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Abstract: Traffic flow prediction is one of the most important and attractive topics in
geographical information science (GIS), traffic management, and logistics. Traffic flows
exhibit significant complexity and dynamics, requiring a thorough understanding of their
spatiotemporal evolution patterns for accurate prediction and analysis. Existing stud-
ies utilizing deep learning for traffic flow prediction often suffer from distribution shift
issues, leading to poor generalization capabilities when dealing with data that has dif-
ferent spatiotemporal distributions. Based on this, we propose a traffic flow prediction
model based on prompt learning, leveraging graph convolutional networks to focus on the
spatiotemporal dependencies of traffic flows. The model utilizes spatiotemporal context
learning capabilities to capture the periodic states of traffic flows, enhancing the extraction
of spatiotemporal features by integrating spatiotemporal information. Experimental results
show that the spatiotemporal traffic flow prediction model equipped with a spatiotemporal
prompt learning module outperforms several mainstream benchmark models in terms of
predictive performance. The model presents efficient learning performance that reaches
optimal state in a short period of time, reduces the impact of distribution shifts, and can be
adapted to spatiotemporal traffic flow data under varying spatiotemporal contexts.

Keywords: spatiotemporal traffic flow prediction; distribution shift; prompt learning

1. Introduction
With the rapid pace of urbanization and a significant rise in vehicle ownership, the

demand for transportation has surged, leading to increasingly severe traffic congestion
and a higher incidence of traffic accidents [1]. Temporal-spatial prediction of traffic flow
is always one of the most important subjects in GIS, spatial network, logistics, etc. In the
future, the introduction of connected and autonomous vehicles (CAVs) into the market will
add complexity to urban traffic systems. In this evolving landscape, connected automated
vehicles (CAVs), connected vehicles (CVs), and regular human driven vehicles (RVs) will
coexist, forming a mixed traffic flow [2]. This transition poses novel challenges for urban
traffic management, necessitating innovative solutions to ensure efficient and safe mobility.
In response to these challenges, many countries and regions worldwide are intensifying
their research and application efforts in intelligent transportation systems (ITS) and trans-
portation GIS. ITS is not only a critical component of modern smart city infrastructure
but also a key technological means for solving traffic management problems [3]. Against
this backdrop, accurate traffic flow prediction has become a core element of intelligent
transportation systems and traffic information services. Precise traffic flow prediction can
help relevant departments promptly adjust traffic scheduling plans and implement more
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reasonable traffic control measures, thereby effectively alleviating congestion. Addition-
ally, it can significantly reduce traffic safety risks and ensure road safety. Accurate traffic
predictions can provide real-time, reliable travel advice to the public, enabling citizens
to flexibly adjust their travel plans according to forecasted information, improving travel
efficiency and ultimately enhancing the quality of life and satisfaction of urban residents.
The core of traffic flow prediction encompasses support for urban planning, real-time traffic
monitoring and management, and the promotion of smart city applications. Among these,
the main challenge of traffic flow prediction lies in effectively simulating and predicting
traffic at different times and spatial locations, as well as exploring the correlations between
time, space, and traffic flows.

Given the critical importance of accurate traffic flow prediction for effective traffic
planning and management, numerous researchers have investigated a wide range of high-
precision techniques. These methods include time series analysis, traditional machine
learning models, and deep learning models.

Time series analysis is a statistical technique used to analyze and forecast data points
collected over time. This approach is particularly effective in capturing temporal patterns in
traffic volume, such as daily, weekly, and seasonal trends, as well as short-term fluctuations.
For instance, S. Vasantha Kumar et al. [4] selected a three-lane arterial road in Chennai, India,
as their study site. They applied necessary differencing and then plotted the Autocorrelation
Function (ACF) and Partial Autocorrelation Function (PACF) to determine the appropriate
order of the Seasonal Autoregressive Integrated Moving Average (SARIMA) model. This
method allowed them to accurately capture both the seasonal and nonseasonal components
of the traffic flow. Emami et al. [5] developed a Kalman Filter to predict traffic flow on urban
arterial roads using data obtained from connected vehicles. The proposed algorithm is
computationally efficient and provides real-time predictions. While their method effectively
captures the temporal information in traffic flow, it does not account for spatial information,
which can also significantly influence traffic flow prediction.

Traditional machine learning models are particularly adept at handling structured data
and are distinguished by their high interpretability and relatively modest computational
requirements. Ata et al. [6] use the traditional machine learning method Support Vector
Machine (SVM) to predict traffic flow. They propose a TCC-SVM system model to analyze
traffic congestion in the environment of a smart city. While traditional machine learning
models, such as decision trees and support vector machines (SVM), often perform well
with smaller datasets and offer interpretability, they have certain limitations, particularly
in handling spatial information. Although these models can be enhanced by incorporating
spatial features like distance and direction, their spatial processing capabilities are generally
weaker compared to deep learning models.

Deep learning models excel in feature representation, making them a prominent ap-
proach for spatiotemporal prediction tasks, which are widely used in the field of traffic
flow prediction. Recurrent Neural Networks (RNNs) [7–9] and their variants, such as
Long Short-Term Memory (LSTM) [10,11] and Gated Recurrent Units (GRUs) [12,13], have
achieved excellent performance in extracting temporal features. Convolutional Neural Net-
works (CNNs) can effectively capture local spatial features in the traffic network through
convolutional layers, extracting local spatial patterns [14–16]. When predicting traffic flow
at nodes within a road network, these methods often fail to effectively leverage the net-
work’s topology to capture essential spatial information. The emergence of graph methods
solves this problem and has become a mainstream traffic flow prediction method. Graph
Neural Networks (GNNs) emerged as effective models for capturing complex spatial de-
pendencies, using message-passing mechanisms to learn relationships between spatial units
such as regions and road segments [17–21]. To construct adjacency matrices for graphs,
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researchers have explored various factors, taking into consideration static geographical
distances as well as time-aware regional correlations [22]. Additionally, some researchers
have used attention mechanisms. Transformer is a classic implementation of attention
mechanisms, using an encoder-decoder architecture constructed through self-attention
modules and feedforward neural networks [23–25]. Meanwhile, cutting-edge technologies
such as meta-learning [26,27] and transfer learning [28,29] have also been widely adopted
in recent years. Prompt learning [30–33] is a technique that involves fine-tuning pretrained
models, particularly prevalent in the field of Natural Language Processing (NLP). The core
idea of prompt learning is to design specific prompts that enable pretrained models to
better adapt to downstream tasks without requiring extensive modifications to the model’s
parameters or the training data.

Whether these models can be applied to different datasets and tasks, which is an
interesting issue [34]. For existing models, if there is a discrepancy between the distribution
of training and testing data, it may lead to inaccurate predictions in real world urban traffic
scenarios. Additionally, if the spatiotemporal features of different data distributions vary
significantly, directly applying the parameters learned from dataset A to dataset B may
result in performance discrepancies. Therefore, it is necessary to effectively adjust the
traffic flow prediction model to handle such distribution changes, thereby improving its
generalization capability.

The main contributions of this work are as follows: (1) We propose a novel traffic flow
prediction model that incorporates prompt learning into Graph Convolutional Networks
(GCNs) to enhance the model’s generalization capability; (2) Based on prompt learning, we
design a traffic flow prediction prompt network (TPPN) to extract spatiotemporal features
from traffic flow data and generate soft prompts, which are used to adapt the model to
specific tasks, thereby enhancing its adaptive capability.

2. Materials and Methods
2.1. Problem Description and Definition

Traffic flow prediction is a critical component of modern transportation management
systems, playing a pivotal role in optimizing traffic operations, enhancing road safety, and
reducing congestion. Accurate predictions enable traffic authorities to make informed
decisions, such as dynamically adjusting traffic signals, rerouting vehicles, and planning
infrastructure improvements. Moreover, efficient traffic management can lead to reduced
travel times, lower fuel consumption, and decreased environmental impact. Therefore,
developing robust and reliable traffic flow prediction models is of paramount importance
for improving urban mobility and quality of life.

A traffic road network is a typical non-Euclidean topological structure that can be
represented in the form of an undirected graph G(V,E,A). Here, V represents the nodes
on the graph, with the number of nodes |V| = N; E represents the edges connecting two
nodes; and A ∈ RN×N is the adjacency matrix of the graph, storing the weights of the edges.
Traffic flow prediction involves predicting traffic flow sequences for future time periods
given a traffic road network graph G and historical traffic flow sequences over T time
periods. This prediction is based on a mapping relationship, as described by Equation (1).

Xt+1, · · ·Xt+T = f(Xt−n · · · , Xt−1, Xt) (1)

where X is a three-dimensional vector which is used encode spatiotemporal information,
XϵRR×T×F. In this representation, R denotes the number of regions, T represents the time
intervals, and F indicates the number of features. Each tensor XR,T,F corresponds to the
value of the F-th feature at the R-th node and the T-th time interval. For example, in the
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context of traffic flow prediction, the vector X represents traffic flow data quantified as the
number of vehicles passing through a specific region within fixed time intervals (e.g., every
5 min).

2.2. Experimental Setup and Datasets

The experiments were conducted using a network architecture built on the PyTorch
framework and executed on an NVIDIA (CA, USA) GeForce RTX 4090. The dataset was
split into training, validation, and testing sets at a ratio of 6:2:2. During training, the mean
squared error (MSE) function was used as the loss function, and the Adam optimizer
was used to update the parameters. To evaluate the model’s performance in traffic flow
prediction, we used three widely adopted evaluation metrics: Mean Absolute Error (MAE),
Root Mean Squared Error (RMSE), and Mean Absolute Percentage Error (MAPE). These
metrics quantify the differences between the predicted data and the ground truth data.
Lower values for these metrics indicate better performance.

To assess the model’s generalization capability across different urban spatiotemporal
contexts, the experimental setup was as follows: (1) In the pre-training phase, we use
four datasets—PEMS03, PEMS04, PEMS07M [35], and the Chengdu Didi dataset (shown
in Figure 1)—as our training set. The PEM datasets consist of records detailing traffic
flow conditions across different streets and cities in California, USA. The Chengdu Didi
dataset records the traffic flow index of the road network in Chengdu. (2) In the subsequent
fine-tuning phase, we focus on the Chengdu Didi dataset to fine-tune and evaluate our
framework. These datasets represent traffic speeds in Los Angeles, traffic flows in California,
and traffic flows in Chengdu, respectively. Each target dataset was split into training,
validation, and testing sets at a ratio of 6:2:2. The data collection frequency was 5 min.
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• PEMS03 contains 26,208 data points collected by 358 loop detectors.
• PEMS04 contains 16,992 data points collected by 307 loop detectors.
• PEMS07 contains 26,208 data points collected by 883 loop detectors.
• PEMS08 contains 17,856 data points collected by 170 loop detectors.
• The Chengdu Didi dataset contains 17,280 data points collected by 524 loop detectors.

2.3. Structure of the Prediction Model

The overall structure of the prediction model is shown in Figure 2. The model is
divided into two main parts: the pre-training stage and the prediction stage. During the
pre-training stage, data is processed and fed into the model. Through the prompt network
module, historical data and various embeddings are fused to obtain the prompts required
for pre-training. Based on these prompts and using prompt learning methods, the model
parameters are continuously adjusted until the optimal pre-trained model is achieved.
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The data processing in the prediction stage is identical to that of the pre-training
stage. After passing through the prompt network, the generated prompts are used to
train the model, and the results of this training are propagated forward to obtain the
predicted outcomes.

2.4. Prompt Learning

Prompt Learning is an emerging machine learning paradigm, particularly suited for
the field of Natural Language Processing (NLP). It guides pre-trained models to better
adapt to downstream tasks by adding specific prompts to the input data. Prompt learning
avoids the gap between pre-training and fine-tuning by adding templates to introduce
additional. In this way, language models can achieve ideal results in few-shot or zero-shot
scenarios. Traditional fine-tuning methods typically require updating a large number of
model parameters, which can lead to the model forgetting the knowledge learned during
the pre-training phase (a phenomenon known as “catastrophic forgetting”). In contrast,
prompt learning guides the model to better adapt to new tasks by adding specific prompts
to the input data, without modifying the model’s parameters. This approach not only
reduces the reliance on large-scale labeled data but also retains the general knowledge
acquired during pre-training. To enhance the model’s adaptability to downstream tasks
after pre-training, this paper uses soft prompts. Soft prompts are composed of a set
of learnable continuous vectors that are continuously optimized during training. This
approach provides greater flexibility and adaptability, allowing the model to better capture
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the nuanced differences of various tasks. By refining these soft prompts, the model can
more effectively adapt to new and diverse downstream tasks while retaining the knowledge
gained during pre-training.

2.5. Traffic Flow Prediction Prompt Network

The prompt network is a critical component of a traffic flow prediction model that
combines Graph Convolutional Networks (GCN), Multi-Layer Perceptrons (MLP), and
Prompt Learning. This module is essentially the specific implementation of Prompt Learn-
ing for the task of traffic flow prediction. This module integrates time series data, temporal
information (such as hour of the day and day of the week), and spatial information (such
as graph Laplacian positional encoding) by embedding them into low-dimensional spaces.
These embedded features are then concatenated to form a comprehensive hidden state
hidden. The module uses Graph Convolutional Network (GCN) layers to capture spatial
dependencies in the traffic network and two Multi-Layer Perceptron (MLP) encoders to
perform non-linear transformations on the GCN output, enhancing the feature representa-
tion. Finally, the processed hidden state is combined with the original input data’s base
features to generate a prompt “Prompt”. The prompt is then L2-normalized to ensure that
the norm of each time step’s feature vector is 1. The prompt network structure is shown in
Figure 3.

This module consists of two main parts: (1) Node embedding, time embedding,
and time series embedding. Capturing time and space-related context from the dataset,
enabling the model to learn from specific contexts within the data, thereby facilitating
effective adaptation to a variety of spatiotemporal scenarios. (2) Temporal dependency
encoder and spatial dependency encoder building.

To initialize the representation of spatiotemporal data, we use a projection layer
with two steps: normalization using a Z-Score function and enhancement through a
linear transformation. ∼

X = Z(X) =
X − µ

σ
(2)

where µ and σ represent the mean and standard deviation of the original spatiotemporal
matrix XϵR.

Time embedding. To capture the dynamic and periodic temporal patterns from
different traffic flow data, this study utilizes multi-resolution temporal features, specifically
the hour of the day and the day of the week. Given time step index tdϵ{0, 1 . . . , 288} and
twϵ{0, 1 . . . , 7} the embedding for time in day and time in a week can be calculated using
the following formula:

Etd = Embedding(td, Wd), Etw = Embedding(tw, W) (3)

Et = Concat(Etw, Etd) (4)

where td is an integer tensor that represents the time step index for each sample, with a range
of [0, 288] (assuming a time step of 5 min, resulting in 24 × 60/5 = 28,824 × 60/5 = 288
time steps in a day); tw is an integer tensor that represents the day of the week for each
sample, with a range of [0, 6] (0 corresponds to Monday and 6 corresponds to Sunday);
Wd is the weight matrix of the embedding layer, which maps the time step index to a
low-dimensional vector space; Et is the Time embedding.

Time series embedding. The time series embedding can be calculated using the
following formula:

Ets = Linear(X, Wts, b) (5)

where Wts is the weight matrix of the linear layer and b is the bias term of the linear layer.
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Node embedding. To enhance the context information related to spatial attributes, we
incorporate the road network structure as encoding features that reflect spatial context. This
process begins with the formulation of a normalized Laplacian matrix, defined as follows:

L = I − D−1/2AD−1/2 (6)

where I, D and A denote the identity matrix, degree matrix, and adjacency matrix, respec-
tively; L represents the Laplacian matrix. The adjacency matrix is computed based on
the distances between nodes. Given the input Laplacian positional encoding L. The node
embedding can be calculated using the following formula:

Enode = Linear2(ReLu(Linear1(L))) (7)

where L is the input Laplacian positional encoding matrix, representing the position of each
node in the graph; Linear1() is the first linear layer, and Linear2() is the second linear layer.
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Subsequently, these features are concatenated via Concat to obtain the initial spa-
tiotemporal embeddings.

∼
E = Concat[Ets, Enode, Et] (8)

where
∼
E represents the integrated embedding, where we combine the time embedding Et,

the temporal context embedding Ets, and the node embedding Enode.
GCN is used to capture spatial correlations between nodes. Spatial Dependency

Encoder: Inspired by the use of graph neural networks in capturing spatial correlations
between geographic locations, we utilize message passing based on graph convolutions to
encode spatial correlations. The adjacency matrix A, defined in the equation, serves as the
connectivity matrix within the graph network framework. The formal process of spatial
encoding is as follows:

hgcn = ReLU(A × Conv2D(h)) + h (9)

where hgcn is the output feature matrix after applying the GCN layer; A is the normalized
adjacency matrix; h is a tensor that contains the hidden state after concatenating the time
series embedding, spatial embedding, and temporal embedding. Additionally, this paper
adopts a residual network to mitigate potential over-smoothing effects caused by multiple
layers of GCN.

Temporal Dependency Encoder. To capture the dependencies between different time
slots and retain the patterns of temporal changes in the data, we introduce an MLP encoder.
The formal operation of this mechanism is as follows:

hm = Conv2D(Dropout(ReLU(Conv2D(hinput)))) (10)

where hm is the output after the MLP transformation, and it has the same shape as hinput;
Conv2D is a convolution operation used to perform linear transformations; and Dropout is
a regularization technique used to prevent overfitting.

h1 = hm(hgcn(h)), prompt = Normalize(hm(hgcn(h1))) (11)

where Normalize() represents the normalization of L2. By applying two GCN layers and
two MLP layers to generate the prompt, the model can abstract more complex features at
different levels. The residual connections help maintain information flow and alleviate
the vanishing gradient problem. This design enables Prompt Network to better handle
complex spatiotemporal data, capturing multi-scale spatial relationships between nodes
and temporal dynamics.

3. Results
3.1. Experimental Results

To evaluate the effectiveness of our model, we select five advanced spatiotemporal
prediction models as baseline models. These include RNN-based models, attention-based
models, and spatiotemporal prediction methods based on GNN.

• AGCRN [36]: This method combines RNN with learnable node embeddings to capture
personalized spatiotemporal patterns of regions.

• MTGNN [37]: This method uses temporal convolutional networks combined with skip
connections to capture temporal dependencies and uses a learnable graph network to
model spatial correlations.

• STWA [38]: This approach extends the standard attention mechanism by incorporating
specialized node features and temporal dynamic parameters.
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• STGCN [39]: This method encodes temporal dependencies using gated convolutional
networks and captures local spatial relationships using GCNs.

• TGCN [40]: This model utilizes a combination of RNN and GCN to model temporal
dependencies and spatial correlations, respectively.

The experimental results are shown in Table 1 and Figure 4, presenting the prediction
error metrics for each baseline model and the proposed model on the PEMS03, PEMS04,
PEMS07M, and Chengdu Didi datasets.

Table 1. Prediction Error Metrics for Baseline Models and our Model on Various Datasets.

Method
PEMS03 PEMS04 PEMS07M Chengdu Didi

MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

MTGNN 15.52 26.67 18.12% 19.12 31.09 12.97% 2.63 5.32 6.58 2.33 3.55 10.62%
AGCRN 16.55 27.1 17.51% 20.8 32.64 14.25% 2.87 5.69 7.27% 2.63 3.98 12.2%
STWA 16.76 26.3 17.57% 19.15 30.63 12.88% 2.75 5.57 6.92% 2.36 3.57 10.74%

STGCN 18.63 30.59 20.56% 20.8 33.04 13.98% 3.17 6.39 8.32% 2.54 3.88 11.8%
TGCN 17.95 28.19 18.32% 22.56 35.62 16.35% 5.05 8.56 13.68% 3.14 4.56 14.3%
Ours 15.42 26.5 17.09% 18.95 29.99 12.73% 2.62 5.27 6.60% 2.33 3.56 10.73

The x-axis represents the time steps, and the y-axis represents the traffic flow. From the
results, it is evident that our model achieves the best performance metrics across all datasets.
On the temporal dimension, the model can effectively predict long-term cyclical trends and
short-term sudden changes in traffic flow. During periods of sharp increases or decreases
in traffic flow across different sensors, the model consistently predicts the onset of abrupt
changes and their states. The model proposed in this paper significantly outperforms the
AGCRN, STWA, STGCN, and TGCN models on the PEMS03, PEMS04, PEMS07M, and
Chengdu Didi datasets. Specifically, our model achieves better MAE (Mean Absolute Error)
scores on all four datasets compared with MTGNN, with improvements of 0.1, 0.17, and
0.05 respectively. Among them, TGCN shows the worst overall metrics, likely because
TGCN uses a combination of RNN and GCN to model temporal dependencies and spatial
correlations separately, without integrating the temporal and spatial relationships. The
prediction performance of AGCRN is limited by RNN, resulting in weaker performance
compared with most spatiotemporal graph convolution methods. The graph convolution
operations in STGCN typically only consider the direct neighbors of each node, which
makes it difficult to capture broader global spatial dependencies. For tasks that require
considering the mutual influence between distant nodes (e.g., long-distance traffic flow
propagation in a city), STGCN may miss important information. STWA uses wavelet
transforms to capture multi-scale features in time series data. However, wavelet transforms
rely on predefined wavelet basis functions (such as Haar, Daubechies, etc.), which are fixed
and cannot adaptively adjust to the characteristics of different datasets. If the temporal
patterns in the data do not match the selected wavelet basis functions, the model may
miss important features, leading to a decline in prediction performance. To enhance the
model’s generalization capability, we conducted pre-training on multiple city datasets. This
approach allows the model to share common traffic patterns across different cities while
retaining the unique characteristics of each city. By doing so, we not only improve the
model’s robustness but also reduce its reliance on large amounts of labeled data. During
the training process, we use data augmentation techniques and regularization methods
such as Dropout and L2 regularization to prevent overfitting. These techniques help the
model maintain good generalization performance when faced with new data, especially
when the distribution of test data differs from that of the training data. Because of the
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reasons mentioned above, our model demonstrates superior performance when faced with
diverse datasets.
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3.2. Ablation Study Results

To analyze the effectiveness of the various components of the model, we design four
variants for ablation experiments on the PEMS03, PEMS04, and PEMS08 datasets and ana-
lyze the results. All models have the same settings and parameters as the Baseline Model.

(1) “w/o TC” refers to removing temporal embeddings, and “w/o SC” refers to
removing spatial embeddings.

(2) ”w/o TE” refers to removing the temporal correlation encoder, and “w/o SE” refers
to removing the spatial correlation encoder.

The results of the ablation experiments are shown in Table 2 and Figure 5. It is clear that
our model performs significantly better than the other variants, proving the effectiveness
of each component in our model. As shown in Table 2 and Figure 4, removing the temporal
embeddings has the greatest impact on model performance. On the PEMS03 dataset, the
MAE increased from 2.62 to 2.98, which is a rise of 13.74%. This indicates that temporal
embeddings contribute the most to the model, possibly because the temporal embedding
module captures the characteristic increase in traffic flow during peak hours. In urban
areas, the traffic volume during morning and evening rush hours is much higher than
during other periods, making this feature generalizable across all traffic datasets.
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Table 2. Evaluation Metrics for the Baseline Model and Four Variants on the PEMS03, PEMS04,
PEMS07M, and Chengdu Didi Datasets.

Method
PEMS03 PEMS04 PEMS07M Chengdu Didi

MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

w/o TC 15.66 26.29 15.1% 19.74 31.44 13.52% 2.98 5.69 7.51% 2.47 3.75 11.45%
w/o SC 15.61 27.23 15.65% 18.77 30.15 12.95% 2.7 5.31 6.87% 2.37 3.6 10.9%
w/o TE 15.71 27.68 15.84% 18.62 30.46 12.74% 2.64 5.27 6.65% 2.36 3.59 10.76%
w/o SE 15.67 26.43 15.89% 18.54 30.19 12.54% 2.65 5.32 6.61% 2.35 3.59 10.79%

Ours 15.42 26.5 17.09% 18.95 29.99 12.73% 2.62 5.27 6.60% 2.33 3.56 10.73

The removal of the spatial correlation module shows significant differences on the
PEMS07M and Chengdu Didi datasets. On the Chengdu Didi dataset, the performance is
even better than our model, possibly due to the reduction in model complexity. However,
performance on the PEMS07M dataset is the worst, indicating that spatial correlation
encoding significantly enhances the model’s generalization capability and reduces the
impact of distribution shifts during training. These results demonstrate the necessity of
spatiotemporal embeddings and spatiotemporal correlation encodings, with temporal
embeddings contributing the most to the model’s performance.

3.3. Model Performance

To further verify the performance of our model, first, we use it to conduct an experi-
ment without early stopping for 100 epochs on the same dataset, PEMS07M. We compare
training loss and validation loss to demonstrate the model’s learning effect and whether
underfitting or overfitting occurred. The experimental results are shown in Figure 6.
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Secondly, we study the convergence speed of the model on the same dataset,
PEMS07M, and compare it with the MTGNN model. The results are shown in Figure 6.

From Figure 6, it can be observed that both the training loss and validation loss de-
crease during the first 20 epochs as the model was trained. However, after the initial
20 epochs, the training loss continues to decrease while the validation loss remains nearly
unchanged or even shows an upward trend. This indicates that the model learns effectively
during the first 20 epochs and reaches an optimal state around the 20th epoch, highlighting
the importance of implementing an early stopping mechanism. The validation loss being
lower than the training loss might be due to the use of Dropout and Z-Score normaliza-
tion, which can increase the training loss but does not apply regularization terms during
validation, potentially leading to lower validation loss

As shown in Figure 6, both our model and the MTGNN model converge rapidly,
but the MTGNN model stabilizes around a value of approximately 2.7, whereas our
model reaches a value of around 2.6, demonstrating significantly higher accuracy than the
MTGNN model.

4. Discussion
Distribution shift is a significant challenge in the field of machine learning, particularly

in deep learning, as it can lead to a marked decline in model performance and weakening
of generalization ability. When the distribution of training data differs from that of test data
or real-world application scenarios, models may fail to effectively adapt to new situations,
thereby affecting the accuracy and reliability of decision-making. To address this issue,
various strategies have been proposed in recent years, including but not limited to domain
adaptation, domain generalization, and data augmentation [41–44]. Domain adaptation
techniques improve model performance on target domains by leveraging the relationship
between source and target domains; domain generalization aims to enable models to
perform well on unseen domains; and data augmentation enhances model robustness by
transforming existing data to simulate different data distributions. This paper aims to
explore and propose an effective framework that combines the advantages of these methods
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to mitigate or eliminate the impact of distribution shift on the performance of deep learning
models, enhancing their applicability and stability in increasingly diverse and complex
real-world applications.

In this study, we focus on the temporal-spatial traffic flow prediction using prompt
learning. The traffic flow prediction model based on prompt learning builds upon graph
convolutional neural networks by incorporating prompt learning and a prompt network.
This approach addresses distribution shifts in some datasets and improves the accuracy
of traffic flow predictions. It also provides a scalable framework that aligns multi-source
spatiotemporal data, enabling its extension to other prediction domains in urban traffic.

Prompt learning introduces specific prompt vectors that enable the model to better
adapt to downstream tasks. Experimental results show that using soft prompts can sig-
nificantly enhance the performance of the model. The prompt vectors integrate historical
data and various embeddings (such as temporal sequence embeddings, spatial embed-
dings, and temporal embeddings) to guide the training of the model, thereby improving its
generalization capabilities across different datasets and tasks. Additionally, the use of the
infoNCE loss function further enhances the robustness and discriminative power of the
model, helping it learn more stable and effective feature representations.

Compared with existing traffic flow prediction models, our model demonstrates
higher accuracy and robustness across multiple datasets. Specifically, compared with
the MTGNN model, our model exhibits lower validation loss and faster convergence.
These results indicate that the introduction of prompt learning and the prompt network
significantly enhances model performance. Despite the significant achievements of this
study, there are still some limitations. First, the complexity of the model is relatively high,
and the training time is longer, which may limit its application in large-scale real-time
traffic flow prediction. Second, while prompt learning significantly improves the model’s
generalization ability, designing more effective prompt vectors remains an area worthy of
further research. Finally, the model’s performance in handling special conditions such as
extreme weather and unexpected events still needs further verification and improvement.

Moreover, this study has widely practical applications. The proposed model provides
significant theoretical and technical supports for improving traffic management systems
in both urban and highway settings. It facilitates dynamic adjustment of traffic signals
to optimize traffic flow, improves accident prevention and emergency response through
precise risk assessment, and alleviates congestion by providing real-time traffic guidance
and supporting infrastructure planning. For instance, in the event of a traffic accident, the
model can rapidly predict the extent and duration of the impact on surrounding traffic.
This capability enables emergency departments to devise optimal rescue routes and traffic
diversion plans, thereby shortening response times and minimizing the overall disruption
to traffic flow [45]. Moreover, the model promotes the integration and coordination of
connected and autonomous vehicles (CAVs), connected vehicles (CVs), and regular vehicles
(RVs), fostering smarter and safer multi-modal transportation. By integrating the car-
following model of connected autonomous vehicles (CAVs), it can also reduce energy
consumption and traffic emissions during car-following maneuvers, thereby making traffic
behavior more environmentally friendly and safer [46]. On highways, the short-term traffic
flow prediction model plays a crucial role in maintaining smooth and safe traffic conditions.
Our model can optimize ramp metering. By predicting traffic volumes at on-ramps and
off-ramps, the model can dynamically adjust ramp metering rates to prevent congestion
from spilling over into the main highway, ensuring a steady flow of traffic. The model
can quickly identify potential incidents, such as accidents or stalled vehicles, by detecting
abnormal traffic patterns, enhancing incident detection and response. This early detection
allows for faster deployment of emergency services and implementation of traffic control
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measures, reducing the likelihood of secondary accidents and minimizing delays. In urban
traffic management, traffic flow prediction enables intelligent transportation systems (ITS)
to dynamically adjust signal timings based on forecasted traffic volumes. This reduces
vehicle waiting times and improves road throughput efficiency. Additionally, by predicting
passenger demand and traffic flows, public transportation routes and schedules can be
optimized to ensure that public transit vehicles arrive at stops on time, thereby reducing
passenger wait times.

Overall, the robust adaptability and high predictive accuracy of the model render it
an invaluable tool for data-driven decision-making in traffic management, contributing to
more efficient, safe, and sustainable urban mobility solutions.

5. Conclusions
This paper introduces a spatiotemporal traffic flow prediction model based on prompt

learning, targeting the significant complexity and dynamics present in traffic flows, as
well as the notable differences in spatiotemporal distribution among datasets. The traffic
flow prediction model uses a prompt learning approach to generate an optimal pre-trained
model during the pre-training phase. By using a prompting network module to acquaint it-
self with the characteristics of the dataset, it aims to enhance the generalization ability of the
traffic flow prediction model across various forecasting scenarios. Extensive experiments
were carried out on the PEMS03, PEMS04, PEMS07M, and Chengdu Didi datasets. The
results indicate that the spatiotemporal traffic flow prediction model incorporating a spa-
tiotemporal prompt learning module exhibits superior predictive performance compared
to mainstream baseline models. The model demonstrates excellent learning performance,
good convergence speed, and iteration efficiency, thus saving training time and reducing
the impact of distribution shifts. It is capable of adapting to spatiotemporal traffic flow
data under diverse spatiotemporal contexts.

In summary, the proposed traffic flow prediction model has superior performance in
handling distribution shifts and adapting to varying spatiotemporal contexts. This model
can enhance urban traffic management by providing more accurate and reliable predictions,
leading to better traffic control and reduce congestion. Future work will focus on extending
the model to other cities with different traffic patterns and exploring its integration into
real-time traffic management systems.
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