the lack of explanation
regarding the management of historical data and their temporal attributes regarding asset-
related activities. Assets that are subjected to the phases in the asset lifecycle will undergo
multiple activities along their operational life. Therefore, it is vital to depict the flow of
these activities so that asset managers can make personalised decisions based on specific
asset conditions and be aware of the assets’ current state.

The second aspect is the discussion of asset data models to facilitate the enrichment of
information and semantics with the aid of digital infrastructures such as GIS and building
models, which are considered as spatial data. Such an aspect is motivated by the progression
of asset management, which is transitioning towards digital asset management. Although
data modelling is a well-known technique that has been implemented for decades, its lack of
semantics is a noteworthy drawback [29]. There are examples of GIS and BIM integration being
used to improve the semantics in the built cultural heritage domain. This integration allows
for 3D modelling and the enrichment of semantic knowledge to enhance the documentation of
built cultural heritage and improve information management and analysis [30,31]. Therefore,
the lack of semantic knowledge in asset management can be overcome by incorporating
data from external sources, including information from GIS and building models such as the
Building Information Model (BIM) and City Information Model (CIM).

Digital infrastructures, such as GIS and multidimensional building models, are crucial
for the digitalisation of asset management. Ref. [32] conducted a systematic literature
review on the role of digital infrastructure for asset management and found that multi-
dimensional (3D/4D) modelling such as the CIM is an advantageous asset management
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tool for managing managerial, technical, and financial data. Meanwhile, the GIS has been
proven beneficial in geovisualization [33] and is needed to provide the spatial data and
locations of assets in asset management via sensing and GPS technology [32]. Ref. [34]
highlights the prevalent use of the GIS for infrastructure asset management due to its
versatility and the fact that it is an established body of knowledge.

From the GIS perspective, both the GIS and the CIM are interrelated. The CIM is
constructed from photogrammetry and laser scanning data obtained from GIS sources to
generate the CIM, which is also referred to as 3D city models [35]. The 3D city models in
the GIS are a component of the 3D GIS domain. The primary 3D city model formats in 3D
GIS are CityGML and CityJSON, which can be distinguished mainly by their encoding. 3D
city models have demonstrated their significance in numerous disciplines, such as urban
planning, utilities, and asset management [36,37]. These semantically enriched 3D city
models have advanced as an important decision support tool for many urban applications
across numerous use cases [38]. Additionally, 3D city models serve as powerful tools in
asset management that are primarily utilised for risk assessment [21,39–41].

Incorporating 3D city models as 3D spatial data into asset data models provides asset
managers with an informative decision-making method by unlocking spatial analysis
and spatial query. The progression towards digital asset management can be supported
by incorporating 3D spatial data. However, the integration of 3D spatial data in asset
management is rarely addressed within the asset data model framework. The 3D city
models are equipped with intricate geometries and topologies [42] that provide hindrances
to developing a comprehensive and efficient asset data model. Additionally, it is necessary
to connect 3D spatial data with temporal information in asset management since temporal
information is indispensable for making effective decisions in asset management [23,25].
Hence, there is a requirement for the efficient modelling of spatial, temporal, and spatio-
temporal data to effectively manage this information in asset management practices.

2.2. Graph Data Model for Management of Events and Its Temporal Information

The flow and sequence of events across any domain can be depicted as a graph notion.
Activities or events can be represented as nodes, while the flow of these activities and
the relationships between them can be indicated using directed edges. Several process
models have been developed and implemented to represent the flow of activity for business
processes, such as BPMNs, Petri Nets, and DFGs [43]. The basis of process mining or the
business process is the event log, which consists of activity and timestamp attributes [44] to
describe the sequence of events [45]. Event logs in process mining are records of business
processes that can provide further understanding of the performance of a process [46].

A Petri Net is a graphical and mathematical model that describes the interaction
of processes within various applications, including business process modelling [47]. It
is a bipartite directed graph that consists of two disjoint sets, namely, the places and
transitions [28]. The edge or arc in a Petri Net connects places or transitions. Due to their
characteristics as a bipartite graph, no two places or transition nodes can be connected
using arcs. Meanwhile, a DFG is a directed graph to depict the sequence of events and
the events that immediately follow a given event corresponding to a directly-follows (DF)
relationship [43,44]. Finally, a BPMN is a process model language that combines several
notations from the Unified Modelling Language (UML) and the XML Process Definition
Language (XPDL) [47]. Although they are not formally regarded as graph models, BPMN
models use nodes and edges to describe the flow and sequence between activities, which
are the fundamentals of a graph.

Definition 1 (Event Logs) [46]. Given A is a set of activities, L is an event log, where t is a trace
of activities such that t = {a1, a2, a3,. . . an}, with an ∈ A, 1 ≤ i ≤ n.

Definition 2 (Petri Nets) [48]. A Petri Net is a 3-tuple N = (P, T, F), where

1. P and T are two disjoint finite sets called Places and Transitions, respectively.
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2. F ⊆ (P × T) ∪ (T × P)is a set of directed edges called Flow.

Definition 3 (Directly-Follows Graph) [46]. Graph G = (N, E) is a Directly-Follows Graph
(DFG), where

1. N is a set of nodes and E is a set of edges.
2. N = {a ∈ A | a is an activity recorded in at least one trace, t of the event log}.
3. E = {(x, y) | x, y ∈ N and there exists at least one trace, t where activity x is directly followed

by activity y}.

The use of databases in the event log management of event logs within an organisation
offers significant advantages, including the ability to customise queries to access a vast
array of information [49]. Event data typically encompasses activities, identifiers, resources,
event identification, and timestamps or other forms of attributes to state the sequence
of events [22]. However, Ref. [47] emphasises that the majority of processes consist of
numerous intricately interconnected entities, including activities, timestamps, activity
identifiers, and other elements that offer deeper insights into any organisation’s process.
This results in event data that comprises multidimensional information. Ref. [50] further
adds that although relational databases possess the ability to manage multidimensional
data, they do not have the proper ability to model and query the sequence of events. On
the contrary, graph databases offer significant advantages when it comes to storing event
processes that are presented through graph data models due to their benefits in storing,
manipulating, and querying graph notations [51].

3. Spatio-Temporal Data Model

This section describes the methodology for developing an asset management spatio-
temporal data model alongside the considerations for effective modelling of both spatial
and temporal components in asset management. Figure 1 shows the four main phases of
developing the data models, encompassing all the essential information required.
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3.1. Phase 1: Information Identification

The development of data models is driven by the desire to standardise information
originating from diverse sources. The primary aim of this paper is to establish a comprehen-
sive representation of asset management information. Therefore, it is critical to ascertain the
data necessary for asset management across the complete asset lifecycle. The information
in asset management encompasses a wide range of categories, which can be captured by
identifying the semantic properties of the assets. This will help to define the information,
attributes, and relationships between the information and its corresponding attributes.

Several studies have been undertaken to determine the semantical data that are essen-
tial for the implementation of active asset management strategies through effective data
management. The prominence of semantic information and attributes in asset management,
along with their modelling and relationship definitions, has been established by a number
of studies [11,13,52]. The findings suggest that information can be primarily classified as
managerial and operational and maintenance (O&M) information. Managerial information
is needed to assist the administration and management of assets, such as the asset manager,
asset function, and asset specifications. Such information is commonly decided by the asset
owner. On the other hand, O&M information is the key aspect in asset management to suc-
cessfully operate the function of the assets. This includes the decision-making information,
maintenance records, operational records, failure history, and other information pertinent
to the O&M phase in the asset lifecycle. It is also a temporal layer that deals with temporal
attributes, times, and events.

A common deficiency in the research is the exclusion of spatial data in asset data
models. Failure to provide an explanation regarding the significance of spatial information
in asset data model research could imply that this aspect of the model is not considered
substantial. As explained in Section 2.1, a considerable body of research that is not centred
on asset data models demonstrates that spatial information presented as 3D building
models could benefit asset management. Therefore, this research will include spatial
data in the form of a 3D city model alongside other previously mentioned categories of
information, namely, managerial information and O&M information. Location, geometry,
and space constitute the three additional components that comprise spatial information.
Location data, also known as coordinates and geometry, are stored as attributes within
the data structure of the 3D city model. Meanwhile, the spatial information provides
a description of the building’s interior, including all building spaces like the floor level
and rooms. However, information on the connections between interior building spaces
is difficult to discern based solely on the encoding of 3D city models, such as CityJSON
and CityGML. Nevertheless, the arrangement of the building’s interior is visible and can
be easily validated when it is visualised using 3D city model visualisation tools. Figure 2
illustrates the categorisation of information in asset management.

3.2. Modelling the Information

Figure 3 illustrates the correlation of data drawing upon the information uncovered in
the previous sections. The depicted image can also be interpreted as a database schema,
which is the initial phase in constructing a comprehensive data model for database im-
plementation. The distinct classifications of information as shown in Figure 2 are treated
as a separate layer (see Figure 3). The relationship between two elements of the same
or different layer is indicated by the direction of the arrow. The primary categories of
information discussed are the spatial and O&M layers as the information in these layers is
integral for achieving the main objective of this study, which is to propose a spatio-temporal
asset management data model.
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The spatial layer mainly concerns the interior building space elements (see Section 3.1)
since it is treated as an independent attribute from the data structure of a 3D city model.
Additional spatial components (i.e., geometry and location) are encapsulated within the
data structure of a 3D city model. For example, CityGML and CityJSON, which are the 3D
city model formats within the 3D GIS domain, are encoded in GML and JSON, respectively.
They store both coordinates and geometry in their own encoding as illustrated by the
example in Figure 4. Consequently, we aim to preserve this information within the 3D city
model’s data structure without extracting it for inclusion in the data model. The modelling
of interior building spaces aims to offer methods for modelling high-LoD 3D city models
in any format. Three types of information are available in this layer, namely, the block,
floor, and building spaces. As the primary entity, the block may be subdivided into its
floors and the interior spaces of the buildings (see Figure 3). Whereas information in the
O&M layer can be separated into operation, failure, and maintenance. This layer serves as
the temporal layer of this data model, as it concerns managing the temporal attributes of
times and events, as shown in Figure 2. Subsequently, the self-looping next relationship
can be established to demonstrate the sequential and dynamic characteristics of the event
information in this layer.
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3.2.1. Phase 2: Modelling Spatial Information

A 3D building model was employed in this study to provide the spatial information
necessary for determining the building space arrangement. This section explains how the
3D model was generated and used to model the spatial arrangement of the building.

The 3D models were constructed using SketchUp 2023 (Version 23.1.340) software.
Satellite images and aerial imagery of the structure were acquired prior to the development
of the 3D models. The correct height and shape of the structure were extruded based on the
data collected during site visits. Figure 5 shows the resultant 3D building model generated
in SketchUp. It illustrates part of the building situated in Lingkaran Ilmu, Universiti
Teknologi Malaysia (UTM), which was the research area of this study.
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The model in Figure 5 is further improved by including individual floors and rooms
within the C02 block to provide a more comprehensive representation of the interior
building space of the structure, thereby enhancing the level of detail of the 3D model.
Figure 6 shows a wireframe of the block to show how the floors and rooms are incorporated
into the 3D model. This improvement significantly increases the level of detail required
to simulate the buildings’ spatial arrangement, which will be beneficial when modelling
the spatial data. Consequently, the buildings are separated into three levels, which are
the block as the main entity, the floors within the block, and the individual rooms within
each floor.
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The 3D model illustrating the arrangement of the interior building space in Figure 4
is used to model the interior space shown in Figure 7a. Subsequently, the spatial layer
is separated into three main levels, the block, floor, and building space. As the primary
entity, the block occupies the initial level. Meanwhile, the building space, which consists of
all the rooms, is located at the lowest level. The different levels are connected by several
relationships, which are DividedTo, BelongsTo, UpperFloor, and ConnectedTo. Within the graph
database, each level will correspond to a distinct database collection, and each collection
is related using the aforementioned relationships. DividedTo and BelongsTo are cross-level
relationships that describe the containment topology. UpperFloor and ConnectedTo are
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within-level relationships that describe the adjacency and connectivity topology. The
spatial layer in Figure 7a can be illustrated as shown in Figure 7b when it is integrated into
the graph database.
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Figure 7. (a) The complete spatial component of the C02 block; (b) graph view of the C02 block
building spaces in the graph database.

However, the building spaces of the building models used in the example in Figure 7
might not accurately reflect the real-world complexity of most building layouts. Typically,
buildings have intricate connectivity between spaces. For instance, a floor may contain two
rows of rooms that are separated by a central corridor, which might prove to be a more
complex and interconnected layout than the example depicted. In this case, the corridors
can also be represented as building spaces, similar to other rooms, as they are places
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where people move around to access rooms and other areas. An example of this scenario
is illustrated in Figure 8. Figure 8a shows a simplified representation of building spaces
situated on a floor, which consists of multiple rows of rooms that are separated by a corridor.
Meanwhile, Figure 8b depicts a graph view of the building layout shown in Figure 8a that
has been implemented in the graph database. Similar to the approach used in Figure 7,
the building spaces within the same floor are connected using ConnectedTo, which is a
topological connectivity relationship that shows the connection and adjacency of corridors
and rooms. As denoted in Figure 8, the proposed spatial layer can also accommodate a
more complex building layout.
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The layouts for multi-story buildings and configurations were further explored, such
as when a room is situated within another room. These scenarios add complexity and
more accurately reflect real-world situations. Figure 9 illustrates these intricate layouts and
their corresponding graph view. The topological containment and connectivity methods
presented in this study are designed to accommodate any building layout, regardless
of complexity.
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3.2.2. Phase 3: Modelling Temporal Information
Understanding Process Event Data in Asset Management

To formally develop a way to manage the event and the temporal information in asset
management, the first step is to describe and understand the process event data in asset
management applications. The main form of temporal information in asset management
is the historical information in the O&M stages of asset management. Therefore, the
management of temporal information is focused primarily on the O&M phase, as it involves
various activities to manage the assets, including their operation activity, failure activity,
and maintenance activity, as described in Section 3.1. One of the best ways to effectively
display historical information is by displaying it chronologically. Through graph modelling,
this can be achieved by leveraging a directly-follows graph (DFG).
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There are three important information types in process event data in asset management,
namely, asset, event, and time information. Where normal process event data, such as
purchase-to-pay (P2P) process data would concern event, time information and their
case [44], asset information must be included when managing temporal information in
asset management. The role of asset information is to relate which assets undergo which
events and at what time. In other words, the event information must maintain a relationship
with the assets in the spatial layer. As there are many assets to be managed at one time,
establishing relationships between asset, event, and time information is complex, primarily
because any asset may undergo any activity recurringly at different times [55].

Handling Chronological Flow of Events in Asset Management

Table 1 shows an example of a maintenance record stored chronologically that exists
in asset management scenarios. The table consists of the essential asset, activity, and time
information with the event ID as additional information to ensure that all records are
unique. The table describes the asset and maintenance work that it has undergone, and it
can be stored as a graph instance as shown in Figure 10. The sequence of events is stored in
the trace column, with the first letter representing the asset and bracketed to distinguish
it from other letters. The second letter is the event that the asset underwent, while the
subsequent letter is the next maintenance event based on historical records.

Table 1. Example of historical asset maintenance records.

Event ID Asset Event Date Next Event Trace

1001 Asset A A 2 March 2022 B (A)AB
1002 Asset B C 14 May 2022 D (B)CD
1003 Asset B D 21 October 2022 B (B)DB
1004 Asset A B 12 February 2023 C (A)BC
1005 Asset A C 19 April 2023 C (A)CC
1006 Asset B B 25 July 2023 C (B)BC
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The graph in Figure 10 denotes the assets and work that the asset has undergone. All
assets and work are stored in separate nodes, while time is stored inside the event node.
The edge relates the assets and work through the undergoes relationship. However, the
chronological progression of events shown in Table 1 is obscured when the time information
is concealed within the node. A straightforward workaround to circumvent this issue is to
flatten the records in Table 1 and introduce a relationship between the events in order to
display the event sequence. However, this would introduce a new problem, where a new
trace appears that does not exist in the maintenance records. Figure 11 demonstrates the
problems when establishing a flattened graph data model to show the sequence of events
based on the records in Table 1.
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As shown in Figure 11, the false traces will contribute to the generation of incorrect
queries. This can have a negative impact on the database performance and, consequently,
on the asset management decision-making process during the O&M phase.

Research by the authors of [43,44] has demonstrated the problems with a flattened
graph model to capture process event information, which is attributed to divergence and
convergence issues. Divergence refers to a problem where a single event will lead to
multiple possible paths, and convergence is a process where different processes will have
a common outcome. In our cases, the problems are primarily divergent as the modelling
leads to multiple possible traces that do not exist in reality. This is because the edges
between the events that show the trace of the event have no particular differences from
other edges. In other words, the edges are not distinctive enough to be differentiated
from other traces of the event; hence, they yield wrong and duplicate traces of the event.
Asset management is particularly susceptible to the detrimental effects of divergence as
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the events are usually repeated and the event for an asset happens recurringly. Therefore,
obtaining a unique edge is impossible, which in turn creates a false trace.

Furthermore, the querying process in the graph database using the modelling in
Figure 11 will be more complex since it involves two-level graph traversals: (1) to query
the event that the asset has undergone and (2) to query the sequence of events. A two-level
graph traversal query can potentially lead to incorrect query results and be susceptible to
obtaining duplicate results. Therefore, modelling the sequence of events requires a more
complex and comprehensive way to manage the sequence of events based on a DFG.

A Directly-Follows Graph (DFG) for Managing Chronological Events in Asset Management

This section elaborates on the strategies to mitigate the limitations that have been
described in the previous section on how to properly model the flow of events. Therefore,
we leveraged the concept of a directly-follows graph (DFG) to describe the sequence of
events in process mining applications. A DFG is primarily discussed in the domain of
business processes. This study attempts to appropriate and implement the concept of a
DFG in asset management to accurately simulate the event flow that occurs repeatedly and
recurrently in asset management.

The previous section has described the problem of the multiple false traces that arise
due to edges that are not unique and the inefficiency of a flattened event log. The first
step to eliminate such a problem is to avoid flattening the event log. This is followed by
constructing the chronological sequence of events through a DFG by concentrating solely
on the temporal layer while retaining asset information to prevent information loss. This
ensures our capability to identify which asset has engaged in which activity. The advantages
of focusing the modelling on the temporal layer are twofold. Focusing the modelling on a
single layer will eliminate the problem regarding two-level graph traversals, resulting in
a straightforward query process that is flexible and guarantees accurate returned queries.
The second advantage is the ability to create unique edges by adding more contexts and
attributes within the edge relationship that only relate between event entities.

In asset management, where every activity may be completed repetitively, storing
each activity as a single node is not the best solution, as it might affect the load operation’s
performance inside the database. The insert process will require additional time and addi-
tional database storage, thus producing a database with poor performance. To circumvent
this issue, we implement node aggregation by grouping all nodes with common activity
characteristics into one single node; hence, all activity nodes are unique. For example,
all the assets may go through construction activity nine times; instead of inserting the
construction activity as nine different nodes, we can aggregate all nine nodes into one
single construction node. Consequently, it will reduce the storage size of the database.
To show the sequence of events, the node activity will connect to the succeeding activity
through directly-follows (DF) relationships.

However, aggregating all common activities into a single node will not solve the
problems with edges that are not unique. The only way to solve this issue is by manipulating
the edge. This can be completed by connecting the edge between event nodes multiple
times through DF relations. To impose uniqueness on each edge, event IDs are stored
inside the edge relationship; hence, no two edges will be the same even though they relate
to the same set of activities. The asset and time information will also be stored within
the edge to provide more information when the DF relation is queried. Connecting the
event node multiple times between the same event node will essentially form this graph
into a multigraph. Therefore, from this point forward, this method will be described as
the Aggregated Directly-Follows Multigraph (ADFM) and is defined in Definition 4. The
concept of the ADFM is shown in Figure 12 below. In Figure 12, the letter in each node
refers to the event as shown in Table 1.
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Definition 4 (Aggregated Directly-Follows Multigraph). The Aggregated Directly-Follows
Multigraph (ADFM) is a graph G = (N, E), where

1. N is a set of nodes and E is a set of directed edges.
2. N = {a ∈ A | A= (a1, a2, . . ., an)}, ai is an activity recorded in at least one trace, t of the event

log, where each ai is a unique activity node aggregated from all instances of the same activity.
3. E={(ai, aj)|ai, aj∈N}, where each edge (ai, aj) represents a directed “directly-follows” relation

from ai to aj with possible edge repetition from ai and aj.

The ADFM focuses on the event or temporal layer based on Figure 12, where the
nodes only represent the event information. The edge only relates between event nodes
to represent the DF relationship to show which event succeeds an event. It also contains
important information that adds richer context to the DF relationship, including the event
ID, the temporal information, and the asset information. The event ID is included for two
purposes: (1) to guarantee the uniqueness of each record and (2) as filterable attributes
during the querying process. The temporal information based on the figure refers to the
date when the preceding event occurred, which is stored in the edge rather than in the
event node to guarantee the uniqueness of the aggregated event nodes. Meanwhile, the
asset information is stored within the edge to indicate which asset undergoes the event.
The asset node from Figure 11 was omitted to facilitate the construction of a single-level
graph traversal that emphasises only the temporal layer to query the sequence of events.

Finally, the description of the ADFM serves as a fundamental for constructing a
complete process event log in Table 1. Figure 13 shows the modelling of process event log
based on ADFM. The letter in each node in Figure 13 refers to the event as shown in Table 1.
From Figure 13, we can see that all edges are unique with the appearance of the event ID,
the trace of events, and the timestamp. The multigraph notion in the DF relationship exists
between events B and C, where it is connected multiple times, involving different assets
while also ensuring that the edges are distinct.

3.2.3. Phase 4: Integrating the Spatial and Temporal Model

The approach to model spatial and temporal data, through the arrangement of building
spaces and the management of the chronological flow of event data, has been adequately
delineated. We can further outline the appropriate method to integrate the spatial and
temporal data to construct a comprehensive spatio-temporal model for asset management
purposes. The integration of both layers is illustrated in Figure 14, where blue nodes depict
event nodes, red nodes indicate block nodes, black nodes indicate room nodes, and purple
nodes indicate floor nodes. The spatial component at any level (see Figure 9) is subjected to
any activities in the O&M phases. In order to establish the connection between information
in the spatial and temporal layers, it is necessary to define a relationship between the two
types of information in each layer. Therefore, we retain the undergoes relationship presented
in Figure 10, describing which asset undergoes which event. Using this relationship, we
can identify which asset has undergone which event as well as other queries, such as
aggregation queries of event and asset information.
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4. Evaluation of the Data Model

This section illustrates the data model’s query capability through the execution of a
query pertaining to the asset management maintenance phase. The query is divided into
two categories, which are the spatial query and the temporal query. It should be noted that
the data model is implemented in the ArangoDB graph database. Therefore, the query is
based on the ArangoDB Query Language (AQL).

4.1. Spatial Query

The formulisation of Queries 1 and 2 is based on a use case on asset maintenance,
where in some cases, the inspection and maintenance of a building are conducted by
external contractors hired specifically to address specific issues. These individuals may not
be familiar with the building’s layout and, therefore, require guidance to locate the rooms
where inspection or maintenance is needed. Therefore, it is necessary to provide ways
to guide these individuals in navigating a building across multiple floors and traversing
various rooms on each floor. Query 1 identifies a room by specifying the block and floor
where the room is located. Query 2 reveals the adjacency between rooms on the same floor.

Query 1: Containment Query

The objective of this query is to locate a room that is the lowest-level entity of the
spatial model. This query involves the containment relationship and can be made by
filtering the ID or the name of the room by modifying the @BuildingSpace parameter inside
the query. The parameter @BuildingSpace is a bind parameter in the AQL that allows users
to insert any filterable attributes without modifying the query. The following query will
return the ID and name of the room and the floor and building where the room is located.

Query 1: Finding where a room is located

1 FOR v,e,p

2 IN 2..2

3 OUTBOUND @BuildingSpace BelongsTo, INBOUND DividedTo

4 RETURN {RoomID: p.vertices [0]._key, RoomName: p.vertices [0].Name, Floor:

p.vertices [1]._key, Block: p.vertices [2]._key}

Query 2: Adjacency Query

The purpose of this query is to determine which rooms are connected to a certain room.
In other words, it returns the room that shares the same boundary wall with a specific
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room. This query involves the adjacency relationship and utilises the bind parameter to
filter which room the user desires to be queried.

Query 2: Finding adjacency of building spaces

1 FOR v,e,p

2 IN 1..1

3 ANY @BuildingSpace ConnectedTo

4 RETURN {RoomID:v._key, RoomName:v.Name}

Alternatively, a user who wishes to ascertain the complete extent of the building space
connectivity within a floor may alter the query to retrieve the graph view of the query. It
will visually represent the whole length of the building space connection. This involves the
user specifying a large upper bound number for the path length as they may not know the
precise quantity of rooms situated on a certain floor. However, the query will still return
the correct number of rooms situated on a floor.

Query 2 (Alternative): Finding connectivity of building spaces

1 FOR v,e,p

2 IN 1..100

3 ANY @BuildingSpace ConnectedTo

4 RETURN p

4.2. Temporal Query

The temporal query for the evaluation of this data model is separated into three
queries, corresponding to three use cases involving asset maintenance practices. Query
1 is based on first use cases, which involve asset managers that are required to ascertain
which asset has undergone which event and the status of the event. This process is essential
to enable the efficient scheduling of maintenance operations, ensuring that each asset
receives the necessary attention based on its activity history and condition. Furthermore,
understanding the event history of assets is vital for effective cost management. By keeping
track of events, asset managers can analyse the total cost for maintenance, replacements, or
failures and make informed financial decisions.

Query 2 plays a part in risk management, which is a crucial task in asset management.
Identifying the frequency of an asset experiencing specific events, such as failures or
accidents, allows asset managers to assess risks and implement preventive measures. Asset
managers can accomplish this by finding the amount of time an asset has gone through
a specific event. Asset managers can identify patterns and potential vulnerabilities by
determining the number of operational failures or downtime experienced by an asset.

Finally, for Query 3, it is imperative to understand the sequence and timing of events to
allow better coordination and optimisation of operations. Asset managers can guarantee the
timely and efficient execution of all asset management activities, consequently minimising
downtime and enhancing overall operational efficiency. They need to identify the sequence
of events to improve the efficiency of the asset operation. The formulation and strategy for
each query are explained in detail below.

Query 1: Which asset has undergone specific maintenance?

The first query is finding the asset that has undergone a specific maintenance event.
This query is completed over the undergoes relationship, which is the spatio-temporal layer
of the data model, since it relates to the asset (i.e., spatial elements) and events (i.e., temporal
elements). Asset managers may require information regarding the maintenance status and
completion time to ensure that no asset has been neglected during the maintenance process
and to schedule subsequent maintenance activities.
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Query 1: Finding the asset that has undergone a specific event

1 FOR c IN Work

2 FILTER c.Name == @Work

3 FOR v, e, p IN 1..1 OUTBOUND c Undergoes

4 return {eventID:e.eventID, Block:e.Block, Work:c.Name, Time:e.Time}

Query 2: Aggregation of event

The result from Query 1 may not clearly demonstrate the frequency of maintenance
work. Therefore, it will aggregate the amount of time and frequency of a maintenance
event undergone by the asset. The filterable attributes are the name of the asset and the
type of maintenance work. This query is also completed over the undergoes relationship.

Query 2: Finding the amount of time an asset has gone through a specific event

1 FOR c in Blocks

2 FILTER c.BlockName == @Blocks

3 FOR v, e, p IN 1..1 OUTBOUND c Undergoes

4 FILTER v.Name == @Work

5 COLLECT BlockName = c.BlockName INTO Grouped

6 RETURN {Block: BlockName, Frequency: LENGTH(Grouped)}

Query 3: Querying the directly-follows relation.

This query will determine the sequence of events by querying the DirectlyFollow
relationship.

Query 3: Finding the sequence of events

1 FOR c IN Work

2 FOR v, e, p IN 1..1 OUTBOUND c DirectlyFollow

3 FILTER e.eventID == @eventID

4 RETURN {eventID:e.eventID, Block:e.Block, Work:c.Name, Time:e.Time,

NextEvent:v.Name}

The query will return the event that directly follows an event by filtering the event ID.
The asset and work can also be filtered as an alternative to filtering solely by the event ID.

4.3. Comparison of the Insert Operation between Flattened Graph Event Log and the ADFM

One of the differences between a flattened graph event log and the ADFM is how the
DF relationship is developed. The DF relationship in the ADFM uses more attributes to add
more information to the edge relationship, as an effort to reduce the graph traversals from
two-level to single-level graph traversals. Therefore, the insert operation for the edge might
be influenced by the amount of information that is available within the DF relationship.

Figure 15 visualises the result of the insert operation of the edge between the two
approaches. The operation was completed on ArangoDB using the AQL function, enabling
the user to obtain the execution time. The numbers of edges tested were 100, 500, 1000,
5000, and 10,000 for both approaches. As seen from the figure, the execution time for both
approaches increases linearly, with the ADFM possessing a longer execution time for the
insert operation across all numbers of edges. The key difference between both approaches
is the edge attributes within the edge, and this occurrence is afflicted by the number of edge
attributes within the ADFM that are larger than the flattened event log. As a comparison,
the edges of the flattened graph event log and the ADFM consist of three and five attributes,
respectively. The type of edge attributes for both approaches is shown in Table 2. This
signifies a trade-off for the ADFM, which offers a more straightforward and accurate query,
although a longer execution time is observed for the insert operation.
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Table 2. Edge attributes for both approaches.

Type of Attributes ADFM Flattened Graph Event Log

System Attributes
_from _from

_to _to

Additional Attributes

Date

DateBlock

eventID

5. Discussion

This paper introduces a spatio-temporal data model for asset management applica-
tions, which consists of two main layers, which are the spatial and temporal layers. The
spatial layer focuses on modelling the component of interior building space arrangements.
The initial building space arrangements are acquired from the visualisation of a 3D city
model, which is then modelled using graph notation, where each component is treated as a
node, while the relationship between components is denoted using edges. The modelling
of the interior building space arrangement is facilitated by an edge relationship that shows
the containment and connectivity relationship of elements in the interior building space to
allow a graph view of the building space arrangement, as shown in Figure 16. The graph
illustrated in Figure 16a shows the full length of the building connection of a building space
located on a floor, where the building space is identified by its alphabetical identification.
Meanwhile, Figure 16b illustrates the room arrangement of the first floor for C02 block,
from which the graph view of the building connection shown in Figure 16a is derived.
This method enables the implementation of indoor navigation through the utilisation of
NoSQL graph databases, which have been demonstrated to offer clearer representations
via graph visualisation. Consequently, the modelling of the interior building space using
graphs offers an alternative to high-LoD 3D city models. Illustrating the containment and
connectivity relationship also serves as key topological information for the management of
3D objects within spatial databases to allow more complex spatial queries [56].
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The ADFM was introduced in the temporal layer as a graph model to show the
chronological sequence of repetitive events stored in a graph database. This model leverages
the notion of the Directly-Follows Multigraph (DFM) introduced by the author of [57] as an
object-centric process mining approach, which has proven to provide a more realistic view
of process event data. The main difference introduced by this paper is implementing it in a
graph database alongside elucidating the factors and strategies that must be considered
when implementing it in a graph database. The main characteristic of this model is the
aggregation of event nodes and the separation of temporal information from nodes, which,
alternatively, are stored within the directly-follows edge relation. This approach produced
a graph data model, where both the node and edge are unique, in an effort to solve the
issue of false traces, when querying the sequence of events from a flattened event log. The
difference between the ADFM and a flattened event log in Figure 11 is shown in Table 3.

Asset management is a dynamic activity with ever-changing events that will be
undergone by assets. The proposed ADFM model facilitates understanding the sequence of
activities and extracting information through queries to conduct analysis that can enhance
O&M phases in asset management. With many new activities that an asset will undergo
on a daily basis, it is imperative that the model can accommodate changes and updates
of activities. The proposed model is designed to be adaptable to allow new events to be
added and linked to the respective assets undergoing the activity. This is essential to ensure
that the data remains current and reflective of the asset’s latest activities.
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Table 3. Difference between a flattened event log and the ADFM.

Graph Modelling
Approach Asset Storing Event Storing Temporal Storing Edge Information

Flattened Event Log
(Figure 11) Asset Node Aggregated Event Node Within Event Node None

ADFM Asset Node Aggregated Event Node Within DF Edge
Relationship EventID, Block, Time

The problem when modelling the event log (see Figure 11) is that the false trace arises
from the edges that are not unique and the two-level graph traversal queries to relate the
asset and their DF relation. Table 4 shows the difference in query complexities between the
ADFM and a flattened event log to query the DF relation. The flattened event log consists of
a two-level graph traversal query, which in turn necessitates a more complex query strategy.
As a consequence of the edge lacking essential information, which includes the asset and
temporal information, the query process will return all the records that are connected
with the filtered attributes, as no specific information can be filtered to differentiate the
edge. Consequently, false traces and duplicate records are produced for this reason. Unlike
the ADFM, which consists of a single-level graph traversal query, the query strategy to
gather the sequence of events is more straightforward. Furthermore, as all the important
information is stored within the edge, all filterable attributes can be filtered in one single
query. A correct result from the query can thus be guaranteed as a result of multiple edges
that are unique.

Table 4. The difference in the query strategies between a flattened event log and the ADFM.

Graph Modelling
Approach Levels for DF Query Definition of Level Query Strategy

Flattened Event Log
(Figure 11) Two Levels

First Level: Asset-Event Relate between asset
and event

Filter the asset that
undergoes a certain event.

Second Level:
Event-Event

Relate the directly-follows
relation between event

and event

Find the event that directly
follows the specific event

and return the result.

ADFM One level First Level:
Event-Event

Relate the directly-follows
relation between event

and event

Filter the asset and
the event within the edge

and return the
directly-follows event.

6. Conclusions

In this paper, we introduced a spatio-temporal graph data model for the application
of asset management, concentrating on the management of the bi-dimensional information
within the graph database. The variety of information in asset management has been
identified and adapted to our data model, which consists of spatial and temporal layers. In
the spatial layer, we introduced a graph-based building space management that separates
a building component into three levels, which are the block, floor, and building space.
The elements in each level are connected to each other through cross-level relationships
or within-level relationships. These two types of relationships allow containment and
adjacency relationships to be established between relevant components to allow spatial
queries pertaining to containment and connectivity information of 3D model elements.

In the temporal layer, the main objective is to model the chronological flow of events
in asset management using graph notation. The primary concern is resolving the issue with
repetitive events in asset management, which may result in inaccurate event traces when
event logs are modelled as flattened graph data models due to divergence issues, which are
prevalent in the process mining domain. Therefore, we introduce the Aggregated Directly-
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Follows Multigraph (ADFM) to counter the issue of repetitive events in any business
process application. Our model involves aggregating all repetitive events into one single
node, creating a unique set of event nodes. To show the chronological flow of the event
log, multiple edges are connected between relevant event nodes through a directly-follows
relationship. The multiple edges between the same set of nodes are differentiated by
inserting event ID information within the edge to enforce the integrity and uniqueness of
each edge to ensure that the correct flow of events is acquired when queried.

There is a limitation concerning the proposed ADFM. The limitation concerns the
insert operation, where the execution time for loading edge information in the ADFM is
longer when compared to the flattened graph event log. This increased execution time is
due to the edge attributes that exist within the ADFM that are larger than the flattened event
log. However, it is a necessary drawback to provide a data model with a straightforward
query and accurate query results. This balance between the insert operation and query
accuracy is essential in information management applications for developing a robust
and effective data model that meets the needs of sophisticated data management and
analysis tasks.

Furthermore, the integration of the spatial and temporal layers constitutes the main
component of the spatio-temporal data model, allowing spatio-temporal queries to ascertain
which asset has undergone which event. Although such a query is temporal, it requires the
integration of both layers to produce an efficient model that enables flexible queries to retain
query accuracy. It is hoped that the findings of this paper provide necessary insights for
further research on the management of 3D city model information using NoSQL databases,
particularly graph databases. In the context of asset management, our findings offer key
information for researchers and asset managers to manage historical records of activity,
particularly in the O&M phase of asset management. This paper also provides a way to
manage and manipulate temporal information using graph modelling to support an active
and data-driven asset maintenance strategy through Predictive Maintenance (PdM).
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