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Abstract: Large-scale gridded population product datasets have become crucial sources of infor-
mation for sustainable development initiatives. However, mainstream modeling approaches (e.g.,
dasymetric mapping based on Multiple Linear Regression or Random Forest Regression) do not con-
sider the heterogeneity and multiscale characteristics of the spatial relationships between influencing
factors and populations, which may seriously degrade the accuracy of the prediction results in some
areas. This issue may be even more severe in large-scale gridded population products. Furthermore,
the lack of detailed 3D human settlement data likewise poses a significant challenge to the accuracy
of these data products. The emergence of the unprecedented Global Human Settlement Layer (GHSL)
data package offers a possible solution to this long-standing challenge. Therefore, this study proposes
a new Gridded Population Mapping (GPM) method that utilizes the Multiscale Geographically
Weighted Regression (MGWR) model in conjunction with GHSL-3D Building, POI, nighttime light,
and land use/cover datasets to disaggregate population data for third-level administrative units
(districts and counties) in mainland China into 100 m grid cells. Compared to the WorldPop product,
the new population map reduces the mean absolute error at the fourth-level administrative units
(townships and streets) by 35%, 51%, and 13% in three test regions. The proposed mapping approach
is poised to become a crucial reference for generating next-generation global demographic maps.

Keywords: population mapping; China; building; MGWR

1. Introduction

Population data are indispensable for various sustainable development applications,
including disaster assessment, urban planning, and public health management [1–6]. While
census data serve as the primary source of population data, their coarse resolution limits
the revelation of spatial heterogeneity within census units, hindering their application in
research related to global social and environmental issues [7]. To address this limitation,
several large-scale gridded population datasets have been produced, such as GPWv4,
HRSL, LandScan, and WorldPop [8].

The datasets above are generated through the top-down population estimation meth-
ods, where census data are disaggregated into unified grid cells based on population dis-
tribution weighting layers [9]. Over the past three decades, various modeling approaches
have been developed to calculate the weighting layers, including areal weighting [10,11],
negative exponential [12,13], kernel density [14–16], and dasymetric mapping models [17].
With the rapid development of AI technology, intelligent dasymetric mapping has gradu-
ally become the dominant approach in Gridded Population Mapping (GPM) studies. This
approach leverages algorithms to model the unknown prior relationships between auxiliary
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variables and the population to obtain the weighting layer [18–21]. A notable example is
the Random Forest (RF) model used to generate the WorldPop product [17,22,23]. Addi-
tionally, Multiple Linear Regression (MLR) is commonly used in some GPM studies [5,19].
While both MLR and RF have shown relatively good performance in urban-scale GPM
studies, they may not produce accurate results in large-scale study areas (e.g., China). This
is primarily due to the significant regional variations in population distribution patterns
across such expansive areas. Specifically, the relationship between population and auxiliary
(explanatory) variables is spatially heterogeneous (non-stationary) and multi-scale. Using a
single global model (e.g., MLR or RF) can lead to interregional heterogeneity being masked
by ‘average’ estimates for the study area as a whole, potentially leading to inaccurate
predictions of population distribution in localized regions.

New parameter estimation methods offer promising solutions. For instance, MLR
assumes the relationship between the dependent and explanatory variables is spatially
stationary [24]. To address this limitation, Geographically Weighted Regression (GWR) was
developed by Fotheringham in 1996. GWR improves MLR by employing non-parametric
local weighted regression for curve fitting and smoothing applications [25]. Unlike MLR,
GWR considers the non-stationarity of the spatial relationship between the dependent
variable and explanatory variables, making it more effective for analyzing factors related to
spatial locations [4–6,19]. However, both MLR and GWR are limited in revealing spatial
scale differences in the relationships between explanatory variables and the dependent
variable. Specifically, the influence of different explanatory variables may be similar within
a specific range but differ significantly beyond that range. To address this issue, Fother-
ingham proposed Multiscale Geographically Weighted Regression (MGWR) in 2017 [26].
Yu et al. [27] further supplemented and improved the statistical inference of MGWR, mak-
ing this method more widely applicable to research. Compared to GWR, MGWR assigns
specific bandwidths to each explanatory variable, allowing for the establishment of spatial
relationship models closer to reality.

Auxiliary datasets, such as those on land use/land cover, topography, roads, and rivers,
are often used in large-scale GPM studies. However, these datasets primarily reflect the
potential of human settlements rather than directly indicating whether a specific location
is inhabited [8]. Although mobile phone location data can provide real-time insights into
population distribution [28,29], its limited accessibility poses challenges for large-scale
GPM applications. Compared to data such as land use/cover and topography, human
settlements directly indicate the site is inhabited, enabling a more accurate and detailed
depiction of the population distribution range. In addition, several openly available global
or near-global human settlement datasets have been developed, including Microsoft and
Google building footprints, HRSL, the World Settlement Footprint (WSF), and the Global
Human Settlement Layer (GHSL). The accuracy of gridded population datasets can be
improved by using relatively complete human settlement data as ancillary data. Studies
have demonstrated that using these datasets can enhance the internal quantitative and
qualitative accuracy of population distribution models by 10% to 15% (depending on
different indicators) [21,30–32].

Although human settlement data have been applied in GPM, the datasets used in
existing large-scale studies usually lack vertical (height or number of floors) and type
(residential/non-residential) information [21,33,34]. Currently, mainstream large-scale
gridded population products, including HRSL, LandScan, and WorldPop, rely on 2D and
non-functional human settlement auxiliary layers [8]. Thomson et al. reported severe
underestimation (averaging over 80%) in slum areas of Kenya and Nigeria due to the
absence of detailed information about human settlements, such as usage and height, in the
products above (and others) [35]. Multiple studies have shown that using building data
with vertical information and categorization can significantly improve the accuracy of grid-
ded population outputs [36–40]. This improvement is mainly attributed to considering the
vertical distribution across building floors and the exclusion of non-residential buildings.
In the past, the lack of openly available large-scale 3D residential/non-residential building
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datasets has strongly limited their application in continental or global-scale GPM. The emer-
gence of the new GHSL data package offers a potential solution to overcome the challenges
above, offering high-resolution global human settlement information (hereinafter referred
to as GHSL-3D Building): building footprint, building type (residential/non-residential),
and building height [41].

Considering the above discussion, we proposed a new large-scale GPM method to
generate a map of nighttime population distribution in mainland China (excluding Taiwan,
Hong Kong, Macau, and some surrounding islands due to data limitations). This map
corresponds to the concept of the resident population. We also assessed the accuracy of
this method across provinces and municipalities with varying population densities and
levels of economic development. This GPM method utilized 3D residential building data
(from the newly released GHSL data package 2023), POI, nighttime light data, and land
use/cover data within the MGWR model. The contributions of this paper are as follows:

(1) Three-dimensional residential building data were used in GPM for the entire
mainland China, considering the effect of building height on the population distribution
during the model training and imposing strict limits on the range of population distribution.

(2) Population distribution across mainland China was modeled based on MGWR,
considering the nonstationarity and multiscale nature of the spatial relationship between
population and auxiliary variables. This approach addresses regional differences in popu-
lation distribution patterns.

To the best of our knowledge, this is the first time the MGWR model has been applied
in the context of GPM and the first instance of employing 3D residential building data
for national-level GPM in China. Previous studies have shown that WorldPop has a
general accuracy advantage over other gridded population data products [8]. Due to the
improvements in the model and auxiliary data, the method presented in this paper is
expected to yield results with higher accuracy than the WorldPop dataset, providing a
crucial reference for generating next-generation global demographic maps.

This paper is organized as follows: Section 2 describes the sources of research data
and the preprocessing steps. Section 3 details the methodology. The results and discussion
are presented in Section 4. Section 5 concludes the paper and outlines directions for future
research.

2. Data and Preprocessing

Table 1 presents this paper’s primary data for modeling and accuracy evaluation. The
following describes the sources and preprocessing process for these data.

Table 1. Main research data.

Dataset Format Source

Population data Table Chinese Bureau of Statistics 2018 national sample survey
resident population data

Administrative boundary data Polygon National Catalogue Service for Geographic Information, China
Building data Raster Global Human Settlement Layer (GHSL)

Nighttime light data Raster Earth Observation Group, Colorado School of Mines

Land use/cover data Raster Chinese Academy of Sciences Resource and Environment
Science Data Center

POI data Table Amap Service, China

2.1. Population Data

In our research, the resident population data in the study area, excluding Taiwan,
Hong Kong, Macau, and some surrounding islands, were obtained from the National
Bureau of Statistics 2018 national sample survey resident population data. These data were
collected based on the third-level administrative units, encompassing districts and counties,
resulting in 2850 units.
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The fourth-level resident population (i.e., the resident population at the level of the
fourth administrative units) data for Shanghai, Jiangsu, Jiangxi, and Gansu provinces used
for the accuracy test were mainly from the 2018 China Statistical Yearbook (Township).

2.2. Administrative Boundary Data

The data concerning the third-level administrative boundaries of China were acquired
from the official website of the National Catalogue Service For Geographic Information
(China) (https://www.webmap.cn/main.do?method=index) (accessed on 22 July 2023).
Additionally, the administrative boundary data for Beijing, Shanghai, Jiangsu, Jiangxi, and
Gansu at the fourth level were sourced from the National Platform for Common Geospatial
Information Services (China) (https:/www.tianditu.gov.cn/, accessed on 12 September
2024). We linked the population data with the administrative boundary data based on
the administrative code and name of the respective administrative units. The distribution
of the resident population across the third-level administrative units in the study area is
illustrated in Figure 3b. The third-level administrative boundary data were used as an
input layer for “mask” and “processing extent” in the geoprocessing tool (ArcGIS Pro
software 3.0) to ensure that the boundaries of the various types of data were consistent.

2.3. GHSL-3D Building Data

The global building dataset for 2018 was acquired from the official website of the
Global Human Settlement Layer (GHSL) (https://ghsl.jrc.ec.europa.eu/download.php,
accessed on 12 September 2024). These datasets are categorized into three types: total
building footprint data, non-residential building footprint data, and building height data.
The two building footprint datasets have a spatial resolution of 10 m, where each pixel
value represents a building area ranging from 0 to 100. The building height data have a
spatial resolution of 100 m. In this dataset, each pixel represents the mean net height of
all buildings at that location. With reference to studies [42–47] related to building height
data, we assessed the accuracy of the GHSL building height dataset in Section S1 of the
Supplementary Materials. The results show that the dataset has relatively good accuracy.

Initially, these datasets were in Lambert projection. However, to suit our study area,
we transformed the datasets into the Albers projection using the projection and mask
extraction tools in ArcGIS Pro 3.0. The resampling method employed was the nearest
neighbor. All the capture cells were set to the building height data for this paper.

2.4. Nighttime Light Data

Nighttime light data is widely used in large-scale GPM [18,48]. We obtained the 2018
global VIIRS nightlight data (VNL V2.1 annual version) from the Earth Observation Group
(EOG) website of the Colorado School of Mines (https://eogdata.mines.edu/products/
vnl/, accessed on 12 September 2024). This dataset has been carefully processed to exclude
the influences of cloud cover and background light. The original spatial resolution of
the data is 15 arc seconds, approximately equivalent to 500 m at the equator. To suit our
study area, we utilized the projection and mask extraction tools available in ArcGIS Pro
3.0. Through this process, we obtained the nighttime light data at a spatial resolution of
100 m. Referring to Gaughan et al. [22], the nearest neighbor method was used to resample
nighttime light data to avoid changing pixel values.

2.5. Land Use/Cover Data

The 2018 land use/cover raster data were obtained from the official website of the
Chinese Academy of Sciences Resource and Environmental Science Data Center (https:
//www.resdc.cn/, accessed on 12 September 2024). The dataset primarily relies on Landsat
satellite remote sensing imagery, which was manually interpreted. It follows a two-level
classification system: Level 1 includes six land classes, namely, cultivated land, forest land,
grassland, water area, built-up land, and unused land; Level 2 consists of 25 land classes
based on the Level 1 classification system. The original spatial resolution of the data is

https://www.webmap.cn/main.do?method=index
www.tianditu.gov.cn/
https://ghsl.jrc.ec.europa.eu/download.php
https://eogdata.mines.edu/products/vnl/
https://eogdata.mines.edu/products/vnl/
https://www.resdc.cn/
https://www.resdc.cn/
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30 m, and it is projected onto the Albers projection using the Krasovsky ellipsoid. We
converted the data into the Albers projection based on the WGS-84 ellipsoid to suit our
study area. This conversion resulted in a spatial resolution of 100 m for the raster data. To
minimize accuracy loss during resampling, we utilized the majority resampling method.
Furthermore, we reclassified the processed land use/cover data by merging all land classes
except for urban land, rural residential land (referred to as rural land), and industrial and
mining land (referred to as industrial land) into a single class named ‘remaining land’.

2.6. POI Data

POI data can represent various human activities in their location and neighborhood
(e.g., companies, restaurants, and financial services) that correlate with population density
to varying degrees [18,49]. Therefore, POI data is are often used in GPM studies [8,50]. The
POI data used in this study was were collected in 2017 and obtained from Amap (https:
//ditu.amap.com/, accessed on 12 September 2024), a leading provider of digital maps,
navigation, and location-based services in China. The raw text data was were carefully
cleaned and transformed into vector points using latitude and longitude information. After
this processing, the data was were projected for further analysis.

In our research, we utilized 13 types of POI data, including shopping services, gov-
ernment organizations and social groups, health care services, lifestyle services, car main-
tenance, catering services, sports and leisure services, financial and insurance services,
companies and enterprises, car services, education and cultural services, car sales, and
motorcycle services. These 13 types collectively amounted to 38,154,240 records, forming
the basis for our analyses and investigations.

3. Method

The steps of processing research data, fitting the MGWR model to predict the popula-
tion at the grid level, and evaluating accuracy are shown in Figure 1.

3.1. Processing of Research Data
3.1.1. Processing of Building Data

In the initial stage of our study, we performed a difference calculation between the
total building footprint data and the non-residential building footprint data to obtain the
residential building footprint data. Referring to the official manual of the GHSL data
package (https://data.europa.eu/doi/10.2760/19817, accessed on 12 September 2024), the
ratio of population density between fully non-residential building units (pixels with a
non-residential building area of 100 m2) and fully residential building units (pixels with a
residential building area of 100 m2) is 0.04915 [41]. Assuming that the population located
in buildings is evenly distributed according to this ratio, we calculated that the population
distributed in non-residential buildings accounted for only 3.31‰ of the study area’s total
population. Given the general accuracy of GPM and the processing time of the data, we
assumed that the population is only distributed in residential buildings for this study. As a
result, we aggregated the residential building footprint data into 100 m pixels to match the
building height data. The final step was multiplying the residential building footprint data
by the height data, thus obtaining the volume data of residential buildings in China.

To recognize significant population density variations among residential buildings
on different land classes, such as higher density in residential buildings on urban land
compared to rural land, we used preprocessed land use/cover data for residential building
classification. We selected four land classes for population distribution: urban, rural,
industrial, and remaining land, as there are notable differences in population density among
these categories [5]. Through an overlay analysis of the land use/cover data and residential
building volume data, we derived the volume data for residential buildings in urban, rural,
industrial, and remaining land. Additionally, considering that residential buildings in
illuminated areas generally have higher population density than unilluminated areas [5],
the four residential building datasets were again overlaid with the preprocessed nighttime

https://ditu.amap.com/
https://ditu.amap.com/
https://data.europa.eu/doi/10.2760/19817
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light data to classify the four residential buildings into illuminated and unilluminated
areas. All overlay analysis operations of raster data are realized through the “Con()”
function of the raster calculator tool of the ArcGIS Pro software. In conclusion, we obtained
a comprehensive dataset of eight types of residential buildings in China, including the
volume (in cubic meters) of residential buildings on illuminated urban, rural, industrial,
and remaining land, as well as the volume (in cubic meters) of residential buildings on
unilluminated urban, rural, industrial, and remaining land.
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3.1.2. Processing of Nighttime Light Data

The subject of this study is GPM during nighttime. To ensure that our final results
closely align with reality (i.e., the population is only distributed within residential build-
ings), we applied a value of 0 to the nighttime light intensity at locations where the volume
of residential buildings was 0.

Subsequently, we employed preprocessed land use/cover data to extract four separate
nighttime light data layers by overlay analysis. These layers represent the nighttime light
intensities in urban, rural, industrial, and remaining residential areas. By differentiating
between these categories, we can capture variations in nighttime light intensity based on
the specific land use patterns, which enables us to study population distribution with
greater precision and accuracy.
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3.1.3. Processing of POI Data

We employed the kernel density analysis tool on the 13 types of POI data, quantita-
tively expressing the density of each POI type in continuous raster cells. During the kernel
density analysis, we utilized administrative boundary data, excluding non-residential areas,
to aggregate each type of kernel density raster by summation to the residential building
areas at the third-level administrative units. This allowed us to select an appropriate
bandwidth. We calculated the Pearson correlation coefficients between the aggregated POI
density with different bandwidths and the population counts. The tests were conducted at
400 m intervals, ranging from 400 to 8000 m. After a thorough evaluation, we found the
highest correlation coefficients between most categories (8 categories) of POI and popu-
lation at a bandwidth of 800 m. Consequently, we set the kernel density analysis for all
13 types of POI using this 800 m bandwidth. The pixel size of all kernel density rasters was
set at 100 m. A summary of the correlation coefficients at different bandwidths is shown in
Table S2 in the Supplementary Materials.

To ensure that the population was exclusively distributed within residential building
areas, we assigned zero values to all POI kernel density pixels where the residential building
volume was 0. Furthermore, to optimize the model fitting and prediction time, we followed
the approach proposed by Yang and Ye et al. [50] to reduce the kernel density raster of all
POIs to a composite POI kernel density raster layer using principal component analysis
(PCA). The explanatory variables derived from auxiliary data are shown in Table 2.

Table 2. Description of explanatory variables derived from auxiliary data.

Name Acronyms Unit Description

Illuminated urban residential volume IUV m3 The volume of residential buildings in urban land where the
nighttime light intensity value is more significant than zero

Unilluminated urban residential
volume UUV m3 The volume of residential buildings in urban land where the

nighttime light intensity value is equal to zero
The nighttime light intensity of urban

residential areas NTLU / The nighttime light intensity of residential building areas in
urban land

Illuminated rural residential volume IRuV m3 The volume of residential buildings in rural land where the
nighttime light intensity value is more significant than zero

Unilluminated rural residential
volume URuV m3 The volume of residential buildings in rural land where the

nighttime light intensity value is equal to zero
The nighttime light intensity of rural

residential areas NTLRu / The nighttime light intensity of residential building areas in
rural land

Illuminated industrial, residential
volume IIV m3 The volume of residential buildings in industrial land where

the nighttime light intensity value is more significant than zero
Unilluminated industrial, residential

volume UIV m3 The volume of residential buildings in industrial land where
the nighttime light intensity value is equal to zero

The nighttime light intensity of
industrial residential areas NTLI / The nighttime light intensity of residential building areas in

industrial land

Illuminated remaining residential
volume IReV m3

The volume of residential buildings in the remaining land
where the nighttime light intensity value is more significant

than zero
Unilluminated remaining residential

volume UReV m3 The volume of residential buildings in the remaining land
where the nighttime light intensity value is equal to zero

The nighttime light intensity of the
remaining residential areas NTLRe / The nighttime light intensity of residential building areas in

urban land
Composite POI kernel density value POI / Composite value of POI kernel density for 13 categories

3.2. MGWR Model and Population Prediction
3.2.1. Theories Related to MGWR

The formula for the MGWR model is

yi =
m

∑
j=1

βbwj(ui,vi)xi,j + εi (1)



ISPRS Int. J. Geo-Inf. 2024, 13, 335 8 of 23

where yi represents the dependent variable for the ith region, xi,j represents the jth explana-
tory variable for the ith region, βbwj(ui,vi) represents the coefficient of the jth explanatory
variable for the ith region, m represents the number of explanatory variables, εi represents
the random error term for the ith region, and bwj represents the bandwidth used for the
coefficient of the jth explanatory variable.

Each coefficient of the MGWR model has a different bandwidth, while all coefficients of
the GWR model have the same bandwidth. This is the main difference between MGWR and
GWR models. The GWR model uses weighted least squares to obtain the coefficients. The
coefficients and bandwidths of the MGWR model are obtained through a method known
as the Back-Fitting Algorithm (BFA), which was initially used to estimate parameters
for Generalized Additive Models (GAM) [51]. Following the logic of GAM, the term
βbwj(ui,vi)xi,j is defined as the jth additive term f j, leading to the GAM-style MGWR

y =
m

∑
j

f j + ε (2)

where y represents the truth value. ε represents the residual, f j represents the jth additional
term, and m represents the number of additional terms.

Based on the above, the MGWR model is estimated following the process in Figure 2.
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The specific estimation process is described below. Firstly, it is necessary to initialize
all the additional terms f j in Formula (2), that is, to obtain initial estimates of all coefficients
βbwj for the MGWR model. There are generally three choices for the initial estimation
method: (1) set all coefficients to 0; (2) MLR estimation; (3) GWR estimation. Theoretically,
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the initial estimation method will only affect the number of iterations and not the final
bandwidth result [26]. After the initialization, the initial residuals ε are calculated by

ε = y −
m

∑
j=1

f j (3)

where ε is the residual, y is the truth value, f j is the estimate of the jth additional term, and
m is the number of additional terms. Then, GWR is performed to obtain the new optimal
bandwidth bw1 and the new coefficient βbw1 by taking the sum of the residual ε and the
estimate f1 of the first additional term as the dependent variable and the first variable x1 as
the single explanatory variable. The new coefficient βbw1 is used to calculate the new f1
and new ε, which replace the corresponding old values. Next, GWR is performed to obtain
the new optimal bandwidth bw2 and the new coefficient βbw2 by taking the sum of the
residual ε and the estimate f2 of the second additional term as the dependent variable and
the second variable x2 as the single explanatory variable. This process is repeated until the
last variable xm. The above process is repeated as one step until the final estimate satisfies
the convergence condition.

This article uses the classic Proportional Change in the Residual Sum of Squares
(PCRSS) as the convergence criterion:

SOCRSS =
|RSSnew − RSSold|

RSSnew
(4)

RSSold represents the residual sum of squares from the previous step, and RSSnew repre-
sents the residual sum of squares from the current step.

3.2.2. Fitting the Models and Population Prediction

In this study, we aggregated the rasters of explanatory variables (listed in Table 2)
using the third-level administrative boundaries as regional elements. We then employed
the GWmodelS software (https://www.sciencedirect.com/science/article/pii/S235271102
2002096, accessed on 12 September 2024) to fit three regression models: MLR, GWR, and
MGWR. GWmodelS is a versatile software that integrates various geographically weighted
models, and its graphical user interface allows for quick and easy model construction.

In order to investigate the impact of building height data on population distribution
modeling, a comparison experimental group was created. It did not utilize residential
building volumes (i.e., no building height information added) but used residential building
area, nighttime light intensity, and POI kernel density as explanatory variables. Pixels of
the explanatory variables for non-residential building areas are set to 0 to ensure that the
population is distributed only in residential buildings. We summarized the explanatory
variable rasters for the comparison experimental group in the same way. Then, we built
three regression models (MLR, GWR, and MGWR)_for the comparison experimental group
to explore the relationship between the explanatory variables and the population.

We used the MGWR model with building height and POI data added to disaggregate
the Chinese population data. The standard experimental group’s 13 explanatory variable
layers (listed in Table 2) were used by the MGWR model to predict population distribution
weights on 100 m grid cells. Specifically, the regression coefficients from the MGWR model
were first converted to raster layers at 100 m spatial resolution. Then, raster computations
were performed with the explanatory variable layers in the order of the model to obtain
the population distribution weights layer. This follows the assumption of scale invariance
of the relationship between population and explanatory variables. Figure 3 displays
the population distribution weights on 100 m grids and mainland China’s third-level
resident population counts. Finally, following Formula (5), all third-level population counts

https://www.sciencedirect.com/science/article/pii/S2352711022002096
https://www.sciencedirect.com/science/article/pii/S2352711022002096
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were disaggregated into 100 m grid cells, resulting in the population distribution map of
mainland China with a spatial resolution of 100 m, as shown in Figure 4.

POPgrid = POPADM ×
Wgrid

WADM
(5)

where POPgrid represents the population counts of a particular grid unit, POPADM repre-
sents the resident population counts of the third-level administrative unit corresponding to
the grid unit, Wgrid represents the population distribution weight of the grid unit, WADM
represents the total population distribution weight of the third-level administrative unit
corresponding to the grid unit.
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3.3. Evaluation of Accuracy

To comprehensively evaluate the accuracy of the new gridded population map in
diverse regions, we tested it using 2018 fourth-level population data from three regions
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with varying overall population density and economic development levels. Group 1
encompassed areas with high overall population density and economic development,
namely Beijing, Shanghai, and Jiangsu Province (Jiangsu Province was included due to
the small sample size of Beijing and Shanghai), resulting in 2037 test samples. Group 2
represented regions with moderate overall population density and economic development,
namely Jiangxi Province, providing a total of 1780 test samples. Group 3 consisted of
regions with low overall population density and economic development, namely the Gansu
Province, with 1417 test samples.

We employed two indicators to quantify the estimation errors of the new gridded
population map: the Root Mean Square Error (RMSE) and Mean Absolute Error (MAE).
In addition, we calculated the ratio of MAE and RMSE to the mean value of the fourth-
level population counts in each group to mitigate the impact of overall population density
differences on the MAE and RMSE indicators. Finally, to gain insights into the performance
differences, we compared the above indicators of the new gridded population map with
the 2018 United Nations-adjusted WorldPop population count product.

4. Results and Discussion
4.1. Results
4.1.1. Accuracy Assessment

Figure 5 displays the RMSE and MAE indicators for the new gridded population map
and WorldPop. Group 1’s MAE values for the new gridded population map and WorldPop
are 20,698.79 and 31,985.07, respectively. For Group 2, the corresponding MAE values are
7716.43 and 15,620.94, while in Group 3, they are 7861.94 and 9049.98. Regarding the RMSE,
Group 1 shows values of 37,914.52 for the new gridded population map and 56,201.27
for WorldPop. For Group 2, the RMSE values are 13,175.15 and 26,652.89; for Group 3,
they are 13,856.28 and 18,143.99. Compared to WorldPop, the MAE values of the new
gridded population map were reduced by 35.28%, 50.60%, and 13.13% for the three groups,
respectively. The RMSE values of each group were reduced by 32.54%, 50.57%, and 23.63%,
respectively. For the new gridded population map, the R2 for the three groups are 0.64, 0.78,
and 0.67, respectively; for WorldPop, they are 0.56, 0.70, and 0.51, respectively. Therefore,
the new gridded population map has higher overall accuracy than WorldPop.

Table 3 presents the ratios of MAE and RMSE to the mean of the fourth-level population
counts. The results reveal that WorldPop exhibits the lowest accuracy in regions with
medium population density and economic development (Group 2) (ME = 0.60, RE = 1.03).
This lower accuracy in Group 2 may be attributed to the complex urban living environments
and diverse population distribution patterns, posing challenges for accurate modeling. In
contrast, the new gridded population map demonstrates improved accuracy in all groups,
particularly in Group 2, where WorldPop performs least effectively (RME = 0.30, RRE = 0.52).
This enhancement may be attributed to the inclusion of building height and POI data, which
help better describe complex living environments, particularly in urban areas. Additionally,
the MGWR model’s robust applicability in simulating diverse population distribution
patterns contributes to the overall improvement in accuracy.

Table 3. The ratio of MAE and RMSE to the mean of the four-level population counts.

WorldPop New Residual (R)

Group 1 MAE/Pop (ME) 0.51 0.33 0.18

RMSE/Pop (RE) 0.90 0.60 0.30

Group 2 MAE/Pop (ME) 0.60 0.30 0.30

RMSE/Pop (RE) 1.03 0.51 0.52

Group 3 MAE/Pop (ME) 0.48 0.41 0.07

RMSE/Pop (RE) 0.96 0.74 0.22
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4.1.2. The Differences between the New Gridded Population Map and WorldPop

Using a consistent symbol system, we conducted a thorough investigation comparing
the impact of the new gridded population map and WorldPop in three cities: Shanghai,
Nanchang, and Lanzhou. The residuals between the two datasets were computed, revealing
notable differences in Figure 6c. Both datasets exhibit concentrated population hotspots
(depicted in red) in central districts, and cities with lower overall population density and
economic development have fewer hotspots outside the central areas, indicating a stronger
population attraction towards the city centers. However, WorldPop and the new gridded
population map clearly differ in describing the transition between population hotspots
and coldspots (depicted in blue). WorldPop showcases a discontinuous, cliff-like variation,
creating a visual effect of the square-shaped and fragmented hotspots, which deviates
from reality. Conversely, the new gridded population map presents a smoother and more
realistic transition with milder variations at the edges of the hotspots. Furthermore, it
becomes evident that the central hotspot area of the new gridded population map is slightly
larger than that of WorldPop.

At the grid level, as shown in Figure 6c, the residual map further highlights the
differences between the two datasets. The discrepancies are particularly evident at the
micro-level, mainly in the hotspots and surrounding areas of the new gridded population
map. The residual map depicts a mixed state where cold spots (in red) surround many
hotspots (in blue). This could be attributed to the new gridded population map allocating
more population in residential-intensive areas within the same third-level administrative
unit. In comparison, WorldPop allocates more population in areas where residential
buildings are sparse and absent. Additionally, as a city’s overall population density and
economic development level decrease (i.e., figures from left to right), the mixed area of
cold spots and hotspots tends to shrink and decrease towards the central urban area. This
observation aligns with the fact that cities with lower overall population density and
economic development tend to concentrate residential buildings in the central district and
its surrounding areas.
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4.2. Discussion
4.2.1. Performance Evaluation of Different Models

Table 4 provides two essential indicators, Adjusted R2 and AICc, which were utilized
to assess the fitting performance of all regression models in the comparative experiment
involving building height information. Throughout the addition of building height infor-
mation, the Adjusted R2 of the MLR, GWR, and MGWR models demonstrated consistent
increments, and their respective AICc values decreased. This indicates that adding building
height information effectively enhances the effects of population distribution simulation.
The MGWR model exhibited the highest overall accuracy, albeit with limited improvement
over the GWR model. This suggests that the spatial relationship between the selected
factors and the population has significant nonstationarity and some multiscale nature.
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Table 4. Overall fitting results of the models.

MLR GWR MGWR

Building area
Adjusted R2 0.758 0.916 0.920

AICc 77,548.582 75,318.649 75,056.819

Building volume
Adjusted R2 0.797 0.926 0.928

AICc 77,182.356 74,997.368 74,779.339

Table 5 shows the overall accuracy information of the gridded population datasets
generated by the six models for the five regions of Beijing, Shanghai, Jiangsu, Jiangxi, and
Gansu. This represents the models’ ability to predict population at the grid level. The
ratios of RMSE and MAE to the mean population counts at the fourth-level administrative
units (RMSE/Pop, MAE/Pop) are used as accuracy indicators. As shown in Table 5, incor-
porating building height information significantly improves the accuracy of population
predictions. Furthermore, improvements in the model parameter estimation methods (from
MLR to GWR to MGWR) also result in varying degrees of enhanced population predic-
tion accuracy. These findings are consistent with the model fitting performance shown in
Table 4.

Table 5. The accuracy of gridded population datasets generated by different models.

MLR GWR MGWR

Building area
RMSE/Pop 1.19 0.86 0.80

MAE/Pop 0.69 0.45 0.42

Building volume
RMSE/Pop 1.07 0.73 0.68

MAE/Pop 0.58 0.37 0.33

4.2.2. Scale Analysis

Table 6 shows the bandwidth information for the GWR and MGWR models using
building volume variables. MGWR can directly reflect the different action scales of different
variables, while GWR can only reflect the average spatial scales of all variables. The
bandwidth of GWR is 19, which is only 0.67% of the total sample size. In MGWR, the
spatial scales of different variables vary considerably, with most of (i.e., more than 50% of
administrative units at the third level) the regression coefficients for the eleven variables,
namely, intercept, UIV, NTLI, IReV, UReV, IRuV, NTLRu, URuV, IUV, UUV, and POI, being
significant, whereas most of (i.e., more than 50% of administrative units at the third level)
the regression coefficients for the three variables, namely, IIV, NTLRe, and NTLU, are
not significant.

Specific manifestations are:

(1) Intercept, UIV, NTLI, IReV, UReV, IRuV, NTLRu, IUV, and POI have bandwidths
ranging from 11 to 29, exhibiting micro-scale features in the model. The spatial scale
is close to the level of prefecture-level cities in mainland China. On the one hand, this
indicates that they exhibit considerable spatial nonstationarity in the model. Once
the spatial range is exceeded, the coefficients will change dramatically. On the other
hand, it also proves that the population is sensitive to these variables in this modeling
approach.

(2) The bandwidths of UUV and URuV are 115 and 116, respectively, close to the regional
spatial scales of general provincial administrative units in China, suggesting that they
have relatively medium spatial nonstationarity in the modeling.
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Table 6. Bandwidth of GWR and MGWR models.

Variable MGWR GWR

Intercept 11 19
IIV 2847 19

NTLI 11 19
UIV 29 19
IReV 20 19

NTLRe 11 19
UReV 11 19
IRuV 15 19

NTLRu 11 19
URuV 116 19
IUV 11 19

NTLU 2845 19
UUV 115 19
POI 11 19

4.2.3. Analysis of Coefficient Spatial Pattern

Table 7 presents statistical information on the regression coefficients corresponding to
the significant explanatory variables across the study area (note: non-significant samples
are also counted). The spatial distribution of regression coefficients corresponding to
these explanatory variables is shown in Figure 7 (note: the regression coefficients for non-
significant coefficients are all negative). We only present UUV and POI for reasons limited
by the length of the article.

Table 7. Statistical description of MGWR regression coefficient.

Variable Mean Standard Error Min Median Max

Intercept 116,030.2 61,381.3 5774.5 106,166.0 339,670.9
IUV 0.00104 0.00095 −0.00180 0.00105 0.00304
UUV −0.00364 0.03400 −0.17500 0.00096 0.06400
IRuV 0.00240 0.00335 −0.00390 0.00134 0.01940
URuV 0.00320 0.00129 0.00025 0.00330 0.01040

NTLRu 1.32000 6.40000 −26.60000 1.97000 21.50000
UIV 0.03100 0.19000 −0.42000 0.01080 2.90000

NTLI 1.70000 2.80000 −13.10000 1.21000 20.00000
IReV 0.00290 0.00233 −0.00520 0.00290 0.01110
UReV 0.00940 0.00860 −0.02570 0.01040 0.05500
POI 24.6000 15.5000 −8.80000 24.5000 83.0000

The regression coefficients for UUV are significant in 1474 sample units, accounting
for 51.72% of all sample units. As seen in Figure 7c, the non-significant coefficients are
mainly distributed over most of the northeastern region and all areas below the southwest
diagonal of mainland China. The high values of the significant coefficients are mainly
distributed in Shandong, Jiangsu, Southern Anhui, Eastern Henan, part of Inner Mongolia,
Northern Hebei, and Western Liaoning. From Table 7, the UUV coefficients in the study
area range from −0.175 to 0.064, with a mean value of −0.00364 and a standard error of
0.034. This indicates that the impact of UUV per 1 million m3 on the population of the
third-level administrative units ranges from −175,000 to 64,000 people, with an average
impact of −3640 people, and there is a relatively significant difference in the impact of the
UUV on the population in different regions. An increase in UUV leads to a decrease in
IUV when urban residential buildings are held constant. In addition, the presence of high
UUV values suggests that the local economic vitality may be relatively low, and therefore,
there may be some degree of population loss. These may be the primary reasons why the
average impact of UUV on the population is negative.
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Figure 7. Spatial distribution of coefficients corresponding to explanatory variables in MGWR
fitting results.

In total, 2613 sample units show significant POI coefficients, representing 91.68% of
the total samples. From Figure 7k, the areas with non-significant POI coefficients are mainly
concentrated in Beijing–Tianjin–Hebei and parts of Inner Mongolia. The high values of the
significant POI coefficients are mainly in most of Northwest China, most of Northeast China,
parts of Central China, Tibet, most of Guangdong, and most of Guangxi. Surprisingly, the
POI regression coefficients are higher in many economically underdeveloped regions (e.g.,
Tibet, Northwest China, and Northeast China) than in economically developed regions
(e.g., southeastern coastal region). This may be due to differences in the spatial equality
of economic development. Compared to economically developed regions, economically
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underdeveloped regions tend to have higher spatial inequality in the level of economic
development, and thus, POI, which represents economic dynamism, is more attractive to
people, i.e., the population is more dependent on POI. From Table 7, the POI coefficients for
the whole study area range from −8.8 to 83, with a mean value of 24.6 and a standard error
of 15.5, which represents an average impact of 2460 people per 100 values of composite
POI kernel density on the population of the third-level administrative units in the whole
study area, with relatively significant differences in the impact of composite POI kernel
density on the population in different regions.

In conclusion, most regression coefficients are significant in the above modeling,
indicating the validity of our modeling approach. In addition, the distribution of the
regression coefficients for each explanatory variable shows noticeable regional differences,
indicating that the spatial relationship between the population and these variables is
nonstationary. The varying scale of the coefficients indicates that the spatial relationship
between the population and these variables is multiscale. Therefore, MGWR is more
reasonable than MLR and GWR for modeling population distribution at mainland China’s
third-level administrative unit scale.

4.2.4. Residential Buildings Versus Land Use/Cover

Land use/cover data are primarily auxiliary data for population distribution model-
ing [5,20,23]. However, such data may not accurately reflect the actual distribution range of
populations, i.e., human settlement areas, nor quantitatively represent population density
at specific locations within a land class. Instead, it can only provide a qualitative rep-
resentation of the average population density among different land classes (e.g., urban
land’s average population density is higher than rural land’s). Directly utilizing land
use/cover data for population distribution modeling may fail to reveal variations in popu-
lation density within each land class, resulting in significant inconsistencies with reality [8].
In contrast, residential building data, serving as human settlement data, can provide a
more precise and realistic representation of population distribution ranges. Including
height attributes allows quantifying population density differences among buildings of the
same type.

Table 8 presents statistical information on various types of residential buildings and
land in this study. Regarding land use/cover data, the vast majority of the area is classified
as remaining land (97.31%), followed by rural (1.40%) and urban (0.81%) land, with the
smallest percentage of industrial land (0.48%). Correspondingly, the proportion of area
covered by each type of residential building follows a similar decreasing order (40.50%,
30.42%, 24.84%, and 4.24%). The row ‘Density of various residential buildings (area ratio of
various residential buildings to corresponding land)’ demonstrates a significant downward
trend in building density on urban, rural, industrial, and remaining land (23.48%, 16.85%,
6.67%, and 0.32%, respectively). These findings indicate that only a tiny portion of all land
classes is occupied by residential buildings (representing human settlement areas). At the
100 m raster level, this is manifested by the presence of residential buildings in less than 30%
of the pixels in the study area, accounting for more than 70% of the pixel values in the final
population distribution map being null (Figure 4). Consequently, using land class variables
(i.e., land class area, land class proportion) as the sole or primary variables for modeling
population distribution at night can result in a large number of people in residential
building areas being incorrectly assigned to uninhabited non-residential building areas.
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Table 8. Statistical information on various residential buildings and land classes.

Urban Rural Industrial Remaining All

Residential building
Area (km2) 18,277.48 22,384.06 3122.69 29,806.80 73,591.03

Proportion 24.84% 30.42% 4.24% 40.50% 100%

Land class
Area (km2) 76,296.54 132,178.94 45,814.05 9,203,427.64 9,457,717.17

Proportion 0.81% 1.40% 0.48% 97.31% 100%

Density of various residential buildings
(area ratio of various residential
buildings to corresponding land)

23.48% 16.85% 6.67% 0.32% 0.78%

Table 9 presents the Pearson correlation coefficients (R) between the population and
various residential building volumes, building areas, and land areas at the third-level ad-
ministrative units in this study. As human settlements, the correlation between residential
building areas and population is generally significantly higher than between the corre-
sponding land areas and population. Specifically, the correlation coefficients between the
areas of urban, rural, industrial, and remaining residential buildings and population (0.733,
0.385, 0.423, and 0.559, respectively) are notably higher than those of land areas (0.697,
0.378, 0.208, and −0.175, respectively). This observation indirectly reflects that residential
buildings can more accurately and reasonably represent the population distribution, thus
exhibiting a stronger correlation with population. The remaining land area negatively
correlates with the population (R = −0.175). This is primarily due to an increase in the area
of remaining land, leading to a decrease in land classes (urban, rural, industrial) that are
more closely related to population distribution.

Table 9. Correlation coefficient (R) of the population with various residential buildings and land.

R Urban Rural Industrial Remaining

Residential building volume 0.749 0.438 0.432 0.602

Residential building area 0.733 0.385 0.423 0.559

Land area 0.697 0.378 0.208 −0.175

Regarding human settlement with added height information, the correlation between
the volumes of various residential buildings and the population is the highest: the correla-
tion coefficients of urban, rural, industrial, and remaining residential buildings are 0.749,
0.438, 0.432, and 0.602, respectively. In contrast to the remaining land, the correlation coeffi-
cients of remaining residential building areas or volumes with population are relatively
high positive values (0.559 and 0.602, respectively). This is mainly due to the remaining
land accounting for the majority (97.31%, Table 8). Despite the low density of residential
buildings (0.32%, Table 8), the total amount of residential buildings is quite substantial
(40.50%, Table 8), leading to a relatively strong correlation with population.

Using buildings as the range of population distribution can effectively mitigate the
uncertainty caused by nighttime light data. Nighttime lights exhibit a ‘blooming’ effect,
leading to illuminated areas extending beyond the actual concentration areas of lights (such
as city centers). Moreover, bodies of water, like lakes and rivers, also contribute significant
intensity values in nighttime light images [18]. Table 10 presents statistical information
on relevant indicators of nighttime lights in residential and non-residential building areas.
Notably, the illuminated area of non-residential building areas (857,278.71 km2) is more
than twice that of residential building areas (415,124.20 km2), and approximately 30% of
the nighttime light intensity values are located in non-residential building areas. When
nighttime light intensity values are solely or primarily used as variables without con-
straining the range of population distribution, a significant portion of the population may
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be allocated to underdeveloped (non-residential building) areas, resulting in insufficient
allocation in urban areas with high population density and excessive allocation in rural
and suburban areas with sparse population. This phenomenon can significantly impact the
accuracy of population distribution results [18]. However, by adopting buildings as the
scope of population distribution, the adverse effects of the ‘blooming’ effect in nighttime
light data can be significantly reduced, resulting in more accurate and reliable population
distribution results.

Table 10. Statistics related to nighttime light in residential building areas and non-residential build-
ing areas.

The Sum of Nighttime
Light Intensity Values

Percentage of Total
Nighttime Light
Intensity Values

Illuminated Area
(km2)

Percentage of the
Illuminated Area in

the Study Area

Residential building
area 264,359,623 70.36% 415,124.20 4.39%

Non-residential
building area 111,346,418 29.64% 857,278.71 9.06%

5. Conclusions

In this study, we applied the MGWR model to disaggregate population data by
integrating 3D residential building, nighttime light, POI, and land use/cover data, creating
a 100 m gridded population map for mainland China. As far as we know, this is the first
time the MGWR model has been used in the context of GPM and the first instance of
employing 3D residential building data for national-level GPM in China. The resulting
gridded population map exhibits higher accuracy than the existing WorldPop dataset. This
improvement can be attributed to utilizing 3D residential building data and the MGWR
model. Unlike land use/cover data, residential building data can more accurately reflect
the extent of population distribution and show a stronger correlation with the population;
its height information can reflect the vertical distribution of the population within the
building and is an excellent auxiliary variable. In addition, for large-scale countries or
regions like China, the MGWR model, which takes into account the nonstationarity and
multiscale nature of the spatial relationship between population and variables, is very
suitable for use in GPM in such study areas because of the relatively significant differences
in the population distribution patterns among regions.

This study can be a significant reference for developing the next-generation global
gridded population product datasets. As GHSL-3D Building and nighttime light data are
globally available, and alternatives to land use/cover and POI data, such as ESA/CCI
and OpenStreetMap data, exist, the approach presented here can be applied globally.
Regarding global population input data, GPWv4 can be a viable substitute for census data,
as population grid products like GHS-POP have employed GPWv4 as input data [41].
In contrast to the RF model used by WorldPop, the MGWR model allows for uniform
modeling of all input units globally, eliminating the need for zonal modeling by country
or region to control the accuracy of population predictions. As a result, the modeling
method in this study significantly reduces the complexity and time required for global
population modeling.

However, there is still much room for improvement in this study. The MGWR model
used in this study can reflect the spatially localized relationship between population and
explanatory variables, but it fails to reveal their nonlinear relationship. The relationship
between population and influencing factors is usually nonlinear. In addition, to minimize
the problem of collinearity among variables, we combined the kernel density layers of the
13 categories of POI into a single one, resulting in the loss of a large amount of semantic
(category) information in the POI data. To address these shortcomings, we plan to combine
the local regression idea with nonlinear machine learning algorithms (e.g., RF) to build
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a new model in our following research. Similar to GWR, for each location point, only
some nearby observations are used to build a local model [52,53]. This model can express
the spatially nonstationary and nonlinear relationship between the population and the
variables and is less sensitive to the problem of covariance between the variables. This is
expected to produce results with higher accuracy.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijgi13090335/s1, Table S1: Accuracy of the GHSL building height
dataset, Table S2: summary of Pearson’s correlation coefficient. Figure S1: Distribution map of BBH,
CNBH and GHSL datasets in the core built-up areas of the four cities.
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