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Abstract: Gaining an understanding of the intricate mechanisms between human activity and the built
environment can help in promoting sustainable urban development. However, most scholars have
focused on residents’ life and work behavior and have ignored the third activity (e.g., shopping, eating,
and entertainment). In this study, a random forest algorithm and SHapley Additive exPlanation
model were utilized to explore the nonlinear influence of the built environment on the attraction
of the third activity (other than home and work). A comparative analysis of the inflow of the third
activity from home and work was also carried out. The results show that the contributions of all
built environment variables to the attraction of the third activity differ between home–other flow
(HO) and work–other flow (WO) at the global scale, but their local effects are significantly similar.
Furthermore, the nonlinear influence of the built environment on the attractions of the third activity
can vary from one factor to another. A significant spatial heterogeneity can be observed on the built
environment variables’ local effects on the attractions of the third activity. These findings can provide
urban planners with insights that will help in the planning and optimization of communities for
pursuing the third activity.

Keywords: the third activity; built environment; nonlinear relationship; multisource data

1. Introduction

Human activity is identified as a significant phenomenon that occurs in urban spaces,
serving as one of the potential driving forces for urban operation. The intertwine between
human activity and the built environment acts as a driving force for the ongoing progress
and development of cities [1–3]. Accordingly, in geographical analysis and transportation,
obtaining an understanding of the interactive mechanisms between human activity and
the built environment is an extensive research topic. In turn, the topic provides further
implications for the development, renewal, and optimization of urban spaces [4–6].

Scholars have exerted significant effort in the investigation of residents’ spatiotem-
poral activity behavior and the influencing factors using techniques of traditional travel
behavior surveys [7,8]. An obvious advantage of the questionnaire survey is that rich
activity semantic information can be collected, allowing researchers to examine the spatial
and temporal characteristics of the different types of activities, such as commuting [9],
shopping [10], leisure [11], and recreational activities. Researchers can then further interpret
the activity differences among individuals and influencing mechanisms by integrating the
built environment with socioeconomic and demographic information [6,12]. However,
the limitation of the sample scale only allows these studies to analyze individual travel
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behavior and activity mechanisms. Moreover, this limitation makes it difficult to investigate
large-scale urban human flow and analyze the attraction of human activity to places from a
collective perspective.

Recently, the emergence of large-scale geospatial human sensing data (e.g., mobile
phone data, Twitter data, and GPS-trajectory data) has opened up new opportunities for
understanding collective travel behavior in urban spaces [13–15]. Scholars have attempted
to exploit the potential of these large geospatial datasets to gain insights into urban human
activities, such as sensing the spatiotemporal dynamics of an entire city [4,16], extracting
human mobility patterns [15,17], and investigating urban spatial structure from a human
flow perspective [18]. Furthermore, the extensive coverage of these datasets facilitates the
identification of urban human activity hotspots and further analysis of the attraction of
human activity in urban spaces and its influencing factors [19,20].

In a city, residents must move between different places to participate in a variety
of activities (e.g., work, shopping, and eating) to meet their daily needs. Among these
types of activities, home and work are the two most important recurring ones because
most urban residents need to sleep and work every day [21,22]. The other activities (e.g.,
shopping, eating, and entertainment) serve to enrich the living needs of residents. In this
study, these additional activities are categorized as the third activity, in addition to home
and work activities. Previous studies have extensively focused on the first two activities
using large geospatial sensing datasets. For example, home and work locations can be
identified from spatiotemporal trajectories according to the individual stay characteristics.
In addition, researchers have used these data to construct large-scale urban commuting
origin–destination (OD) flows, analyze job–housing balance [23], and extract commuting
spatial structures [24]. However, few studies have focused on investigating the attraction
of the third activity for populations and its relationship with the built environment. Some
studies have identified significant spatial disparities between home, work, and the third
activity due to imbalanced urban development and increasing urban sprawl [21,25]. There-
fore, it is necessary to understand the attraction of the third activity in urban spaces and
examine how the built environment can affect residents’ inflow of the third activity.

Additionally, previous studies have proven that the built environment can significantly
influence residents’ behavioral activities. For instance, Jin et al. explored the influence
of the built environment on e-scooter sharing (ESS) travel behavior utilizing ESS link
flow data and identified that facilities with higher levels of physical barriers to vehicle
traffic could attract more ESS link flows [26]. Regarding population mobility, the majority
of scholars have concentrated on how the built environment affects people’s commuting
behavior (e.g., [5,24]), whereas only a few studies have focused on non-commuting activities
(e.g., [6,27]). Using [27] as an example, despite its contribution in revealing the drivers
and nonlinearities of active travel, the study only elaborates on active travel in the context
of commuting. Yang et al. [28] only explored the nonlinear association between adults’
walking behavior and built environments around the workplace. However, the third
activity includes a variety of activities such as shopping and eating, not just walking and
cycling. The third activity not only benefits residents’ physical and mental health but also
enriches their daily lives and enhances their sense of well-being. Therefore, how the built
environment can affect the intensity of participation in the third activity in urban spaces
must be scrutinized.

The majority of the previous studies have often examined the relationship between
human activity and the built environment using predefined linear models, such as multiple
linear/logistic regression [29–31], without adequately considering their nonlinear interac-
tion. Currently, the use of artificial intelligence is flourishing, and machine learning has
been widely used in urban studies, demonstrating the advantages in capturing the nonlin-
ear relationships between dependent and independent variables. When combined with
some explainable artificial intelligence methods (such as SHapley Additive exPlanation
[SHAP] and partial dependence plots [PDPs]), these techniques can reveal the nonlinear
influence of independent variables on dependent variables. Accordingly, these methods



ISPRS Int. J. Geo-Inf. 2024, 13, 337 3 of 20

have been extensively used to explore the nonlinear influence of the built environment on
human travel behaviors. Specifically, nonlinear relationships between walking propensity
and the built environment have been revealed by Yang et al. [12] and Yang et al. [28]; it
has been shown that there is indeed a nonlinear relationship between the built environ-
ment and commuting activity [27,32]; and Zhao et al. [33] integrated natural language
processing and a random forest model to quantitatively associate the community built
environment and nonwork travel semantics. Furthermore, scholars have also explored
the nonlinear effects of the built environment on other types of human behavioral activity,
such as ride-splitting [34,35], public traffic sharing [1,2,36,37], and origin–destination (OD)
flows [38–40]. However, only a few studies have focused on the aspect of urban residents’
participation in the third activity and its nonlinear relationship with the built environment.

Although there is a significant body of work in the existing literature providing
research into human behavioral activities, the following research gaps still exist. First of all,
in terms of population mobility, most research has focused on commuting behaviors, while
only a few have considered the third activities. Second, people engaged in the third activity
could arrive from their home or workplace, which is defined as home–other flow (HO) and
work–other flow (WO) in this study; however, the nature of the different influences of the
built environment on HO and WO is still indistinct and requires investigation. Third, a
significant number of studies have frequently examined the relationship between the built
environment and human behavioral activities using a predefined linear model; however, the
built environment factors may not have sustained positive or negative impacts. Therefore,
it is necessary to include machine learning models to capture any nonlinear relationships
in our study.

On the basis of the above, in this study, the focus was on analyzing the attraction of
the third activity in the urban space and the nonlinear influence of the built environment on
the intensity of inflow for participating in the third activity from home and work locations.
Specifically, in this study, the following questions were addressed: (1) whether a nonlinear
relationship exists between the built environment and residents’ participation in the third
activity in the urban space and (2) whether there is a difference in the nonlinear influence
of the built environment on the attraction of the third activity coming from home and work
locations?

In a case study conducted in Xi’an, China, the home–other (HO) and work–other
flows (WO) were extracted from mobile phone data to represent the number of people
travelling from their homes and workplaces to the third activity sites. The total inflow
of each spatial unit based on HO and WO can indicate the attraction of the third activity
coming from home and work locations, respectively. Thereafter, the built environment
variables were quantified using multisource datasets from various perspectives. Finally,
a random forest model was used to fit the relationship between the built environment
and the third activity of HO and WO. Meanwhile, the SHAP method was utilized to
reveal the nonlinear influence of the built environment on the third activity coming from
home and work locations. The results provide additional insights into the relationships
between human activity and the built environment, aiding decision makers in planning
and optimizing communities for engaging in the third activity.

The remainder of this paper can be organized as follows. Section 2 describes the study
area and dataset used. Section 3 explains the research framework and the estimation of
all variables. Section 4 reports the results. And finally, conclusions are drawn and the
implications of this study are discussed in Sections 5 and 6.

2. Study Area and Dataset
2.1. Study Area

In this study, the city of Xi’an was taken as the case study. Xi’an, the capital of Shaanxi
Province (Figure 1b), is situated in the middle of the Guanzhong Plain in the northwest of
China. Moreover, the economic development of Xi’an, the core city of the Xi’an Metropolitan
Area and Guanzhong Plain City Group, has rapidly advanced in recent years. The area
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within the Xi’an Ring Expressway was chosen as the study area because of the high, dense
levels of population and the significant development of land use. Accordingly, this area
contains a wide variety of amenities and significant intensity of daily human activities. The
study area was divided into 500 m × 500 m grid cells as the spatial analysis units, resulting
in a total of 1920 grids (Figure 1a). We selected 500 m as the threshold because it maintains
sufficient spatial resolution while ensuring privacy protection; as such, this spatial scale
has been extensively used in previous studies of urban human activities [27,40].
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2.2. Dataset

In this study, human flow data were used to quantify residents’ engagement in the
third activity in urban spaces and were collected on 15 April 2021. The flow data include two
types of human flow, namely, the home–other flow (HO) and work–other flow (WO). These
data were extracted from mobile phone data by the telecommunication operator (China
Unicom), which accounts for approximately 20% of the market. The operator identified
individual home and work locations through observations of the spatial and temporal
characteristics of users’ stays from a long-term trajectory. The most frequent stay locations
during sleep and work times were denoted as users’ home and work locations, and the
other stay locations were identified as other activities. Based on the identified activity
location, the home–other flow (HO) was generated by aggregating users’ movements from
their home location to other activity locations, which was similar to the generation of the
work–other flow (WO). Accordingly, in this study, these two types of human flows (HO and
WO) were the only two obtained from the operator, and the spatial resolution was 250 m
grid cells. In order to protect users’ personal information and geoprivacy, the operator
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aggregated the cell phone tower-based flow data into 250 m grid cells before we touched
this dataset. Each flow included the origin grid ID, destination grid ID, and number of
people. In this study, the two types of human flows were only employed for the following
analysis.

Some geospatial datasets were used to describe the built environment based on the
framework of 5Ds, including points of interest (POIs), building footprints, bus stops,
subway stations, road networks, and a population density dataset. The POIs, bus stops,
subway stations, and building footprints were crawled by the Baidu Map API (http://map.
baidu.com/) (accessed on 6 December 2021), which is one of the most successful online
map service providers in China. The road networks were obtained from OpenStreetMap
(https://www.openstreetmap.org) (accessed on 5 December 2021). Many research studies
have previously validated that OpenStreetMap data can be highly accurate, particularly
in urban areas and for major road networks [41,42]. Population density data with a
90 m × 90 m spatial resolution were obtained from the Land Scan HD population database
(https://landscan.ornl.gov). In addition, nightlight data obtained from Luojia01 were used
to represent the economic characteristics of each grid cell, and these data were collected on
8 June 2021.

3. Methodology
3.1. Attraction of the Third Activity

We first aggregated the HO and WO flows from the spatial scale of 250 m into 500 m
grid cells by checking the overlap of the two layers. As previously mentioned, HO rep-
resents the number of people moving from the origin grid cells (home location) to the
destination grid cells for pursuing other activities. Meanwhile, WO represents the number
of people moving from work locations to other grid cells for other activities. In this study,
other activities were denoted as the third activity. We could quantify the attraction of the
third activity for each grid cell by calculating the total inflow from both home and work
locations. The specific formulas are as follows:

Ah
i = ∑n

j=1 HOji, (1)

Aw
i = ∑n

j=1 WOji, (2)

where Ah
i and Aw

i represent the attraction of grid cell i for the third activity coming from
home and work locations, respectively, and HOji and WOji represent the flow from the
home and work grid cell j to the grid cell i, respectively.

3.2. Built Environment Variables

In previous studies, the built environment has been demonstrated as having a signifi-
cant effect on human activities, with a well-maintained environment encouraging physical
activity, while a neglected one reduces the desire to travel [31]. In previous studies, the
framework of Ds has been used for exploring the impact of the built environment on
different human behavioral activities [12,26,29,43]. Therefore, in this study, the framework
of 5Ds proposed by Reid Ewing and Robert Cervero (density, diversity, design, destination
accessibility, distance to transit) [44] is utilized to quantify the built environment variables
and explore how the built environment affects the attraction of third activities. In addi-
tion, we incorporate nightlight data to describe the economic characteristics of each cell.
Therefore, our study encompasses 18 features in total, which are shown in Table 1.

http://map.baidu.com/
http://map.baidu.com/
https://www.openstreetmap.org
https://landscan.ornl.gov
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Table 1. Definition and descriptive statistics of all variables.

Variable Description Mean Std. Min Max

OD flow
Ah

i Natural logarithm of home–other flow 4.286 2.412 0 8.635
Aw

i Natural logarithm of work–other flow 4.023 2.436 0 8.786
Density
Population density Average number of people per cell 31.888 23.761 0 524.882
Diversity
Land use mix Land use entropy index of multiple types of

POIs: Entropy =
−∑s

i=1 piln(pi)
ln s , where pi is the

ratio of the ith type of POI in each cell, and s is
the number of types of POIs (s = 10)

0.539 0.206 0 0.876

Design
Floor area ratio Ratio of the total floor area of all buildings to the

area of each cell: Floor area ratio = ∑
j
i=1 Ai Fi

A ,
where Ai and Fi are the area and number of
floors of the building footprint i, respectively,
and A indicates the total area of the cell

0.811 0.789 0 3.799

Street connectivity Number of road intersections in each cell 7.593 9.328 0 139
Destination accessibility
City center Euclidean distance from the geometric center of

each cell to the city center (km)
8.649 3.393 0.180 15.639

Commerce Number of commercial POIs (e.g., supermarkets,
shopping malls) in each cell

83.667 169.836 0 2387

Culture and sport Number of cultural and sport POIs in each cell 7.430 11.998 0 132
Education Number of POIs for schools and educational

facilities in each cell
1.395 2.526 0 37

Healthcare Number of POIs for hospitals, clinics, and
pharmacies in each cell

5.874 8.335 0 83

Industry Number of POIs for enterprises in each cell 12.277 22.245 0 237
Leisure Number of POIs for parks and landscapes in

each cell
0.643 2.283 0 42

Private Number of POIs providing private services to
people in their daily life in each cell (e.g., barber
shops, beauty salons, laundries, and mobile
business halls)

31.854 49.715 0 676

Public Number of POIs for public facilities and
government agencies

5.459 8.488 0 109

Recreation Number of recreational POIs (e.g., internet cafés
and chess rooms) in each cell

1.868 5.762 0 118

Residence Number of residential POIs in each cell 4.559 6.088 0 41
Distance to transit
Bus Number of bus stops in each cell 7.420 9.069 0 52
Subway Euclidean distance from the geometric center of

each cell to the nearest metro station (km)
1.223 1.065 0.006 6.245

Others
Nightlight Average value of nightlight for each cell 56,761.347 61,156.766 1710.800 670,362

Note: the total sample size is 1920 OD pairs.

Sociodemographic density is one of the most important factors influencing human
behavioral activities [6,12]; therefore, density is measured using the average number of
people in each cell. The value of each cell represents the number of people in the Land
Scan HD population database. Since the population dataset has a resolution of 90 m and
the data of the OD flow have a resolution of 500 m, we calculated the average value of all
90 m cells contained in each 500 m cell to represent the population density. According to
diversity, a land use mix is utilized to indicate the degree of the functional mixing of grid
parcels. Since different land use types can have different attractions relating to the third
activity, the land use mix can also be considered as a combined attraction in our study. We
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adopted 10 types of POIs (Commerce, Culture and sport, Education, Healthcare, Industry, Leisure,
Private, Public, Recreation, Residence) to measure land use mix using Shannon entropy [45].
Urban design combines a diversity of characteristics that are associated with street design,
aesthetics, and comfort. In terms of design, we used the floor area ratio and the number of
road intersections to measure the intensity of land development and street connectivity,
respectively. Participation in the third activity can occur in a wide variety of places, so
we chose 11 key venues to measure the destination accessibility. In this study, destination
accessibility was quantified by considering the number of different types of POIs per
grid cell and the Euclidean distance from the geometric center of each cell to the urban
center. The subway and buses are widely recognized as the two major modes of public
transport travel. With regard to the distance to transit, the number of bus stops in each cell
and the distance to the nearest metro station were utilized to describe the convenience of
public transportation. In addition, Nightlight was calculated in a similar way to Population
Density. Table 1 provides the detailed descriptions and summary statistics of all the built
environment variables.

3.3. Random Forest Model

In this study, a random forest was adopted, one of the most prevailing machine
learning models, to explore the nonlinear relationship between the built environment
and the attraction of the third activity. Random forest is a bagging ensemble learning
method constructed using multiple decision trees, obtaining a final result through an
averaging or voting method [46]. This method is not affected by multicollinearity due
to its randomness and nonparametricity; therefore, it can effectively capture the complex
nonlinear relationship between dependent and independent variables without requiring
a predetermined model. In our study, the entire dataset was randomly split into two
parts, with 80% for training and 20% for testing. We utilized RandomizedSearchCV with a
five-fold cross-validation technique to tune several critical hyperparameters, namely, the
number of trees, the maximum tree depth, and the minimum number of samples required
at a leaf node. An appropriate number of trees can balance the performance and complexity
of the random forest model; a smaller maximum tree depth may lead to model underfitting,
while a larger maximum tree depth may lead to model overfitting. Overfitting can be
prevented through setting a large value for the minimum number of samples required at a
leaf node. RandomizedSearchCV can autonomously output the best combination of the
hyperparameters mentioned above through a comparison of the performance of the models,
thereby preventing overfitting and optimizing model performance. Meanwhile, three
evaluation metrics, namely, R-square (R2), mean square error (MSE), and mean absolute
error (MAE), were chosen to measure the model’s performance. R2 (values between 0 and
1) denotes how well the model fits, while MSE and MAE separately show the average mean
square error and mean absolute error between the actual and predicted values. The higher
the R2, the lower the MAE and MSE, and the better the performance of the model.

SHAP, proposed by Lundberg and Lee [47], is used to interpret the machine learning
model and address the “black-box” problem, where all inputted features are considered
to be “contributors”. This model can not only globally reflect the importance of features
but can also provide a local interpretability for the features and prediction results. The
contribution of each feature to its predictive results can be approximately represented as a
linear model, which can reveal the marginal effect. The equation is illustrated as follows:

f (x) = g
(
z′
)
= φ0 + ∑M

i=1 φiz′i, (3)

where f (x) is the predicted result of the training dataset in the random forest model; g(z′) is
the explanatory model by a linear function for a specific input z; z′ϵ{0, 1}M is the coalition
vector; M is the number of input features; and φi is the contribution of the ith feature.

The Shapley value (also called SHAP value) represents the core idea of SHAP, indicat-
ing how the feature contributes to the prediction of a given data point [48]. We used this
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value to explore the local effect on the attraction of the third activity. This value is defined
as follows:

φi = ∑S⊆{x1,x2,···xM}\{xi}
|S|!(M − |S| − 1)!

M!
[ fx(S ∪ {xi})− fx(S)], (4)

where M is the training dataset of all built environment variables, while S is the subset for
all built environment variables; fx(S) corresponds to the random forest model’s output
that is defined by subset S; fx(S ∪ {xi})− fx(S) represents the marginal contribution of xi

to S; and |S|!(M−|S|−1)!
M! denotes the weight of the specific coalition.

Moreover, PDPs not only provide a fine-grained exploration of the complex nonlinear
relationship between the built environment and people’s travel tendencies but also display
the marginal effect of the explanatory variables on the output [49]. The x-axis of each PDP
implies the data distribution of each feature in the built environment; meanwhile, the y-axis
represents the variation in the partial-dependence value. The partial dependence of fs on
each factor xs can be computed as follows [50]:

fs(xs) = Exc

[
f̂ (xs, xc)

]
=

∫
F(xs, xc)dP(xc), (5)

where xc indicates other covariables. Additionally, the effect of one or two built envi-
ronment variables on the attraction of the third activity can also be visualized utilizing
PDP.

4. Results
4.1. Model Performance

The number of trees was set in the range of 50 to 3000 with an interval of 50; the
maximum tree depth was set in the range of 1 to 25 with an interval of 1; and the range
of the minimum number of samples was set from 1 to 50 with an interval of 1. After the
optimal hyperparameters were obtained through 2500 iterations, the number of trees, the
maximum depth, and the minimum number of samples of HO were 550, 10, and 5, and
those of WO were 550, 25, and 3. The performance of WO was better than that of HO,
regardless of the training or test sets (Table 2). With regard to the test set, the R2, MSE,
and MAE values were 0.538, 2.968, and 1.397 for WO and 0.532, 2.895, and 1.353 for HO.
Therefore, only a slight difference in performance was observed between the HO and WO
flows.

Table 2. Model performance metrics.

Model
Training Set Test Set

R2 MSE MAE R2 MSE MAE

HO 0.655 1.972 1.111 0.532 2.895 1.353
WO 0.681 1.848 1.093 0.538 2.968 1.397

4.2. Relative Importance of Variables

The relative importance quantified using the absolute SHAP values can reflect the
extent of the built environment variables’ contribution to the attraction of the third activity.
Figures 2 and 3 show the ordered relative importance of the built environment factors for
HO and WO, respectively. In each figure, the left panel indicates the mean contribution
of each variable, and the right panel shows the contribution of each sample scattered.
Considering that the purpose of the individual trip may be the primary consideration of
residents, destination accessibility shows the highest number of variables, resulting in it
making the most significant contribution to both HO (SHAP value 1.247) and WO (SHAP
value 1.323). In HO, the descending order of relative importance is design (SHAP value
0.295), distance to transit (SHAP value 0.248), others (SHAP value 0.139), density (SHAP
value 0.081), and diversity (SHAP value 0.059). In WO, the descending order of relative
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importance is distance to transit (SHAP value 0.261), design (SHAP value 0.243), others
(SHAP value 0.205), density (SHAP value 0.065), and diversity (SHAP value 0.040). Only
one difference is observed in these two rankings. Design ranks one place ahead of distance
to transit in HO, while the opposite is true for WO. This phenomenon is also influenced
by the fact that land development and street connectivity are important for HO, while the
accessibility of public transportation is critical for WO.
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In terms of destination accessibility, Private, Healthcare, Commerce, and Residence are at
the top of the ranking, while Recreation, Education, and Leisure are at the bottom for both
HO and WO. This concept means that the population mobility gathering at third activity
sites may be focused on meeting the needs of daily life, seeking medical care, shopping,
and going to residential facilities. The subway service contributes a more significant power
in predicting OD flow than buses in both scenarios. Additionally, the contribution of the
subway to predicting HO is greater than that of WO. With regard to design, the floor area
ratio ranks quite high in both contexts, especially in HO. Meanwhile, the importance value
of Nightlight ranks higher in WO than in HO, indicating a strong link between workplaces
and economic benefits. In addition, the ordering of Nightlight has the largest gap between
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HO and WO among all variables, demonstrating that WO is more likely to occur at night
than HO.

4.3. Explanation of the Nonlinear Relationship and Synergy

We used the PDPs to describe the nonlinear relationship between the built environment
and the attraction of the third activity. The built environment has significant nonlinear
and marginal effects on predicting the attraction of the third activity (Figure 4). Overall,
we observed a relatively high degree of similarity in the nonlinear effects of the built
environment on population gathering to participate in the third activity from both home
and work.
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With regard to density, Population density negatively affects the OD flow gathering at
the third activity sites when the value is lower than 12; when the value is between 12 and
28, the positive effects steadily increase, and finally, a fluctuating situation is observed in
terms of its influence (Figure 4a). Regarding diversity, a positive exponential link exists
between Land use mix and passenger inflow, suggesting that the more multifunctional a
destination is, the more attractive it is to population flow (Figure 4b). In terms of design,
Floor area ratio and Street connectivity both positively affect HO and WO (Figure 4c,d). After
a sharp increase when the value of Floor area ratio is smaller than 0.4, the positive effects
slightly strengthen and then stabilize. A marginal effect is observed when the number of
intersections reaches 12 (Figure 4d). This denotes that a reasonable number of intersections
contribute to the convenience of people’s travel plans; however, a significant number of
intersections are more likely to cause traffic congestion and safety hazards.

In terms of destination accessibility, with the exception of distance to the city center,
which has a near linear inhibitory effect on population movement (Figure 4e), the other
categories of amenities can significantly attract inflows of people. Some of the less urbanized
areas, such as east of Yu Huazhai Street, attract lower levels of population flow. The trends
of Commerce and Private are similar. Population flow dramatically increases with the number
of commercial and private amenities, and thereafter slows down and stabilizes (Figure 4f,l).
The peak is identified when the number of cultural and sports facilities is eight (Figure 4g).
The associations between OD flow and educational and leisure facilities are relatively
weak (Figure 4i,j) because they are less important in predicting OD flows (Figures 2 and 3).
Furthermore, a V-shaped trend occurs when the number of educational amenities is greater
than two and less than twelve in a cell. The attraction of leisure facilities for HO reaches
its peak and then stabilizes when its number is approximately eight. Meanwhile, the
maximum influence on WO is achieved when the number of facilities is six. Population flow
incrementally increases with the number of enterprises and then stabilizes after surpassing
19 (HO) and 24 (WO), demonstrating a limited effect on the attraction of the third activity
(Figure 4k). The marginal effects of Healthcare, Public, Recreation, and Residence are observed
within the thresholds of six, twenty-six, eighteen, and ten, respectively (Figure 4h,m–o).
A plausible explanation is that a moderate number of the above-mentioned facilities can
attract a sufficient amount of OD flow. However, any further improvements will have
little or no effect once the supply exceeds the demand. In addition, the thresholds for
Healthcare and Residence are lower than the other two, suggesting that people’s destinations
to participate in the third activity are more likely to be in relation to public and recreational
facilities.

The convenience of buses can stimulate population movement; however, the significant
distance to subway stations can reduce people’s willingness to travel (Figure 4p,q). Overall,
to a certain extent, the ease of accessing transit facilities determines people’s desire to travel.
In the context of Xi’an, the higher the Nightlight value, the better the economic development,
and the more people will be attracted until the value of Nightlight reaches 80,000 (Figure 4r).

In addition, we also utilized the PDPs to reveal the effects of the two built environment
factors on the attraction of the third activity. This would yield 18 × 18 plots for each of the
two variables if all plots were included in this paper. Due to the limited length of this paper,
only the synergistic effects of the top three variables in terms of importance are analyzed
here, i.e., the synergies between Private, Plot ratio, and Healthcare for HO and the synergies
between Private, Nightlight, and Residence for WO. As shown in Figure 5, the synergies of
these six sets of two-by-two variables are actually analogous. We discovered the following:
(1) The interaction of each two key variables can positively attract the occurrence of third
activities; (2) The synergistic effect is somtimes significant. When both variables have either
small or relatively large values, the synergistic effect between them, and the positive effect
that ensues, on the attraction of the third activity is significant (as shown in the purple
and yellow areas of the plots); (3) When the synergistic effect is insignificant, one built
environment factor dominates and the synergy between the variables is insignificant at that
time (as shown in the area covered by the parallel lines). Taking Figure 5a as an example,
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when Private is lower than 20 and Plot ratio is larger than 0.5, it is mainly Private that attracts
the third activities, while Plot ratio plays an insignificant role; (4) Similarly, the marginal
effect is also present in synergy, as is the case with the nonlinear relationship. Once the
values of the variables reach a specific threshold, the positive impact will no longer increase
with the values of the variables but will remain constant (as illustrated by the large yellow
area in the upper-right corner of a plot where no higher values appear).

Figure 5. Synergy of each of the two built environment factors on the attraction of the third activity.

4.4. Comparison Analysis of the Nonlinear Effects on HO and WO

We further compared the complicated nonlinear effects of the built environment
on HO and WO, illustrating the similarities and differences as follows. First, although
the nonlinear influences of the built environment factors on the attraction of the third
activity are highly similar, the effects on HO prediction are stronger than those of WO
among all the independent variables (all black lines lie above the blue lines, as shown
in Figure 4). Thereafter, the partial dependence between population flow and the built
environment factors can be approximately divided into the following four components:
(1) Parallel: Half of the subplots show that the black and blue lines are roughly parallel
(Figure 4). This notion means that the difference between the nonlinear influences of factors
(i.e., Education, Industry, Leisure, Public, Recreation, Land use mix, City center, Subway, and
Population density) on HO and on WO is nearly constant; (2) Widened: In terms of another
five explanatory variables (i.e., Commerce, Culture and sport, Healthcare, Residence, and Floor
area ratio), the gap between the HO and WO curves progressively widens as the variable
increases. Under these circumstances, the influence of factors on WO is enhanced less
rapidly than the influence on HO for a certain threshold range; (3) Narrowed: The gap
between the contribution of Nightlight to the HO prediction and that to the WO prediction
diminishes, which is contrary to the previous category (Figure 4r); (4) Concave: The gap
between the two lines decreases and then increases as the independent variable increases,
indicating that the difference in the predictive power of Bus, Private, and Street connectivity
decreases and then increases in each of the two scenarios.
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4.5. Spatial Heterogeneity of the Local Effect

In this section, we present the local effects of all the explanatory variables based on
random forest. The spatial distribution of the SHAP value for each independent variable is
plotted in Figure 6 (HO) and Figure A1 (WO). These show that all factors, including the
variables with low global importance, can have an outstanding performance on a local
scale. The spatial distributions of the factors’ contributions to predicting HO and WO are
significantly similar, which also aligns with Figures 2 and 3. In each explanatory variable,
the scatter distribution patterns in the two models are quite similar. Therefore, we only
analyze in detail the spatial heterogeneity of the built environment’s local effect on HO to
streamline our discussion.

Regarding density, Population density has a greater positive influence on the north-
western corner of the study area and a less positive influence on a large portion of the
central part (Figure 6a). Nevertheless, the negative effects are distributed in the peripheral
regions. Meanwhile, the positive impact ranges of Land use mix outweigh the negative
influence ranges. The contributions to predicting OD flow gathering at the third activity
sites have greater positive influences in the south and greater negative influences in the
north (Figure 6b). In terms of design, the positive effect area of Floor area ratio is the largest
of all the built environment factors and has the best spatial continuity (Figure 6c). The
negative effect areas are mainly set outside the positive effect area. In addition, special
attention should be paid to the exceptionally low SHAP value for the Daming Palace
National Heritage Park. Baqiao is situated at the northeastern corner of the study area, a
location where Street connectivity plays a major role (Figure 6d). This area cannot disregard
the potential influence of intersections, which facilitate travel.

Significant spatial differences can be observed in the influence of the different variables
of destination accessibility on the attraction of the third activity. Figure 6e shows that as the
distance to the city center increases, the influence changes from positive to negative, and
the SHAP value changes from high to low. Zhonglou and Xiaozhai are commercial centers
and are well-equipped with basic amenities. Accordingly, in these areas, Commerce and
Private have a strong attraction to the population (Figure 6f,l). The local effects of Culture
and sport and Healthcare appear similar, and the area of positive influence is larger in the
south (Figure 6g,i). Specifically, the civic and medical facilities are mainly located in the
red zone. In terms of Education, the spatial heterogeneity of HO is more significant than
that of WO, and the negative SHAP value of WO is smaller compared to that of HO (the
blue area in Figure 6h is darker than that in Figure A1h). The small variance in the positive
SHAP values can prove that quality educational resources are evenly distributed in the
core area of Xi’an. In the central axis and the high-tech zone (the red concentrated areas
in Figure 6j), a strong correlation exists between Industry and OD flow gathering at the
third activity sites. Leisure and OD flow are negatively correlated (Figure 6k). However,
the famous landmarks, such as the Xi’an Circumvallation, Zhonglou, Great Tang all-day
mall, Daming Palace National Heritage Park, and the Han Chang’an City Site, attract a
large number of tourists. Government agencies and departments are mainly located in
the central axis and the old city (the center red areas in Figure 6m), and people visit these
places mostly to conduct business. The positive effects of Recreation are mainly observed in
certain areas, such as Zhonglou and Xiaozhai, while ultra-low SHAP values are sporadically
distributed (Figure 6n). A strong link exists between Residence and population movement
in the central region compared to the edge of the study area (Figure 6o).
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People rely on public transportation as one of their principal means of travel. The
positive effect of Bus is mainly distributed on the trunk roads (Figure 6p). This indicates
that bus stops are mainly located on both sides of trunk roads, and the rational layout of
bus stops is conducive to attracting population movement. An interesting phenomenon can
be found in Figure 6q, where the positive SHAP values are distributed along the subway
lines of Xi’an, while the ultra-low SHAP values are embedded around the red region.
Meanwhile, red clusters are observed around the southeast corner near the Xi’an Botanical
Garden and Yanming Lake leisure park and the northernmost point of the central axis
near Daming Palace National Heritage Park and Wangsi subway station. About Others,
the substantial residential areas can be found to the north of Three Bridges Street and the
north of the median, where the positive effect of Nightlight is evident. Nightlight has also a
significant positive influence on the following locations: Zhangbagou Street, which is a hub
for industry; Zhonglou, as one of the most famous scenic spots in Xi’an; Yanta District, which
also boasts numerous famous attractions, such as Tang Paradise; XIANICEC, which often
hosts large events; and Houhai of Chanba, which is a good choice for enjoying a beautiful
night view (Figure 6r).

5. Discussion

In our research, random forest was utilized, as a state-of-the-art machine learning
model, to uncover fresh perspectives on the nonlinear relationship between the built
environment and the attraction of the third activity utilizing fined-grain data that explain
the built environment and mobile phone data. We developed an individual random forest
model for HO and WO and further interpreted them globally and locally using a SHAP
model. In addition, in our study, synergies between each of the two built environment
factors were also revealed utilizing PDPs. On this basis, in this work, how the built
environment contributes to the attraction of the third activity is revealed. The results of our
research provide insights to help policymakers and urban planners optimize communities
for participating in the third activity. Based on our findings, policymakers and urban
planners can learn more about the effective ranges of the built environment factors, how to
enhance the attraction of the third activity in the most cost-effective way, and help other
stakeholders, such as real estate developers, understand what type of built environment
would attract what type of buyers.

Our findings reflect that although the contributions of all the built environment
variables to the attraction of the third activity differ between HO and WO on the global
scale, the nonlinear relationships (i.e., partial dependence) and spatial patterns of the SHAP
values are highly similar. Accordingly, the global contributions of the built environment to
attracting population flow from home and work are different, according to Figures 2 and 3;
however, the local effect among them demonstrate a high degree of similarity. In summary,
the three most important factors in HO are Private, Floor area ratio, and Healthcare, whereas
those in WO are Private, Nightlight, and Residence. Decision makers and urban planners can
prioritize the optimization of those built environment factors that are of high importance
if they urgently need to improve the degree of people’s attraction to the third activity.
Private exhibits the most significant contribution to HO and WO, indicating that amenities
providing private services have a greater influence on the attraction of the third activity
than other elements. Additionally, people are likely to travel to certain facilities, such as
barber shops, laundries, and beauty salons, to meet their needs in daily life. In the context
of Xi’an, if a location wants to attract a substantial number of people from their homes,
the relevant government departments must rationalize the provision of more facilities of
daily life and healthcare services in that place and appropriately increase the floor area
ratio. Moreover, a location with a significant number of amenities for day-to-day living and
housing and a high Nightlight value is more likely to attract population movement from the
workplace.

The SHAP interpreter was used not only to identify the nonlinear effects of explana-
tory variables on HO and WO but also to visualize the local effect of the built environment
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variables. In summary, the majority of the features’ global contributions to HO are greater
than to WO (Figures 2 and 3). The marginal effects of the built environment factors were
unveiled, which can enhance urban planners and government departments’ understand-
ing of how the built environment influences population mobility and effectively assists
sustainable urban development and renewal. Specifically, in terms of density, greater atten-
tion should be paid by planners to adjust population density to an appropriate level for
promoting HO and WO. Once Population density exceeds 28, not only will it fail to enhance
the attractiveness of the area for the existing population, but it may also inhibit the inflow
of new population members. Overcrowding can cause discomfort for residents. In the
northwestern edge of the study area, increasing Population Density could be a good way of
attracting people. With regard to diversity, Land use mix is capable of promoting population
inflows in general. Planners should rationalize land use mixing because its significant
positive and negative effects on population inflow are staggered around the edge of the
study area. Land use mix’s significant negative effects on WO have permeated the center
region, and this requires further attention. The effective ranges of Floor area ratio and Street
connectivity are within 0.8 and 12, respectively. In the Han Chang’an City Site, Daming
Palace National Heritage Park, Baqiao, and the southeastern corner of the study area, the
high floor area ratio will inhibit population inflow. People visit these places to relax and
gain a broad perspective, so the floor area ratio of these places need to be controlled. If three
identical triangles are used to delineate the study area, then the number of intersections
should be controlled for the upper-left and right triangles, as the high degree of Street
connectivity will have an opposite effect. In terms of destination accessibility, all other
types of amenities could stimulate the third activity with the exception of City center and
Education. For example, although the number of medical facilities shows nuanced effects
on HO and WO, its effective range should be between zero and four within a cell, and this
observation should be noted by urban designers. Furthermore, the spatial heterogeneity
of the different effects varies according to facility type. Transportation authorities must
understand that the effects of elements on people’s willingness to travel are nonlinear. The
number of bus stops within 18 in a grid is positively related to the attraction of the third
activity, while the effect is weaker above this value. The closer people are to a subway
station, the more willing they are to travel. All of these findings provide references for TOD
planning. The positive effects of Bus and Subway on HO and WO are roughly distributed
along the transit lines. Finally, improved economic development could attract the third
activity, but this effect has a threshold.

Furthermore, the synergy of the two built environment factors with a higher impor-
tance can also have a positive impact on the attraction of the third activity. This synergy
may also exhibit a marginal effect, similar to the nonlinear relationship mentioned in our
study. Therefore, if the built environment is to be optimized in the most cost-effective way
in order to enhance the attraction of the third activity, urban planners must keep the built
environment factors within reasonable limits.

In addition, although random forest is one of the most advanced machine learning
models, it also suffers from the potential risk of overfitting and the “black-box” problem.
Tuning the hyperparameters can avoid overfitting to some extent, while interpretable
machine learning models can also help in interpreting complicated models. In our study,
neither HO nor WO can be seen to fit the model very well. In terms of the test set, the R2 for
HO and WO is 0.532 and 0.538, respectively, implying that our choice of built environment
variables explains the attraction of HO to an extent of 53.2% and WO to an extent of 53.8%.
This indicates that there are other factors that can have an impact on the attraction of the
third activity. More factors could be included for further research in the future.

6. Conclusions

Overall, our research uncovers the global contribution of explanatory variables to HO
and WO, disentangles the complex nonlinear relationship between the built environment
variables and the attraction of the third activity, and delves into the spatial heterogeneity
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of these local effects. Additionally, the synergistic effects of each two built environment
factors are also further revealed. The findings in this study could help in providing insights
and understanding into how the built environment (i.e., the 5Ds) and the state of economic
development affect the attraction of the third activity and provide policy implications and
spatial planning references for decision makers.

Furthermore, several issues of our research should be further investigated. First, it
remains uncertain as to whether the results of this study are generalizable because Xi’an is
a monocentric city. In our study, we utilized mobile phone data from only one city due to
the limited data. However, the complicated relationship between the attraction of the third
activity and the built environment is likely to change over different cities and time periods.
Therefore, multi-city and multi-time period studies should be further conducted. Second,
although we obtained the best performing model after a number of tuning processes,
potential overfitting problems and model uncertainty may remain. If possible, scholars
should increase the amount of data and influencing factors for further research in the
future. Other models, such as linear or deep learning models, can also be considered for
comparative analysis or to improve accuracy. Finally, the intricate relationship we explored
between the built environment and attraction to the third activity is more of a correlation
than a causal relationship. An inferential model may be needed in the future to explore any
causal effects.
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