
Citation: Rezvani, S.M.H.S.; Silva,

M.J.F.; Almeida, N.M.d. Mapping

Geospatial AI Flood Risk in National

Road Networks. ISPRS Int. J. Geo-Inf.

2024, 13, 323. https://doi.org/

10.3390/ijgi13090323

Academic Editor: Wolfgang Kainz

Received: 1 July 2024

Revised: 31 August 2024

Accepted: 3 September 2024

Published: 7 September 2024

Copyright: © 2024 by the authors.

Published by MDPI on behalf

of the International Society for

Photogrammetry and Remote Sensing.

Licensee MDPI, Basel, Switzerland.

This article is an open access

article distributed under the terms

and conditions of the Creative

Commons Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/)

 International Journal of

Geo-Information

Article

Mapping Geospatial AI Flood Risk in National Road Networks
Seyed M. H. S. Rezvani 1,* , Maria João Falcão Silva 2 and Nuno Marques de Almeida 1

1 Civil Engineering Research and Innovation for Sustainability (CERIS), Instituto Superior Técnico,
Universidade de Lisbon, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal;
nunomarquesalmeida@tecnico.ulisboa.pt

2 Laboratório Nacional de Engenharia Civil, Av. do Brasil 101, 1700-075 Lisboa, Portugal; mjoaofalcao@lnec.pt
* Correspondence: seyedi.rezvani@tecnico.ulisboa.pt

Abstract: Previous studies have utilized machine learning algorithms that incorporate topographic
and geological characteristics to model flood susceptibility, resulting in comprehensive flood maps.
This study introduces an innovative integration of geospatial artificial intelligence for hazard mapping
to assess flood risks on road networks within Portuguese municipalities. Additionally, it incorporates
OpenStreetMap’s road network data to study vulnerability, offering a descriptive statistical interpre-
tation. Through spatial overlay techniques, road segments are evaluated for flood risk based on their
proximity to identified hazard zones. This method facilitates the detailed mapping of flood-impacted
road networks, providing essential insights for infrastructure planning, emergency preparedness,
and mitigation strategies. The study emphasizes the importance of integrating geospatial analysis
tools with open data to enhance the resilience of critical infrastructure against natural hazards. The
resulting maps are instrumental for understanding the impact of floods on transportation infras-
tructures and aiding informed decision-making for policymakers, the insurance industry, and road
infrastructure asset managers.

Keywords: urban resilience; flood hazard mapping; road network; geospatial data analysis; asset
management; geospatial artificial intelligence

1. Introduction

Urban resilience, especially when it comes to managing flood risks, is important
for modern city planning and building infrastructure. The use of geospatial artificial
intelligence (GeoAI) has transformed how we understand and lessen the effects of floods,
providing methods that are more accurate, efficient, and predictive [1–3]. This study is a
leading example of using GeoAI to improve urban resilience, focusing specifically on the
road network in Portugal.

Portugal’s landscape and weather patterns create unique challenges for managing
flood risks [4–6]. The country’s roads, an important part of its infrastructure, are increas-
ingly vulnerable to flooding caused by climate change. This vulnerability not only threatens
the roads themselves but also raises serious economic and safety concerns [7,8].

This research focuses on creating and using a new flood map specifically for road
networks, using advanced machine learning. This map is unique because it prioritizes the
physical characteristics of the land and does not rely on changing factors like weather or
rainfall [9]. This approach improves the accuracy of flood predictions and provides a stable
and reliable way to assess flood risks.

By combining this predictive flood map with Portugal’s road network data, this study
uses geospatial analysis and network algorithms [10] to identify roads most at risk of
flooding. This will help policymakers make better and more strategic decisions [11,12].
This integration helps to understand the different ways flooding affects transportation and
guides how resources and money are allocated for maintenance and mitigation efforts.
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Ultimately, combining this predictive flood map with Portugal’s road network is
expected to improve the country’s ability to withstand flood-related challenges and provide
a strong basis for sustainable and informed urban planning and development.

2. Literature Review

In the field of urban resilience, especially concerning flood risks, the use of Geospatial
AI (GeoAI) and predictive mapping techniques has significantly advanced our under-
standing and mitigation of natural disaster impacts on critical infrastructures, such as
road networks.

A detailed analysis using Scopus’s advanced search parameters shows a growing
scholarly interest in the topic of roads and floods, with a noticeable increase in publications
from 2019 to 2023. This trend indicates a rising awareness of the serious effects that floods
can have on road networks, possibly reflecting the global rise in flooding events and the
corresponding need for more research in this area (see Figure 1).

The distribution of research by subject area shows a major focus on environmental
science (31%), engineering (23%), earth and planetary sciences (22%), and social sciences
(21%). This interdisciplinary approach highlights the complexity of flood management
in urban areas, covering the environmental effects of flooding, the technical challenges
in road engineering, and the socio-economic impacts on communities. The emphasis on
environmental and engineering disciplines reflects the technical and ecological challenges of
urban flood management, while the significant representation of social sciences underscores
the importance of human, policy, and governance aspects in addressing flood risks.
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Figure 1. Scopus advanced search results for topics in the intersection of road infrastructure
and flooding.

This systematic literature review, based on carefully selected articles, provides a thor-
ough foundation for understanding the complex aspects of road infrastructure resilience
against flooding. It emphasizes the importance of connecting environmental dynamics
with engineered systems and the socio-economic structure of urban areas. The insights
from this review are expected to contribute to the development of integrated strategies for
improving urban flood resilience and guiding effective policymaking [13].
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This literature review examines various studies that shed light on the complex relation-
ship between urban development, flood risk management, and transportation infrastruc-
ture. It covers different thematic areas, each addressing distinct aspects of this relationship.

The Socio-Economic Factors section highlights the intricate connections between hu-
man activities, socio-economic factors, and flood risks affecting road networks. Key findings
reveal that environmental degradation, urbanization, and socio-economic development are
significant drivers of floods [14–16]. These studies stress the need for adaptive strategies in
urban flood resilience and traffic management, particularly in response to climate change.

Miller, Ravens, and Dawod contribute further by focusing on flood risk mitigation in
different regions, such as Hooper Bay, Alaska, and Makkah, Saudi Arabia [14,17]. These
studies focus on assessing flood risks and evaluating mitigation strategies in vulnerable
areas. One study introduces the concept of a “unit cost of flood exposure” to estimate
flooding costs and compares different mitigation methods, finding that certain strategies
may be more cost-effective. Another study models future flood hazards in a rapidly
urbanizing area, highlighting the increased risks due to urbanization and the need for these
findings to guide future urban planning. Both emphasize the importance of accurate flood
risk assessment and effective mitigation planning.

Additional studies [18–20] underscore the importance of prioritizing climate change
adaptation for road networks and enhancing the resilience of urban roads against floods.
The research calls for inclusive policies and Low Impact Development (LID) measures to
improve flood resilience, highlighting the need for comprehensive flood risk management
that considers both natural and human-induced factors.

The Case Studies and Regional Analyses section explores the vulnerability of ur-
ban road networks to floods in various regions, emphasizing the impact of flooding on
transportation infrastructure and the importance of resilient urban planning.

Singh examines India’s urban road networks, revealing that over 40% become im-
passable during extreme rainfall [21]. This study uses meteorological, land use, and
hydrodynamic data to assess flood vulnerability, stressing the need for flood-resilient infras-
tructure. Similarly, Morelli and Cunha investigate São Carlos, Brazil, proposing a metric to
evaluate flood impacts on transportation. Their findings support compact city planning
and the resilience of non-motorized transport modes, contrasting with the vulnerabilities
of car-centric policies [10].

Liu provides a comprehensive flood susceptibility assessment in the Belt and Road
region using logistic regression and support vector machines, highlighting Southeast Asia’s
vulnerability and offering a spatial analysis for targeted flood mitigation [22]. Marais
and Gunthorp document the damage from the 1987 Natal floods, offering insights into
infrastructure resilience. These case studies emphasize the importance of context-specific
analysis and innovative methodologies in addressing flood impacts on urban road networks
under various climatic conditions [23].

The Climate Change and Resilience section includes studies that analyze the inter-
action between urban road networks, vehicular mobility, and flood events in a changing
climate.

One study examines the impact of urban floods on vehicular mobility using the Multi-
ple Centrality Assessment (MCA) approach [24]. Conducted in rapidly urbanizing areas,
this study finds a link between network centrality and road network availability during
floods, suggesting the need for distributed major roads to maintain mobility. Vincendon
focuses on flash floods in Southern France, using the ISBA-TOP hydrological model for road
flooding monitoring [25]. This work highlights the importance of accurate rainfall-runoff
simulations for managing road submersion risks, stressing the need for tailored model
inputs and calibration for effective flood risk assessment.

Popescu examines road accessibility in flood-prone areas of Romania, emphasizing
how proximity to emergency centers affects intervention capacity [26]. Benedetto and
Chiavari introduce a new method for assessing road vulnerability during floods, using
Multi-Criteria Decision Analysis (MCDA) to evaluate the structural and functional aspects
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of roads [27]. Another study proposes the Road Network Resilience Index (RNRI) to
measure urban road resilience during floods, identifying areas with different levels of re-
silience [28]. Wisetjindawat uses stochastic modeling to evaluate road system performance
under multiple hazards, pinpointing vulnerable areas in Japan’s Tokai region prone to both
flash floods and earthquakes [29]. These studies highlight the need for innovative methods
and thorough planning to improve road network resilience in the face of climate change
and multi-hazard events.

Research on Emergency Response and Evacuation highlights the critical role of road
networks during floods, focusing on identifying and protecting essential road segments for
effective emergency response and community resilience.

Helderop and Grubesic present a novel Geo spatial method to identify critical road
segments after disasters, enhancing mobility and emergency response. Their approach,
which includes non-road landscape features, provides better metrics for road criticality,
with significant implications for urban planning and disaster preparedness [30]. Chen
assesses the importance of flooded road links under various scenarios, combining flood
modeling with commute simulation. The study reveals uneven traffic flow distribution
and emphasizes the importance of road proximity to water bodies and topography in
prioritizing intervention sites [31].

Panakkal addresses real-time flood impacts on roads by proposing an open-source
framework that integrates rainfall data, flood modeling, and network analysis [32]. This
framework improves the assessment of roadway conditions by vehicle type and identifies
areas lacking access to critical facilities during floods. Gangwal explores community access
to essential services during floods, using travel speed reduction to account for partial road
failures. The study’s modified betweenness centrality metric highlights the importance of
certain roads in connecting communities to critical services, revealing disparities in access
among vulnerable groups [33].

Loreti proposes a new method for assessing transportation network resilience during
floods, focusing on local towns’ accessibility [34]. This approach, which deviates from
traditional percolation frameworks, identifies key cities providing essential services during
floods, necessary for risk management. Similarly, Zhou studies urban road network con-
nectivity in southern China, using hydrodynamic modeling to evaluate flood impacts [35].
The findings show a significant loss of road connectivity during heavy rainfall, stressing
the need for adaptive flood control strategies. Miller presents a model-based framework
to assess the changing accessibility of road networks during floods, showing substantial
improvements in accessibility through targeted mitigation [36].

These studies collectively emphasize the urgent need for innovative strategies to assess
and enhance road network resilience and accessibility during floods. They highlight the
importance of integrating hydrodynamic models, traffic simulations, and geographical
analyses to support effective emergency response planning and infrastructure development
in flood-prone areas [37].

Environmental and infrastructural impacts are critical topics in this field. Scott’s study
examined the effects of road de-icing salts on an urban stream and flood control reservoir,
revealing high levels of chloride and sodium in the reservoir’s bottom layers during
winter thaws. This contamination led to downstream water quality issues, highlighting the
environmental consequences of urban infrastructure maintenance and the need for such
impacts to be considered in urban planning [38].

Winter explored the economic impacts of landslides and floods on road networks,
dividing these impacts into direct and indirect consequences. These include cutting off
access to remote communities, which affects employment, health, education, and social
activities. The study introduces the concept of a “vulnerability shadow”, where the effects
extend far beyond the disaster’s immediate area. This research underscores the broad
socio-economic impacts of natural disasters on transportation networks and the need for
resilient road infrastructure [39].



ISPRS Int. J. Geo-Inf. 2024, 13, 323 5 of 27

La Marche and Lettenmaier investigated how forest roads affect flood flows in the
Deschutes River, Washington. Their findings suggest that road construction in forested
areas can significantly increase peak flood flows, affecting both local environments and
broader watershed hydrology. This study highlights the environmental implications of
infrastructure development in sensitive areas and the need for sustainable road construction
practices [40].

In the area of Flood Risk and Hazard Assessment, García and Lorenzo developed a
method to evaluate the hazards of road crossings over ephemeral channels, a critical issue
in semi-arid areas like the Murcia region. Their approach integrates hydrological, hydraulic,
and morphological criteria to create hazard indicators, improving our understanding of
flood impacts on road networks [41].

Kalantari advanced flood risk mapping by developing a spatial-statistical method
for predicting flood probability at critical road-stream intersections. Applied in Sweden,
this method incorporates key watershed and road characteristics, enhancing our ability to
predict and mitigate flood-related road damage [42]. Van Ginkel assessed the robustness
of European road networks against river flooding using percolation analysis, revealing
varying levels of vulnerability across European countries and suggesting targeted flood-
proofing measures [43].

Qiao developed a standard risk assessment method to quantify flood risks to urban
road users based on rainfall scenarios. Using the Storm Water Management Model (SWMM)
and an Analytic Hierarchy Process (AHP), a case study in China showed significant financial
risks due to flash flooding and recommended retrofitting measures to reduce this risk [44].

Zhou’s analysis of river flood risks to the Chinese road network used metrics like
expected annual damage (EAD) and network efficiency loss, highlighting the financial
burden on lower-income regions and the need for integrated flood risk management [45].
Shabou introduced MobRISK, a microsimulation system that assesses road user exposure
to extreme hydrometeorological events. This model, which includes travel behaviors and
mobility adaptation, offers valuable insights for flood risk management [46].

These studies emphasize the urgent need for advanced, integrated approaches in flood
risk and hazard assessment, focusing on the resilience of road networks and the safety of
road users across different geographical areas.

The Policy and Management Strategies section explores various methods and frame-
works developed to manage and mitigate flood risks, particularly concerning road networks
and infrastructure.

Tunstall discusses England’s shift from traditional flood defense to a more compre-
hensive flood risk management approach, emphasizing the importance of spatial planning
and development control [47]. A case study in Surrey highlights the challenges of adapting
to new government policies and the need for consensus on defining ‘safe’ development
in flood-prone areas. Liang presents a methodology for strategic post-flood pavement
recovery, using life-cycle analysis to assist road authorities in making effective recovery
plans amid post-flood uncertainties [48].

Samadi and Taslimi utilize machine learning and analytic hierarchy processes to create
a prioritization program for flood management, enhancing resilience before and after
floods. Their model optimizes administrative responses to minimize flood impacts [49].
Osti addresses the gap between international disaster risk management policies and their
implementation at local levels, proposing a framework for developing flood risk strategies,
especially in developing countries [50].

Nielsen introduces a method to assess flood risks on Danish national roads using
a high-resolution digital terrain model, creating detailed maps that improve flood risk
assessments [51]. Khan proposes a post-flood maintenance strategy for road networks,
integrating flooding into road deterioration models to guide maintenance decisions, even
with budget constraints [52]. Loftis validates a flood forecast model using citizen science in
Hampton Roads, Virginia, combining hydrodynamic modeling with community input to
enhance flood management [53].
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In remote sensing and data analysis, Li develops a model to evaluate the flood re-
silience of urban road traffic networks (URTN) using the 4R theory, revealing the low
resilience of these networks in Nanjing, China, and suggesting the need for citizen partici-
pation and integrated engineering measures [54]. Yin presents a method for assessing the
impact of pluvial flash floods on Shanghai’s urban roads through high-resolution 2D inun-
dation modeling, providing insights for managing urban streets under changing climate
conditions [55,56]. These are the requirements in the age of digitalization where 2D and 3D
models can also be considered since they have more resilient organization and enhance the
digital maturity [57,58].

Watterson and Jones examine how floods and road networks contribute to exotic plant
invasion in Oregon’s mountain streams, combining field surveys and GIS analysis to show
the ecological impacts of infrastructure in forested areas [59]. Wilson and Kousky study
the time taken to adopt updated flood insurance maps in the U.S., revealing disparities in
adoption times and raising concerns about the accuracy of flood risk information [60]. Frey
introduces a system that uses probabilistic models, GIS data, remote sensing, and elevation
models to estimate the flood state of roads, enhancing flood risk management [61].

Sultana investigates the rapid deterioration of flood-affected roads in Queensland,
highlighting the need for robust models to predict pavement performance after disas-
ters [62]. Kalantari develops a method for mapping flood hazard probability along roads,
identifying key predictors like topography, soil type, and land use to inform future road
planning and maintenance [63].

These studies underscore the importance of innovative, data-driven, and community-
engaged approaches in flood risk management. They emphasize the need for multifaceted
strategies that integrate physical, environmental, and socio-economic factors to enhance
the resilience of road infrastructure.

Studies on technological and methodological innovations have made significant con-
tributions to flood risk management. Elstohy and Ali used Sentinel-2 satellite imagery to
identify areas affected by flash floods along the Zafaarana-Ras Ghareb coastal roads, achiev-
ing a 98.9% accuracy rate using the Normalized Difference Water Index (NDWI) and an
Image Difference Feature (IDF) model [64]. This approach showcases the power of remote
sensing for effective flood management, providing data for emergency response planning.

Jing introduced a color-coding system for flood road gauges, which improves accuracy
and response time over traditional digital gauges [65]. This cost-effective solution is
particularly useful in developing regions for early flood warnings. Similarly, Oduah
developed a flood monitoring device for vehicles that detects rising flood levels and
integrates with Google Maps for real-time updates [66], helping drivers navigate safely
during floods.

Kong used taxi GPS data to map post-flood road conditions, correlating traffic patterns
with precipitation data to assess the real-time impact of floods on urban transportation [67].
This method highlights the potential of crowdsourced data in creating accurate and timely
flood maps, essential for urban planning and emergency response. These advancements
demonstrate transformative solutions in flood risk management, particularly for assessing
and responding to flood impacts on road networks and urban infrastructure.

In identifying trends and gaps, the field of flood risk management has evolved sig-
nificantly, with interdisciplinary approaches becoming more common. Studies by Ba-
likuddembe and Yin exemplify this trend by integrating hydrology, urban planning, and
transportation engineering [15,56]. This comprehensive approach is necessary for under-
standing the complexities of flood impacts and developing effective mitigation strategies,
particularly in urban settings.

Advancements in remote sensing and Geographic Information System (GIS) tech-
nologies have also revolutionized flood mapping and risk assessment. These technologies
provide high-resolution data that are important for flood management and emergency
planning [54,64]. They enable more precise and timely interventions, shifting flood risk
management toward proactive and preventive approaches.
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Another major trend is the focus on climate change and resilience in flood risk manage-
ment. Studies by Mukesh and Versini emphasize the importance of incorporating climate
change into flood risk analysis [24,68], reflecting the growing recognition of how global
climate dynamics are altering flood hazards. This shift stresses the need to enhance the re-
silience of road networks and urban infrastructure to adapt to future climatic uncertainties.

In data analysis, the integration of machine learning and advanced analytics into
flood risk assessment is a notable development. Samadi and Taslimi demonstrate how
these technologies can handle large datasets for more accurate and predictive flood model-
ing [49]. Machine learning offers new possibilities in predicting flood events and assessing
vulnerabilities, which is invaluable for planning and emergency response.

Community engagement and citizen science are also emerging trends in flood risk man-
agement. Loftis shows how involving local communities can significantly enhance flood
resilience [53]. This participatory approach ensures that local knowledge and needs are
incorporated into flood management strategies, making them more effective and inclusive.

Despite significant advancements in flood risk management, there are still crucial gaps
that need to be addressed to improve resilience and response. A key gap is the limited focus
on low-income and vulnerable regions, which face unique challenges due to inadequate
resources and infrastructure. Targeted research is needed to understand these communities’
specific vulnerabilities and to develop customized flood management strategies.

Another gap lies in the lack of comprehensive analysis of the socio-economic impacts
of floods. While physical damage to road networks is well-documented, the long-term
socio-economic effects, particularly in recovery and resilience building, are underexplored.
More in-depth studies are necessary to fully understand these impacts and to devise
effective recovery strategies.

There is also a need for a better integration of flood risk management with urban
development and land use planning. Current research often treats flood risk as a separate
issue from urban development, but integrating these fields is essential for creating flood-
resilient urban spaces. This means incorporating flood risk considerations into urban
planning and adapting development strategies to mitigate these risks.

Another significant research gap is in the adaptation and retrofitting of existing in-
frastructure. While new developments often include flood risk management elements,
older road networks and urban areas, which are also vulnerable to floods, are frequently
overlooked. Research focused on adapting these existing structures to withstand flooding
is essential [69].

Real-time data acquisition and processing for immediate flood response, especially in
fast-changing urban flood scenarios, also require more attention. Although remote sensing
and GIS technologies have advanced, their application in real-time flood monitoring and
response remains challenging. Developing tools and methods for real-time data processing
could greatly improve flood response capabilities.

Addressing these gaps is crucial for building more resilient communities and infras-
tructure. The integration of a machine learning-based flood map with the Portuguese road
network represents a significant step forward in dynamically linking flood risk assessments
with transportation planning. By focusing on land characteristics rather than variable fac-
tors like weather, this approach provides a stable foundation for predicting flood impacts
on infrastructure, enabling proactive risk management.

The study also introduces an economic model for urban flood risk management,
including potential loss estimation and maintenance cost analysis. This model advances
strategic asset management by emphasizing cost-effective resource allocation towards
high-return areas in risk reduction and infrastructure resilience, essential for long-term
urban planning in flood-prone areas [70].

This literature review provides a well-rounded understanding of the strengths and
limitations found in various flood risk management approaches, especially concerning road
networks. By evaluating different methodologies, it reveals effective strategies, such as the
use of advanced technologies and socio-economic considerations, while also pointing out
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areas that need further attention, like the resilience of infrastructure in vulnerable regions.
This analysis supports the development of a new research methodology by illustrating the
need for innovative solutions that address current shortcomings and enhance the protection
of transportation networks against flood risks. It also underscores the importance of
integrating a Geospatial AI approach to more precisely evaluate and mitigate the impacts
of floods on critical infrastructure.

3. Methodology

Our previous research focused on developing a comprehensive flood risk (FR) assess-
ment model for Portugal, leveraging the power of geospatial artificial intelligence (GeoAI)
and machine learning (ML) techniques. The foundation of this model was built upon the
integration of diverse datasets encompassing topographic factors like Digital Elevation
Models (DEM) and slopes, proximity factors such as distance to rivers and the sea, and land
characteristics including soil permeability, texture, stone content, and maximum filtration
capacity [71]. These datasets were meticulously processed and integrated with the Floods
and Landslides Disaster database, providing a rich and spatially explicit dataset for training
our ML model [72].

Following data acquisition and pre-processing, a Random Forest (RF) classifier was
implemented due to its robustness in handling complex, non-linear data and its ability
to provide valuable insights into feature importance [73–75]. The RF model was trained
on a dataset of 3200 flood and landslide events recorded in Portugal between 1865 and
2020, spanning 96,399 data points across a 1 km-by-1 km grid covering the mainland.
Each data point was assigned a flood risk score ranging from 1 to 5 based on a multi-
criteria approach that considered thresholds for each of the aforementioned geographic
and geological factors.

The feature selection and engineering process, of the previous work, was a major
step in enabling the RF model to accurately capture the intricate relationships between
these factors and their influence on flood risk. For example, areas with lower elevations,
gentler slopes, and closer proximity to rivers or the sea were assigned higher risk scores,
reflecting their increased susceptibility to flooding. Similarly, soil characteristics such as
low permeability and poor infiltration capacity were also associated with higher risk scores.

Finally, the results of the RF model, including predicted flood risk probabilities, were
visualized in QGIS, allowing for a spatially explicit understanding of flood-prone areas.
This visualization provides valuable information for decision-makers and disaster man-
agement teams, enabling them to prioritize mitigation efforts and develop more effective
emergency response strategies. While this previous work provided a valuable framework
for assessing flood risk in Portugal, it also highlighted the need for further research to
incorporate the temporal evolution of land use and other environmental factors, which
can significantly influence flood probabilities over time. This limitation informs the direc-
tion of our current research, which aims to refine and enhance flood risk assessment by
incorporating dynamic environmental factors.

The study combined geographic and geological data to understand how land features
affect water flow and filtration. Soil properties like texture, stone content, filtration rates,
and permeability were included in the model to show how different soil layers might
influence flooding. This comprehensive dataset, which excluded precipitation data to focus
on the land’s inherent flood risk, was analyzed using Python 3.11 and QGIS 3.32 Lima.
These tools helped researchers better understand flood risks in Portuguese cities.

The study then incorporated OpenStreetMap (OSM) data, focusing on major roads
such as motorways, freeways, and primary and secondary roads. These were chosen
because of their importance for national and regional connectivity and the potential impact
of flood damage on socio-economic activities.

The road network data were overlaid with the flood susceptibility model, which
included 96,399 data points based on land characteristics and geographic features. Using
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QGIS’s ‘Nearest Neighbour’ algorithm, each road segment was assigned a flood risk based
on nearby data points from the model.

This analysis helped identify road segments at high risk of flooding, which is crucial for
infrastructure planning, emergency preparedness, and maintenance efforts. The resulting
map serves as a tool for stakeholders to understand potential flood impacts on Portugal’s
key transportation routes.

This approach provides a clear visualization to help improve road network resilience
against flood disruptions. It informs both immediate preventive measures and long-term
planning for infrastructure development and management.

Figure 2 shows a diagram of the research method used to create the GeoAI flood
model. The model analyzed various factors that predict flood and landslide risk, including
topographic and land characteristic variables. These data were compared with a layer
showing historical flood and landslide events from a comprehensive flood database.
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This research builds upon previous work by carefully examining how floods might
affect road networks. First, road network information was gathered from OpenStreetMap
and prepared for use with a flood risk model. Then, these road data were combined with
the model’s results to identify which road sections were most vulnerable to flooding. This
was carried out using a ‘Nearest Neighbor’ algorithm, a geospatial tool that assigns risk
levels to road segments based on their closeness to areas predicted to flood. A detailed
statistical analysis further clarified the flood risk to the road network, leading to the creation
of a comprehensive flood impact map.

Our methodology, while initially developed for Portugal, is designed to be adaptable
for other regions with appropriate modifications. The approach leverages universally
available datasets, such as Digital Elevation Models (DEM), proximity to water bodies, and
soil characteristics, all of which can be sourced or derived for different geographic contexts.
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By substituting these local data inputs, the model can be recalibrated to assess flood risk
in various environments. Additionally, the Random Forest classifier we used is a flexible
machine learning technique that can handle the unique features of any dataset, making it
suitable for global application.

To apply this methodology elsewhere, researchers would need to follow a similar
process: acquire and integrate relevant local datasets, train the model on local historical
flood data, and adjust feature selection criteria to reflect the region’s specific conditions.
The visualization and analysis techniques used in this study, particularly with tools like
QGIS, are standard and can be easily applied in different settings to produce actionable
flood risk assessments for infrastructure planning and disaster management.

This study’s findings are valuable for future research, especially in planning cost-
effective infrastructure maintenance to improve resilience. The data and methods used here
can help create strategies to improve sustainability and preparedness for natural hazards.

4. Case Study

This section explores how combining GeoAI flood hazard mapping with road network
data helps us understand flood risks in Portugal. We will look at where flooding is most
likely to happen and what that means for roads, especially in major cities. By analyzing
the relationship between road characteristics and flood susceptibility, we can identify the
most vulnerable areas. This information will be useful for improving urban resilience and
shaping future policy recommendations.

Figure 3 shows how we turned a large amount of road data into a useful tool for
assessing flood risks on roads. This figure has four parts that show this process step by
step: the first part shows all the roads from OpenStreetMap, which looks very complex, the
second part simplifies this by showing only the main roads that are important for travel
and emergency services, the third part adds information about flood risk from previous
studies, using different colors to show how high the risk is in different areas, and the last
part combines the simplified road map with the flood risk information. It gives each road a
flood risk score, shown in different colors.

This process demonstrates how GeoAI can turn complicated data into a clear picture
of flood risks on roads. The final map is a powerful tool that can help city planners and
emergency managers make better decisions about how to prepare for and respond to floods.
It shows which roads are most likely to flood, which is crucial information for keeping
people safe and minimizing disruptions during flood events.

The study’s approach, as shown in Figure 3, is thorough and practical. It takes raw
data about roads and turns it into a detailed assessment of flood risks. This kind of tool
can help cities become more resilient to floods by showing exactly where problems are
likely to occur. It can also help officials make better decisions about where to invest in flood
protection and how to plan emergency responses. By providing clear, visual information
about flood risks, this tool can improve communication between different groups involved
in city planning and emergency management.

To better understand Portuguese municipalities, we looked at the population size and
land area of several districts using data from the National Institute of Statistics (INE) [76].
This analysis helps us see how people and space are distributed across different parts of
the country.

Figure 4 shows that urban districts like Lisbon and Porto have a lot of people living in
relatively small areas. In the graph, the blue bars (representing population) are much taller
than the orange bars (representing land area) for these cities [77]. This is probably because
these areas have many jobs, services, and facilities, which attract people looking for work
and a better quality of life.

On the other hand, some districts have long orange bars but short blue bars. This
means they have a lot of land but fewer people, which is typical of rural or less developed
areas. These places might have more farms, fewer economic opportunities, or geographical
features that make it harder for many people to live there.
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The differences between land area and population density in these districts tell us a
lot about the challenges each area faces. Big districts with few people might struggle to
provide services and build infrastructure over large areas. Meanwhile, smaller districts
with many people face urban problems like traffic congestion, environmental issues, and
overloaded public services.
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These differences show why it is important to have different policies for different
districts. Each area has its own unique needs and capabilities, so a one-size-fits-all approach
will not work. Instead, policies need to be tailored to address the specific challenges of each
district, whether it is a bustling city or a sprawling rural area.

Figures 5 and 6 shows how flooding might affect the main roads in different parts of
mainland Portugal. The graph measures the length of roads in kilometers that could be
impacted by floods. On the bottom of the graph, you can see the names of different districts
in Portugal. The side of the graph shows how long the affected roads are. The graph uses
different colors to show the chance of flooding, from 30% to 100%. This way of presenting
the data helps us understand how likely floods are to affect roads in each district and how
much of the road network might be impacted.
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The graph shows that most of the affected roads fall into the lower risk categories
(30–50%), especially in Lisbon and Porto. This suggests these areas are more likely to
experience minor flooding that affects a lot of roads. As we look at higher flood risks, we
see fewer roads affected. This pattern is the same for all districts, meaning severe floods
are less common but might cause more damage to the roads they do hit.

Looking closely at these data, we can say that while small floods might disrupt traffic
and need repairs on many roads, the bigger, rarer floods could seriously damage the roads
they affect. This chart is very useful for city planners and emergency managers. It helps
them figure out which areas are at high risk and where to focus their efforts to prevent
flood damage and prepare for emergencies.

This figure also shows that Lisbon and Porto seem to have the most extensive lengths
of road networks, falling from 50% to 100% flood risk score categories. Specifically, Lisbon
has substantial lengths of road in the 50%, 60%, and 70% categories, with diminishing
lengths as the probability increases. Porto follows a similar trend, although with generally
lower lengths across the higher probability categories when compared to Lisbon.

Figure 7 focuses on roads with a 50% or higher chance of flooding. To find out which
cities have the most roads at risk, we need to look at the bars in the graph that show 50%
and above for each city and add them up. This helps us understand which areas might
need more attention to protect their roads from flooding.

ISPRS Int. J. Geo-Inf. 2024, 13, x FOR PEER REVIEW 14 of 28 
 

 

 
Figure 7. Percentage of lengths of road networks within the 50% and above flood risk score catego-
ries of GeoAI model. 

Due to the constraints imposed by the length of the study and word limitations, it is 
not feasible to conduct an in-depth analysis for all cities. Consequently, a selection process 
must be employed to identify which cities warrant detailed examination. This process is 
informed by strategic considerations, aiming to optimize the utility of the analysis within 
the given constraints. The criteria for selecting cities for an in-depth analysis have been 
based on two factors, population and length of road networks. 

The rationale for focusing on districts with populations above half a million is 
grounded in the potential impact on a larger number of inhabitants. High population den-
sity can compound the effects of flooding, resulting in more significant economic damage, 
infrastructural strain, and potential loss of life. In such areas, even minor floods can have 
far-reaching consequences due to the number of people and assets at risk. Lisbon and 
Porto, being the districts with the highest populations, are logical choices for detailed 
study. Braga, Setúbal, and Aveiro also meet the population criterion, suggesting that flood 
events in these districts could affect substantial portions of the Portuguese population. 

The further refinement of city selection considers the length of road networks in-
volved in flood risks, with all mentioned districts exhibiting more than 4% of their roads 
at risk. High percentages indicate greater vulnerability and, consequently, a higher prior-
ity for detailed risk assessment and mitigation planning. 

Lisbon leads this category with 25.1% of its road network at flood risk, followed by 
Porto with 14.9%. These percentages underscore the importance of these cities in the anal-
ysis due to the combined factors of high population and the significant infrastructure at 
risk. Setúbal, Aveiro, Coimbra, and Viana do Castelo also have notable percentages, albeit 
lower than Lisbon and Porto, warranting their inclusion for further study (see Figure 8). 

Figure 7. Percentage of lengths of road networks within the 50% and above flood risk score categories
of GeoAI model.

The other analyzed cities have significantly less road length affected as the flood risk
score increases above 50%. This indicates that while Lisbon and Porto may not only be



ISPRS Int. J. Geo-Inf. 2024, 13, 323 14 of 27

susceptible to frequent low-impact floods but also to less frequent but more disruptive
high-impact floods, other districts may face lower risks of such high-impact events.

For urban planning and risk mitigation purposes, the focus would likely be on Lisbon
and Porto for interventions aimed at reducing flood risk to critical infrastructure. The data
suggest that these two cities would need to benefit most from enhanced flood defenses and
emergency response strategies due to the higher lengths of roads at risk.

Due to the constraints imposed by the length of the study and word limitations, it is
not feasible to conduct an in-depth analysis for all cities. Consequently, a selection process
must be employed to identify which cities warrant detailed examination. This process is
informed by strategic considerations, aiming to optimize the utility of the analysis within
the given constraints. The criteria for selecting cities for an in-depth analysis have been
based on two factors, population and length of road networks.

The rationale for focusing on districts with populations above half a million is grounded
in the potential impact on a larger number of inhabitants. High population density can
compound the effects of flooding, resulting in more significant economic damage, in-
frastructural strain, and potential loss of life. In such areas, even minor floods can have
far-reaching consequences due to the number of people and assets at risk. Lisbon and
Porto, being the districts with the highest populations, are logical choices for detailed study.
Braga, Setúbal, and Aveiro also meet the population criterion, suggesting that flood events
in these districts could affect substantial portions of the Portuguese population.

The further refinement of city selection considers the length of road networks involved
in flood risks, with all mentioned districts exhibiting more than 4% of their roads at risk.
High percentages indicate greater vulnerability and, consequently, a higher priority for
detailed risk assessment and mitigation planning.

Lisbon leads this category with 25.1% of its road network at flood risk, followed
by Porto with 14.9%. These percentages underscore the importance of these cities in the
analysis due to the combined factors of high population and the significant infrastructure at
risk. Setúbal, Aveiro, Coimbra, and Viana do Castelo also have notable percentages, albeit
lower than Lisbon and Porto, warranting their inclusion for further study (see Figure 8).
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Figure 8. Population versus high flood risk score roads.

This study will focus on four cities: Lisbon, Porto, Setúbal, and Aveiro. We chose these
cities to understand how floods affect areas where they can cause the most damage. This
information will help create better policies and manage flood risks. Lisbon and Porto are
the largest cities and face significant flood risks. Setúbal and Aveiro, while smaller, have a
large portion of their roads at risk, making them important examples to study.

5. Discussion of the Obtained Results

Mapping high-risk road segments across Lisbon, Porto, Setúbal, and Aveiro is crucial
for flood management and infrastructure planning. Using advanced technologies like
GeoAI and GIS helps us understand potential flood locations and their impacts on these



ISPRS Int. J. Geo-Inf. 2024, 13, 323 15 of 27

cities. By analyzing maps and data, we can identify the most vulnerable roads and develop
strategies to make them safer. This technology-driven approach to mapping flood risks
enables better planning to protect our cities and ensure public safety.

Lisbon, Portugal’s capital, is a symbol of the country’s rich history, vibrant culture, and
economic strength. As a hub for government, finance, and commerce, it plays a vital role in
the national economy. This importance highlights the need for comprehensive flood risk
management strategies. Lisbon’s coastal location and vulnerability to sea-level rise due to
climate change make it urgent to find innovative ways to protect its infrastructure, cultural
heritage, and economic power. The city’s diverse economy, from services to tourism,
presents unique challenges and opportunities for urban planning and building resilience
against flood risks.

Lisbon’s high population density and mix of historical and modern infrastructure
require a careful approach to flood risk assessment. The potential impact on evacuation
plans, emergency response, and preserving cultural sites shows why it is important to use
GeoAI and GIS mapping technologies. These tools can provide detailed insights into flood
patterns, allowing for targeted interventions to protect both people and the city’s cultural
assets. Lisbon’s strategies for managing flood risks and strengthening infrastructure can
provide valuable lessons for other coastal cities facing similar challenges [78].

Figure 9 shows the likelihood of flooding on Lisbon’s roads based on a machine
learning model using decision trees. It highlights the areas most at risk, rating them from 0
to 100. This map helps identify which parts of the city’s transportation network could be
affected during heavy rain or extreme weather events.
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A close look at Figure 9 can help guide decisions about planning and managing the
city’s infrastructure. It points out which roads are at higher risk and need more protection
against floods. This could involve improving drainage or changing road designs. By
focusing on these high-risk areas, the city can better use its resources to strengthen its road
network against floods, helping to protect Lisbon’s economy and historical sites.

Porto, known for its historic architecture and important industrial and trade sectors,
faces the challenge of balancing historical preservation with modernization in the face of
flood risks. The city’s location along the Douro River estuary brings risks of river flooding,
requiring specific strategies for water management and urban planning. Porto’s industrial
base, combined with its role as an educational and innovation center, emphasizes the need
for resilient infrastructure to support its economic activities and protect its communities
from flood-related disruptions.

The challenge of maintaining connections in Porto’s densely populated areas during
floods calls for developing alternative routes and advanced warning systems. These
measures, along with efforts to protect the city’s cultural heritage and support its industrial
and service sectors, require a coordinated approach using GeoAI and GIS mapping. This
can help Porto improve its emergency preparedness, reduce economic losses, and maintain
its cultural and economic integrity despite increasing flood risks.

Figure 10 shows the flood risk score for Porto’s roads, as determined by a machine
learning Random Forest model. This model predicts flood likelihood based on patterns
learned from data. The map identifies city areas with different flood probabilities, scored
from 0 to 100, reflecting the model’s analysis of various contributing factors. This informa-
tion is crucial for preparing for and responding to flood conditions.
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Using the insights from Figure 10, Porto can strategically plan to improve its flood
defenses. Roads at higher risk can be targeted for infrastructure improvements, such as
better drainage systems, and for creating emergency routes. This proactive planning is
essential for Porto to protect its economic stability and the cultural heritage that shapes its
character and attractiveness.

Setúbal’s strategic coastal location and its economic reliance on shipbuilding, fishing,
and tourism make it particularly vulnerable to flooding. The city’s proximity to the Sado
River and the Atlantic Ocean creates unique challenges that require specialized flood risk
management and mitigation strategies. Protecting Setúbal’s economy from the negative
effects of flooding requires understanding the city’s specific geographical and economic
context, using GeoAI and GIS to accurately map flood susceptibility.

Investments in flood defenses and infrastructure resilience are essential for Setúbal to
protect its maritime and logistics hubs, ensuring the continuity of economic activities and
the well-being of its population. The city’s approach to integrating flood risk assessment
with economic and urban planning can serve as a model for other coastal cities. By address-
ing the socio-economic factors influencing emergency response and infrastructure resilience,
Setúbal can enhance its preparedness and reduce the impact of future flood events.

Figure 11 shows the flood mapping for Setúbal’s road network, generated from a
machine learning model using Random Forest. The map highlights areas at risk of flooding
based on the model’s analysis, which considers various factors. These areas are ranked for
flood likelihood on a scale from 0 to 100, helping to identify critical zones.
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This figure can inform strategic planning for Setúbal’s flood defense and infrastructure
resilience. It can guide where to focus on strengthening maritime and logistics facilities and
ensure economic activities and public safety are not compromised by floods. By integrating
such data into urban planning, Setúbal can improve its response to flood events and protect
its economic sectors and residents more effectively.

Figure 12 shows the flood risks for roads in Aveiro, using a Random Forest machine
learning model. This model calculates the likelihood of flooding by analyzing various
factors and presents it on a scale from 0 to 100. The map helps identify which parts of
the city’s extensive canal network and road system are at a higher risk of flooding during
adverse weather conditions.
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Aveiro’s unique network of canals and its vulnerability to both river and rain-induced
flooding require innovative approaches to urban and environmental planning. The city’s
reliance on water transport and its attraction as a tourist destination increase the need for
comprehensive flood risk assessments that consider Aveiro’s distinct geographical features.
By using GeoAI and GIS mapping, Aveiro can gain detailed insights into flood risks, guiding
the development of resilient infrastructure and effective emergency preparedness strategies.

The challenges Aveiro faces in managing flood risks highlight the importance of
considering climate change’s long-term impacts on infrastructure resilience. The city’s
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efforts to maintain its cultural and economic strength in the face of these risks require a
holistic approach to flood risk management. This approach must account for the complexity
of Aveiro’s infrastructure, its population density, and its economic diversity, ensuring that
the city remains a vibrant and safe place for residents and visitors alike.

This information helps Aveiro strengthen its infrastructure and create better emer-
gency plans, considering how important its canals and waterways are to the city. With
this knowledge, Aveiro can prepare better for floods, protecting its historical charm and
economic activities. It also helps the city think about how climate change might affect its
urban landscape in the future.

The use of geospatial artificial intelligence (GeoAI) and Geographic Information
System (GIS) mapping is changing how we assess and manage flood risks. This approach,
especially when using machine learning methods like Random Forest, gives us a more
accurate way to predict flood and landslide risks based on historical and geographical data.
This new method has important implications for improving how we manage flood risks
and plan our cities.

The GeoAI model using Random Forest was found to be 96% accurate in predicting
flood and landslide risks and 92% when predicting the flood prone roads. This high
accuracy means the model was very good at predicting where floods and landslides might
happen based on past events and geographical information. The model’s success comes
from its ability to understand the complex relationships between different factors that
contribute to these events.

This high accuracy is important for several reasons. First, it shows that the model
could be a reliable tool for predicting where floods and landslides might occur. This is very
valuable for reducing disaster risks and managing emergencies. It allows cities to plan
ahead, allocate resources where they are needed most, and warn people in areas that might
be affected. For urban planning, this model could help inform decisions about where to
build new infrastructure and how to prepare for emergencies.

The model was checked against historical data, including a study by Zêzere that
recorded flood and landslide events in Portugal from 1865 to 2020 [72]. By comparing
the model’s predictions with actual events, researchers could see how well the model
performed and make it even better. This validation is important because it shows that
the model’s predictions match up with real-world events, which makes it more likely that
policymakers and planners will trust and use the model.

Figures 13–16 illustrate how the flood prediction model was tested in four different ar-
eas of Portugal. These figures compare where the model predicted floods might happen on
roads with where floods actually occurred between 1865 and 2020. This visual comparison
in the Lisbon, Porto, Setubal, and Aveiro districts helps to show how accurate the model is
at predicting floods.

The validation of the flood risk score model was conducted using a qualitative ap-
proach (see Table 1). We categorized the model’s predictions into two groups: above 50%
probability and below 50% probability. These predictions were then compared to the actual
flood occurrences, where 1 indicates a flood event and 0 indicates no flood.

The results show that the model correctly predicted 167,386 cases out of a total of
182,616 instances. This translates to an accuracy of 92%, which indicates a high level
of predictive performance. The model demonstrates strong capability in distinguishing
between flood and non-flood events based on the 50% probability threshold.

It is important to note that while the overall accuracy is high, there may be variations
in performance across different probability ranges. A further analysis of specific probability
brackets could provide more detailed insights into the model’s strengths and potential
areas for improvement.
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Table 1 provides a clear overview of the model’s performance, showing the distribution
of correct and incorrect predictions for both high and low probability categories. The high
number of correct predictions in both categories contributes to the model’s overall accuracy
of 92%.
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Table 1. Summary of flood prediction model performance using 50% probability threshold.

Prediction
Category

Correct
Predictions

Incorrect
Predictions

Total Number of
Roads

Above 50% probability 14,732 9607 24,339
Below 50% probability 152,654 5723 158,377

Total 167,386 15,330 182,616
Accuracy 92%

This analysis shows that the predictive model is quite accurate. Areas predicted to
have a high flood risk generally had a lot of actual flooding, especially where infrastructure
and water systems contribute to that risk. Conversely, areas with low predicted risk
experienced fewer floods, highlighting the model’s accuracy. Any discrepancies likely stem
from the limits of predictive models or factors not included in the model’s parameters.
Looking at the actual flood points compared to the predicted probabilities in Lisbon, Porto,
Setubal, and Aveiro provides a detailed understanding of the model’s effectiveness and
helps to refine it further.

The GeoAI model’s accuracy, proven by its validation against historical data, makes it
a crucial tool for improving urban resilience [79]. As cities face growing climate change
risks, such models provide a strong scientific foundation for sustainable urban living,
protecting communities, and ensuring ongoing socio-economic activities despite environ-
mental challenges.

Understanding urban resilience and its role in infrastructure planning is essential for
sustainable development and disaster mitigation. Urban resilience is the ability of cities to
withstand, adapt to, and quickly recover from disasters, and is increasingly important in
urban planning. Flood risk assessments, like those conducted for Lisboa, Porto, Setúbal,
and Aveiro, are key contributors [6,77]. By understanding the extent of flood-prone roads
and connecting this with population data, planners can see where vulnerabilities exist,
and which infrastructure is most critical. This data-driven approach helps prioritize infras-
tructure improvements and design adaptable urban landscapes that can better handle the
uncertainties of climate change and urbanization.

Analyzing road networks alongside flood probabilities helps create more resilient
transportation systems. Roads are vital for urban centers, essential for moving people,
goods, and services. Identifying high-risk areas allows for strategic management, such as
building flood barriers or redesigning drainage systems to prevent flooding. Integrating
these findings into urban planning tools can streamline resilience building by providing
simulations to predict the impacts of various mitigation strategies.

Beyond immediate flood mitigation, this study helps to inform long-term urban devel-
opment. Zoning laws can be adjusted to limit development in high-risk areas or require
flood-resistant designs in new projects. The research emphasizes the need for collaboration
between urban planners, engineers, policymakers, and communities to create a holistic
approach to resilience [78]. This collaboration is key to developing a comprehensive urban
strategy that reflects local socio-economic needs and aligns with broader environmental
sustainability goals.

The model’s findings for the selected Portuguese cities provide a basis for strong policy
recommendations. It is crucial to establish an updated flood risk management framework.
Policies should require regular updates to flood risk maps and models, incorporating
new data on climate change, urban growth, and infrastructure development [80]. This
framework should include an urban resilience index [81] to measure and compare how
well different districts mitigate flood risks, encouraging continuous improvement.

Infrastructure investment should be guided by these flood risk models. Policies should
encourage, or even require, strengthening critical infrastructure in high-risk areas. This
could include funding for raising roads, improving drainage, and building flood barriers.
There should also be a focus on green infrastructure, such as wetlands and permeable pave-
ments, to improve natural water absorption and reduce runoff [82]. Financial incentives
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could be offered for private developments that incorporate these features, promoting a
city-wide approach to flood mitigation.

Finally, community engagement and public education are vital for urban resilience.
Policies should not only address infrastructure but should also build citizens’ capacity to re-
spond to floods. This includes clear communication channels for disaster response, regular
drills, and educational programs to raise public awareness. Infrastructure planning must
consider the people it serves; therefore, a policy that empowers and prepares communities,
especially in high-risk areas, is as important as the physical improvements it prescribes.
Through these comprehensive measures, cities can translate model findings into real-world
improvements that protect lives and livelihoods from the threat of flooding.

6. Conclusions

This study explores the integration of GeoAI and road network analysis for flood
risk assessment in Portuguese municipalities, highlighting implications for infrastruc-
ture resilience and emergency preparedness. While acknowledging its limitations, the
research proposes expanding the scope to include other infrastructure types, validation in
other countries, incorporating real-time environmental data, and conducting cost–benefit
analyses of mitigation strategies.

The findings provide a clear interpretation of flood risk across various Portuguese
cities using GeoAI and GIS mapping techniques. Each city presented unique vulnerabilities,
from high-density population areas to economically significant zones, demonstrating the
need for tailored approaches to flood risk management. Lisbon’s analysis focused on
critical areas of potential inundation, Porto’s on protecting industrial sectors and historical
architecture, Setúbal’s on targeted flood defenses for maritime activities, and Aveiro’s on
safeguarding its canal network and waterborne transport systems.

These results underscore the potential of GeoAI and GIS as essential tools in urban
resilience and infrastructure development. The assessments facilitate the identification of
vulnerabilities, enabling cities to prioritize investments and enhance emergency prepared-
ness measures. The models’ high predictive accuracy across diverse urban landscapes
showcases their versatility and applicability, setting a benchmark for future urban planning
and disaster risk management initiatives.

The integration of GeoAI and GIS mapping into flood risk assessments has significant
implications for enhancing road network resilience and emergency preparedness. By
identifying high-risk areas, these tools can guide strategic infrastructure upgrades, reduce
service disruptions, and support the development of resilient transportation routes. Early
warning systems bolstered by these data can be seamlessly integrated into urban planning
and community alert strategies.

GeoAI and GIS insights can optimize the positioning of new developments, formulate
effective evacuation plans, and inform data-driven decisions on flood defense investments.
These tools can also enhance training programs for emergency personnel and analyze
supply chain vulnerabilities. Cross-sector collaboration underpinned by comprehensive
mapping is crucial for a unified risk management strategy.

However, the current study has limitations that may impact its predictive accuracy and
applicability. The model’s reliance on static data and historical flood information restricts
its effectiveness in forecasting unprecedented scenarios. The potential variability in Open-
StreetMap data quality and the omission of socio-economic factors further complicate the
model’s reliability. These gaps suggest a need for a more holistic approach encompassing
economic, social, and environmental considerations.

To enhance the model’s utility, future research should expand its application to other
critical infrastructures such as schools, hospitals, power plants, and communication net-
works. Incorporating dynamic environmental data, including historical, current, and
projected precipitation patterns, could substantially refine its predictive capabilities [83]. A
rigorous cost–benefit analysis for implementing mitigation strategies in high-risk areas is
also necessary to inform fund allocation and intervention prioritization.
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The integration of advanced geospatial analysis into flood risk management represents
a shift towards more informed and strategic planning. The continuous refinement of these
analytical tools, including the incorporation of additional data layers and sophisticated
algorithms, will further empower decision-makers to anticipate flood events and take
proactive measures. This ongoing development aims to transform flood risk management,
enabling the precise identification of high-risk areas, optimizing resource allocation, and
guiding the development of robust mitigation strategies to safeguard communities and
their critical assets.
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