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Abstract: The Geographic Knowledge Graph (GeoKG) serves as an effective method for
organizing geographic knowledge, playing a crucial role in facilitating semantic interoper-
ability across heterogeneous data sources. However, existing GeoKGs are limited by a lack
of hierarchical modeling and insufficient coverage of geographic knowledge (e.g., limited
entity types, inadequate attributes, and insufficient spatial relationships), which hinders
their effective use and representation of semantic content. This paper presents HGeoKG,
a hierarchical geographic knowledge graph that comprehensively models hierarchical
structures, attributes, and spatial relationships of multi-type geographic entities. Based on
the concept and construction methods of HGeoKG, this paper developed a dataset named
HGeoKG-MHT-670K. Statistical analysis reveals significant regional heterogeneity and
long-tail distribution patterns in HGeoKG-MHT-670K. Furthermore, extensive geographic
knowledge reasoning experiments on HGeoKG-MHT-670K show that most knowledge
graph embedding (KGE) models fail to achieve satisfactory performance. This suggests
the need to accommodate spatial heterogeneity across different regions and improve the
embedding quality of long-tail geographic entities. HGeoKG serves as both a reference for
GeoKG construction and a benchmark for geographic knowledge reasoning, driving the
development of geographical artificial intelligence (GeoAI).

Keywords: geographic knowledge graph; knowledge reasoning; hierarchical structure;
long-tail distribution; spatial heterogeneity

1. Introduction
The Knowledge Graph (KG), as a structured form of knowledge, plays a pivotal role

in enabling semantic interoperability across multi-source heterogeneous data [1,2], and
has demonstrated significant capabilities in various artificial intelligence applications [3–5].
In recent years, the geographic knowledge graph (GeoKG) has been proposed, which
organizes, links, and infers geospatial knowledge, and serves various geographical artificial
intelligence (GeoAI) applications, such as geographic spatiotemporal question answering
systems [6], economic indicator prediction [7], weather prediction [8], traffic forecast-
ing [9], human activity trajectory mining [10], point of interest (POI) recommendation [11],
geographic entity retrieval [12], and urban functional area detection [13].
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The previous GeoKGs can be categorized into three types based on the differences in
data sources used during the construction process. A detailed comparison of these GeoKGs
is provided in Table 1.

Table 1. Detailed comparison of GeoKGs.

GeoKG Data Source Ontology
Design

Entity
Spatial-Type
Coverage

Attributes Spatial
Relationships

Downstream
Applications

Data
Scale
(Million)

YAGO2 [14] Wikipedia,
GeoNames, WordNet YAGO2 Point

Common
attributes from
Wikipedia

/ / 447

Clinga [15] Chinese Baidu Baike,
DBpedia, GeoNames Clinga Point, Line,

Polygon

Common
attributes from
Baidu Baike

/ / 75

NCGKB [16] Chinese Wikipedia NCGKB
Polygon (Ad-
ministrative
regions)

Common
attributes from
Chinese
Wikipedia

Adjacent / 0.1

YAGO2Geo [17]

YAGO2, referenced
geospatial datasets
(GAG, GADM, parts
of OSM)

GAG Ontology Point, Line,
Polygon

Common
attributes from
Wikipedia

/ / 447

GeoKG [18] Baidu Baike, vector
spatial data GeoKG Point, Line,

Polygon
Spatial attributes,
Baike attributes Adjacent / 1

LinkedGeo-
Data [19]

OSM, DBpedia,
GeoNames LinkedGeoData Point, Line,

Polygon OSM attributes / / 300

CrowdGeoKG [20] OSM, Wikidata OSMonto [21] Point, Line OSM attributes,
Baike attributes / / 5

WorldKG [22] OSM, Wikidata,
DBpedia Ontology WorldKG Point

OSM attributes,
Baike category
attributes

/ Knowledge
graph query 100

GeoKG [23] Limited specialized
geographic texts GeoKG /

Geographic text
semantic
relations

/ Knowledge
graph query 0.1

GEKG [24] Limited specialized
geographic texts GEKG /

Geographic text
semantic
relations

/ Knowledge
graph query 0.1

AugKG [25] Limited specialized
geographic texts AugKG /

Geographic text
semantic
relations

/ Knowledge
graph query 0.1

HGeoKG (Ours)

OSM, referenced
geospatial data
(census tracts,
electoral districts, etc.)

HGeoKG Point, Line,
Polygon

OSM attributes,
category
attributes

Regional
hierarchical
relations, typed
adjacency,
intersection,
containment,
location

Knowledge
graph reasoning 0.67

(1) GeoKGs based on general encyclopedias: These GeoKGs obtain geographic items
from large-scale general-purpose internet encyclopedia data, such as YAGO [26], Wikid-
ata [27], and Freebase [28]. They are rich in attribute information and provide common
sense geographic knowledge. However, the geographic entities are sparsely distributed,
with a lack of spatial relations between entities. Additionally, the coverage of geographic
entity types and regions is limited, making it difficult to comprehensively represent geosp-
atial semantics.

(2) GeoKGs extracted from geographic texts: These GeoKGs focus on specialized
geographic concepts and the interactions between geographic features, such as GeoKG [23],
GEKG [24], and AugKG [25]. This type of GeoKG offers in-depth theoretical support and
covers semantic relationships found in geographic texts, making it useful for research and
applications in specific fields. However, due to limitations in data acquisition and coverage,
these GeoKGs tend to have a small number of items and limited coverage of entity types
and regions, making it challenging to meet broader geographic knowledge demands.

(3) GeoKGs based on OpenStreetMap (OSM): These GeoKGs rely on abundant open
geographic information resources, such as LinkedGeoData [19], CrowdGeoKG [20], and
WorldKG [22], which cover a wide range of geographic entities and attribute information.
They excel in terms of geographic entity coverage and the richness of attribute information,
yet they still fall short in terms of relationships between geographic entities and the repre-
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sentation of spatial semantics, lacking the comprehensive modeling of spatial relationships
and hierarchical structures.

Overall, existing GeoKGs, to varying extents, cover certain aspects of geospatial
semantic information, and each type of GeoKG has its strengths in representing geographic
knowledge. However, these models still suffer from limited geographic entity coverage,
insufficient attribute information, and a lack of spatial relationships. As a result, they fail to
comprehensively model key geographic semantics, hindering the effective utilization and
representation of the rich semantics and prominent patterns in geographic knowledge.

This paper proposes a hierarchical GeoKG (HGeoKG) that encompasses most types of
geographic entities and relationships with rich attribute information. HGeoKG can be used
to evaluate and advance geographic knowledge embedding techniques, and thus more
effectively supports downstream GeoAI applications.

The contributions of this study are as follows:
1. This paper proposes the concept of HGeoKG, the first geographic knowledge graph

that integrates rich attributes, spatial relationships, and regional hierarchical semantics,
thereby providing a comprehensive representation of geographic knowledge.

2. This paper proposed a method for constructing HGeoKG and presented the dataset
named HGeoKG-MHT-670K. Through statistical analysis of this dataset, we revealed
significant regional heterogeneity and long-tail distribution patterns, providing valuable
insights into the intrinsic structure and distribution characteristics of GeoKGs.

3. This paper conducted extensive knowledge graph reasoning experiments on
HGeoKG-MHT-670K. The experimental results indicate that the regional heterogeneity of
the dataset poses challenges for Knowledge Graph Embedding (KGE) models to achieve
consistent performance across all regions, highlighting the necessity for differentiated
modeling strategies tailored to regional differences. Additionally, the geographic long-tail
distribution pattern leads to a decline in embedding quality when handling low-popularity
entities, underscoring the urgent need to enhance model capabilities in managing such data.
This study provides strong empirical support for the further optimization and application
of GeoKGs.

2. Related Work
In this study, a new classification framework for GeoKGs is presented, based on the

geographic data sources they use: GeoKGs based on internet encyclopedias, GeoKGs
extracted from geographic texts, and GeoKGs based on OSM.

2.1. Internet Encyclopedias-Based GeoKGs

With the development of large-scale general-purpose internet encyclopedic data,
some studies have highlighted the rich geographic semantic information embedded in
general encyclopedic data, such as geographic entities and spatial location information.
These GeoKGs are derived from subsets of large general knowledge bases, including
YAGO [26], Wikidata [27], and Freebase [28], which contain geographic knowledge. For
the representation of geospatial data, DBpedia [29] offers latitude and longitude values
for various geographic entities. YAGO2 [14], Clinga [15], and NCGKB [16] are knowledge
bases with human geography knowledge derived from Wikipedia, Baidu Baike, and Chi-
nese Wikipedia, respectively. Additionally, GeoKG [18] incorporates vector geographic
datasets into Baidu Baike, adding precise coordinates and spatial relationships to the gen-
eral GeoKG. YAGO2geo [17], based on YAGO2 and reference geospatial datasets such as
Greek administrative geography (GAG), the global administrative areas database (GADM),
and OSM, focuses primarily on administrative regions and reuses existing ontologies from
the GAG dataset, leading to limited coverage of geographic entity types.
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2.2. Geographic Text-Based GeoKGs

Geographic semantic information in geographic knowledge is complex and diverse.
Specialized geographic texts encompass detailed semantic information regarding the inter-
actions between geographic entities. Some studies, leveraging these semantic characteris-
tics, have designed conceptual models of GeoKGs that theoretically represent geographic
knowledge more effectively. Among these, GeoKG [23] is a formalized representation of
geographic knowledge, extending Attribute Language with Complements (ALC) descrip-
tion logic. It focuses on spatiotemporal knowledge, using entity states to represent changes
in each geographic object. Zheng proposed a Geographic Evolution Knowledge Graph
(GEKG), which is based on spatiotemporal processes and establishes a hierarchical cube
model structure [24]. AugGKG [25], an augmented GeoKG, utilizes the GeoSOT global
subdivision grid model and time-slice subgraph architecture to discretize and normalize
spatiotemporal data within the knowledge graph. These models, through case studies
based on knowledge graph queries, have demonstrated their capability to represent the
spatiotemporal characteristics of geographic knowledge.

2.3. OpenStreetMap-Based GeoKGs

OSM is a rich source of open geographic information, encompassing a vast array of
geographic entities. The representation of these entities (e.g., buildings, mountains, rivers)
is characterized by high heterogeneity, diversity, and incompleteness. With the growth of
large-scale open crowdsourced geographic data like OSM, some research has focused on
utilizing the geographic information from OSM to construct GeoKGs.

Early studies developed ontologies suited to the structure of OSM data: OSM-
Onto [21] describes an ontology for OSM tags (e.g., (building, yes)), representing a class
hierarchy extracted from OSM keys and values. OSM Semantic Network [30] contains RDF
triples extracted from OSM tags available on the OSM Wiki website. Although OSMOnto
and the OSM Semantic Network extracted a significant number of concepts, they did not
include any geographic entity instances. Subsequently, LinkedGeoData [19] converted
OSM data into an RDF knowledge graph. This is based on a formal ontology created using
OSM tags and keys, offering simplified mappings between OSM data and classes and
attributes from other data sources. CrowdGeoKG [20] extracted different types of entities
from OSM and enriched them with human geographic knowledge from Wikidata. WORL-
DKG [22], by analyzing a large set of heterogeneous OSM data tags, distilled a class hierar-
chy of OSM elements. After a degree of manual filtering, geographic entities in OSM were
classified into a top-down hierarchical structure, covering various geographic categories
and linking geographic entities to specific classes in Wikidata and the DBpedia ontology.
However, WORLDKG mainly utilizes point-type entities from OSM and their attributes
to construct GeoKGs, lacking coverage of other geographic entity types such as line and
polygon entities.

In summary, the existing GeoKG has limitations in several key areas. First, GeoKG
based on internet encyclopedias has deficiencies in geographic entity types and spatial
coverage, typically including only common attributes and lacking in-depth descriptions
of geographically specific attributes. Second, the conceptual model of GeoKG extracted
from geographic texts requires high precision and a breadth of geographic data, which
is often dispersed across specialized texts in the geographic domain. These texts contain
fewer items, and the extraction of entities and relationships is difficult, greatly limiting
its scalability and applicability. Furthermore, some knowledge graphs have incomplete
coverage of spatial types, typically supporting only one or two spatial types, such as
points, lines, or polygons. Additionally, most knowledge graphs do not explicitly model
spatial relationships, with only a few providing basic adjacency relations and lacking
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support for complex spatial relationships, such as inclusion or intersection. Finally, many
GeoKGs fail to effectively model hierarchical relationships between geographic entities
(e.g., the hierarchical structure of administrative divisions), which limits their performance
in applications requiring hierarchical reasoning.

3. HGeoKG
This section introduces the schema design and data construction methods of HGeoKG.

First, Section 3.1 provides an overview of HGeoKG. Then, Section 3.2 discusses the
ontology schema, regional hierarchical structure, and multi-granular relationships in
HGeoKG. Finally, Section 3.3 details the specific construction process of HGeoKG’s
data layer.

3.1. Overview

Figure 1 presents the overall framework of HGeoKG, comprising two core layers:
Schema and Data, organized according to the workflow from data to knowledge graph
construction. The Schema layer consists of three components: ontology design, spatial rela-
tionship hierarchical structure design, and regional hierarchical structure design. This layer
defines the overall structure and organizational rules of the geographic knowledge graph,
providing theoretical guidance and framework support for subsequent data processing.
The Data layer illustrates the specific construction process of the geographic knowledge
graph, with data sources including administrative boundary data, OSM polygon data,
OSM line data, and OSM point data. Data processing is primarily divided into three
steps: first, the extraction of geographic entities and attributes; second, the extraction of
spatial relationships; and finally, the extraction of regional layering and partitioning. This
series of steps ultimately achieves the data generation and construction of the geographic
knowledge graph.

Figure 1. Overview of HGeoKG.

3.2. Schema Layer

This subsection conceptualizes and implements the schema layer to integrate geo-
graphic knowledge.
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3.2.1. HGeoKG Ontology

The ontology of HGeoKG, as shown in Figure 2, illustrates the attribute information
of geographic entities and their spatial relationships. In our ontology design, the attributes
of geographic entities are categorized into two types: general attributes and heterogeneous
attributes. General attributes include the spatial types of geographic entities and the
common sense categories. The definitions of geographic entity categories in Table 2 are
based on the official OSM documentation (https://download.geofabrik.de/osm-data-
in-gis-formats-free.pdf (accessed on 1 January 2024)). Specifically, “Point”, “Line”, and
“Polygon” represent point, line, and polygon geometric shapes, respectively. The subclasses
within each category (such as roads, railways, buildings, etc.) are directly derived from
the OSM classification system to ensure their broad applicability. Heterogeneous attributes
provide unique descriptive features for each geographic entity, which are not shared by
all entities. The types of spatial relationships in Table 3 are derived from the topological
spatial relationship model known as the Dimensionally Extended 9-Intersection Model
(DE-9IM) (http://docs.geotools.org/latest/userguide/library/jts/dim9.html (accessed on
1 January 2024)). The spatial relationships between geographic entities describe the spatial
semantic connections between them. This ontology design enables HGeoKG to represent
geographic knowledge with greater accuracy and comprehensiveness.

Figure 2. The HGeoKG ontology.

Table 2. Categories of geographic entities.

Point Line Polygon

places, pois, pofw, natural,
traffic, transport roads, railways, waterways buildings, landuse, water

Table 3. Types of spatial relationships

Spatial Relationship Point Line Polygon

Point Adjacent Adjacent Contains, Contained by, Adjacent

Line / Adjacent,
Intersects

Contains, Contained by, Adjacent,
Intersects

Polygon / / Contains, Contained by, Adjacent

3.2.2. Spatial Relationship Hierarchical Structure

Considering the spatial relationships based on entity types enables the more effective
modeling of potential human, commercial, and economic semantic connections between
geographic entities, which are not easily revealed by distance-based spatial relationships
alone. In this study, we explicitly model these latent semantics, with spatial relationships
serving as the bridge that carries these hidden meanings. A straightforward example illus-
trates this: typically, stationery stores are located near primary and secondary schools. The

https://download.geofabrik.de/osm-data-in-gis-formats-free.pdf
https://download.geofabrik.de/osm-data-in-gis-formats-free.pdf
http://docs.geotools.org/latest/userguide/library/jts/dim9.html
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spatial relationship of “school-adjacent-stationery store” not only uncovers the commercial
connection between schools and stationery stores but also, through the explicit modeling of
this relationship, allows for the more effective use of the semantic information inherent in
the geographic entities themselves. These type-based spatial relationships can be viewed as
prior semantic rules extracted from the data, revealing semantic content that pure distance-
based spatial relationships cannot express. This modeling approach plays a crucial role in
achieving a comprehensive semantic representation of geographic knowledge.

The general spatial relationship types, as shown in Table 3, simply reflect the spatial
semantics between geographic entities. In this study, the spatial types of geographic entities
(point, line, polygon) and their common sense types, as shown in Table 2, are integrated
into the representation of spatial relationships. This has led to an extension of these relation-
ships at different levels of granularity, and the construction of a hierarchical structure, as
shown in Figure 3. As shown in Figure 3a, the coarse-grained spatial relationships integrate
the spatial type semantics of two geographic entities. Correspondingly, as illustrated in
Figure 3b, the fine-grained spatial relationships incorporate the common sense type seman-
tics of the same entities. This explicit modeling approach of hierarchical spatial relation-
ships, which combines entity types of different granularities, enables a more specific and
accurate expression of spatial semantics in geographic knowledge.

(a) (b)

Figure 3. Hierarchical structure of spatial relationships. (a) Coarse-grained spatial relationship;
(b) fine-grained spatial relationship.

We incorporated geographic entity type information into the spatial relationship mod-
eling. Based on the richness of the entity type information, spatial relationships were
categorized into different granular hierarchical structures. In the subsequent experiments
detailed in Section 4.3.5, we evaluated the impact of spatial relationships at various hi-
erarchical levels on geographic knowledge embedding learning, further validating the
expressive capability of the knowledge graph.

3.2.3. Regional Hierarchical Structure

Spatial heterogeneity reflects the variation and diversity of geographic phenomena,
exhibiting inherently uncontrollable spatial patterns. To promote the study of geographic
knowledge heterogeneity across regions, this paper proposes a hierarchical regional struc-
ture based on real-world administrative division data, as illustrated in Figure 4. HGeoKG
first partitions OSM data into larger regions using coarse-grained administrative division
data and subsequently further subdivides these large regions with finer-grained adminis-
trative division data, thereby forming a more detailed regional hierarchy. This hierarchical
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regional structure not only reveals spatial heterogeneity within each level and the inter-
actions between coarse- and fine-grained regions but also enables HGeoKG to accurately
analyze geographic entities and their relationships within each region. This facilitates more
refined modeling, thereby comprehensively enhancing the accuracy and granularity of
geographic knowledge representation.

Figure 4. Hierarchical structure of regions.

In existing GeoKGs, geographic entities are typically assigned discrete spatial loca-
tions, usually represented by a single latitude and longitude coordinate. However, the
regional distribution of geographic entities and the spatial heterogeneity between regions
are crucial for their semantic representation across different areas. Current GeoKGs have
not sufficiently accounted for the influence of these factors on the comprehensive semantic
representation of geographic entities. The set of geographic entities within a specific region
reflects the region’s human, economic, ecological, and transportation conditions, and the
distributional differences of these factors between regions are of significant importance
for cross-regional studies. Therefore, incorporating regional distribution constraints and
prior knowledge into GeoKGs, as well as constructing benchmark datasets for spatial
heterogeneity research, is essential for exploring the homogeneous and heterogeneous
patterns and rules across different regions.

HGeoKG constructs a regional hierarchical structure based on real administrative
divisions. This hierarchical structure effectively captures spatial heterogeneity through
multi-level regional representations. For example, fine-grained regions at various levels are
used to characterize the local features of geographic spaces, while coarse-grained regions
reflect global characteristics. This approach provides a more comprehensive depiction of
spatial heterogeneity and distribution differences.

3.2.4. Meta-Analysis and Geographic Entity Examples

For each entity, we use the unique id of the original OSM element as its name and
use the tags from the OSM element as the entity’s attributes. Geographic entities are
connected through spatial relationships. Figure 5a provides an example of a resource
description framework (RDF) triple file in Turtle format for a GeoKG. This example includes
information about the geometric spatial type of the entity, its common sense type, and
various heterogeneous attributes such as name tags, business hours, and more. In addition
to the attributes of the geographic entities themselves, the example also includes spatial
semantic relationships between entities, such as adjacency and intersection. Figure 5b also
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shows a visualization of the GeoKG, intuitively displaying the attributes of geographic
entities and the spatial relationships between them.

(a) (b)

Figure 5. An example of HGeoKG. (a) is an example of an RDF triple in turtle format, and (b) is
a partial visualization of the GeoKG. Blue nodes represent geographic entities, green nodes rep-
resent attribute values, blue edges represent spatial relationships, and green edges represent at-
tribute relationships.

3.3. Data Layer

This subsection presents the data layer of HGeoKG for extracting, processing, and
integrating geographic entities, attributes, spatial relationships from OSM data, and
constructing the regional hierarchical structure based on reference spatial region data.
Figure 6 illustrates the complete process of building the hierarchical GeoKG from OSM
data. First, Section 3.3.1 describes the extraction of attribute information for geographic
entities. Then, in Section 3.3.2, GIS tools are used to compute the regional hierarchical
divisions of geographic entities and their spatial relationships within the regions. Finally,
Section 3.3.3 details the integration of geographic entities’ attribute information and spatial
relationships to construct the complete GeoKG, alongside data storage and visualizat-
ion examples.

Figure 6. HGeoKG construction process.

3.3.1. Entity and Attribute Extraction

This subsection focuses on extracting attribute information for geographic entities
from OSM data. First, specific geographic regions are identified, and the OSM data for
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these regions, including protocolbuffer binary format (PBF) and shapefile (SHP) format
files, are downloaded. PBF files contain the complete attribute information for each geo-
graphic entity, while SHP files primarily provide the spatial types and spatial information
of geographic entities. Osmium is an efficient library specifically designed for processing
OSM data, particularly adept at handling large-scale datasets. By utilizing the Osmium
library, attribute information for geographic entities is extracted from PBF files. This ex-
traction results in triples formatted as (geographic entity, attribute, attribute value), with
attribute names converted to camel case. Inferring the line and polygon types of geographic
entities from latitude and longitude information in raw PBF data poses significant chal-
lenges. Consequently, GIS tools are employed to extract spatial-type information from
SHP files, resulting in spatial-type triples formatted as geographic entity, spatial type, and
point/line/polygon. It is essential that the extracted geographic entities contain at least
one attribute; those with only latitude and longitude and lacking additional attributes will
be filtered out. The triples extracted in this subsection represent only the relationships
between geographic entities and attribute entities, without establishing direct connections
among geographic entities.

3.3.2. Spatial Relationship Extraction

After the extraction of entities and attributes, the KG still lacks spatial relationships
between geographic entities. This subsection introduces the data-processing methods for
extracting spatial relationships between geographic entities. Utilizing the neighborhood
analysis and spatial join functions of GIS tools, spatial relationships among geographic
entities within the same region are extracted, resulting in triples formatted as geographic
entity, spatial relationship, and geographic entity. Table 3 presents the spatial relationships
between point, line, and polygon geographic entities, including relationships such as
containment, adjacency, and intersection. Based on the spatial relationships designed in
Section 3.2.2, this study explicitly enhances the common sense semantic information of
spatial relationships by incorporating geographic entities at different hierarchical levels. In
the following Section 4.3.5, we will discuss, through experiments, the impact of explicitly
integrating entity type information of varying granularity into spatial relationships.

3.3.3. Regional Hierarchical Division and Extraction

As illustrated in Figure 6, this study employs the Clip operation within GIS tools to
partition geographic entities from OSM data into administrative regions of varying hierar-
chical levels, thereby obtaining collections of geographic entities within coarse-grained or
fine-grained regions at each level. Specifically, we first utilize coarse-grained administrative
region data to perform an initial division of the OSM data, generating several coarse-
grained regions. Subsequently, based on fine-grained administrative division data, we
further subdivide the OSM data within these coarse-grained regions to form fine-grained
regions. As shown in Figure 4, the regional hierarchy progresses from coarse to fine,
with each coarse-grained region encompassing multiple fine-grained regions, and as the
granularity increases, the number of fine-grained regions progressively increases. This
multi-level regional partitioning method effectively reflects differences in data distribution
and other aspects across regions.

Through this approach, HGeoKG is capable of effectively managing geographic entities
within administrative regions of varying hierarchical levels and facilitates the computation
of spatial relationships between entities within each region. Compared to other GeoKG
methods that typically employ a unified global hierarchical structure or simple planar
models, HGeoKG excels in capturing the spatial structures and regional differences at each
hierarchical level. GeoKG methods that lack an effective modeling of regional hierarchical
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structures fail to adequately differentiate the details of various hierarchical regions and do
not fully consider regional differences, which can lead to insufficient spatial semantic repre-
sentation. By implementing multi-level regional divisions, HGeoKG not only meticulously
reflects the characteristics of each hierarchical region but also comprehensively enhances
the accuracy and granularity of geographic knowledge representation.

Furthermore, the dataset files of HGeoKG are stored separately for each hierarchical
level of the regions, with each region’s data organized into individual files. This file
structure allows the knowledge of each region to be used and studied independently, further
enhancing the flexibility and operability of HGeoKG in geographic knowledge processing.

Moreover, for geographic entities that span multiple regions (such as streets crossing
multiple Census Tracts), our approach is to retain information about the entity in each
relevant regional dataset. This method ensures that each regional dataset fully reflects
the entities it contains. For cross-regional spatial relationships (such as linear spatial
relationships connecting different regions), we choose to store them separately rather than
directly integrating them into the regional datasets. These cross-regional relationships have
been organized into independent data files and are included with the project files.

3.4. Generalizability and Scalability of HGeoKG

This subsection discusses the generalizability and scalability of HGeoKG. Firstly,
regarding generalizability, HGeoKG is constructed using multi-source heterogeneous ge-
ographic data, including OSM point, line, and polygon data, as well as administrative
boundary data. This enables it to cater to the geographic knowledge representation needs
of different regions. Our hierarchical structure design, which includes spatial relationship
hierarchy and regional hierarchy, is not only applicable to the data of the current experi-
mental area, but also provides a transferable modeling framework for other geographic
regions. Additionally, the construction process and methods of HGeoKG can be applied to
various types of geographic datasets, demonstrating good generalizability.

Secondly, in terms of scalability, HGeoKG adopts a modular design, separating the
Schema layer from the Data layer. This design ensures the convenient incorporation of
new data and new relationships. Specifically, the Data layer can be dynamically expanded
based on different regions or larger-scale data sources, while the ontology structure and
hierarchical design of the Schema layer can be reused, supporting efficient knowledge
updates and expansions.

4. Case Study: HGeoKG-MHT-670K
This section provides a comprehensive case analysis of the HGeoKG-MHT-670K

through statistical and experimental methods. Section 4.1 introduces the data sources and
spatiotemporal distribution of the dataset. Section 4.2 conducts statistical analysis to reveal
the regional heterogeneity and long-tail distribution patterns within HGeoKG. Section 4.3
performs knowledge reasoning experiments to demonstrate how the data characteristics of
HGeoKG impact the quality of knowledge graph embeddings and present challenges to
existing knowledge reasoning models.

4.1. Data Sources and Study Area

This subsection presents the new geographic dataset HGeoKG-MHT-670K used for
statistical analysis, with its spatial distribution shown in Figure 7. To construct HGeoKG-
MHT-670K, we selected geographic data for Manhattan, New York (https://download.
geofabrik.de/north-america/us/newyork.html (accessed on 1 January 2024)), from the
open data platform OSM, including three types of geographic entities: points, lines, and
polygons. Using the HGeoKG data-processing method proposed in this paper, discrete

https://download.geofabrik.de/north-america/us/newyork.html
https://download.geofabrik.de/north-america/us/newyork.html
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geographic entities and their associated attribute information were extracted. Based on
the latitude and longitude information of the geographic entities, spatial relationships
between them were calculated, and the spatial relationships were refined according to the
entity types. By adding spatial relationships between geographic entities, a connected and
continuous GeoKG was formed. The statistics of the dataset are presented in Table 4.

Considering the spatial hierarchical characteristics of GeoKGs, the Manhattan data
was divided into 13 coarse-grained regions based on Community Districts (https://data.
cityofnewyork.us/City-Government/Community-Districts/yfnk-k7r4 (accessed on 1 Jan-
uary 2024)), and these 13 coarse-grained regions were further refined into 286 fine-grained
regions based on Census Tracts (https://data.cityofnewyork.us/City-Government/20
10-Census-Tracts/fxpq-c8ku (accessed on 1 January 2024)). It is important to note that
the statistical data is arranged in descending order based on the number of triples in
each region.

Density =
|triples|

|region_area| , (1)

where |region_area| represents the area of the region, measured in square kilometers
(km²). |triples| represents the number of triples within the corresponding region.

(a) (b)

Figure 7. Spatial distribution of HGeoKG-MHT-670K. (a) Regional distribution; (b) geographic
entity distribution.

https://data.cityofnewyork.us/City-Government/Community-Districts/yfnk-k7r4
https://data.cityofnewyork.us/City-Government/Community-Districts/yfnk-k7r4
https://data.cityofnewyork.us/City-Government/2010-Census-Tracts/fxpq-c8ku
https://data.cityofnewyork.us/City-Government/2010-Census-Tracts/fxpq-c8ku
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Table 4. Statistics of HGeoKG-MHT-670K.

Region Triples Entity Geo_ent Atrr_ent Relation Geo_rel Atrr_rel Classes Density
(Triples/km²)

All 669,222 61,784 22,362 39,422 600 194 406 12,226 8618.52
R1 110,802 11,751 3130 8621 334 93 241 2132 20,515.77
R2 98,271 7292 2441 4851 359 129 230 1333 19,091.84
R3 86,142 8117 2535 5582 287 74 213 1548 18,523.37
R4 74,527 7302 2345 4957 289 83 206 1345 12,885.54
R5 56,249 6939 1953 4986 286 77 209 1204 9247.36
R6 54,285 5860 1805 4055 298 90 208 1010 11,364.00
R7 49,441 6412 1745 4667 299 88 211 1130 7545.29
R8 43,943 7657 1854 5803 295 84 211 1203 6456.06
R9 26,393 3925 1208 2717 274 94 180 722 3238.67
R10 2252 3133 1134 1999 257 91 166 536 2370.18
R11 19,571 2867 878 1989 232 78 154 544 3791.49
R12 17,423 2527 868 1659 194 63 131 473 3618.31
R13 9423 1351 466 885 220 84 136 283 1995.28

In the table, “Geo_ent” denotes geographic entity, “Atrr_ent” denotes attribute entity, “Geo_rel” denotes spatial
relationship, and “Atrr_rel” denotes attribute relationship.

4.2. Data Statistical Analysis
4.2.1. Spatial Heterogeneity Statistical Analysis

Regional heterogeneity refers to the differences exhibited by various regions in ge-
ographic spaces across natural, social, and economic dimensions. These differences are
typically manifested in the distribution density of geographic entities, the complexity
of spatial relationships, the diversity of attribute features, and the unevenness of data
coverage. Regional heterogeneity is primarily reflected in the contrast between densely
and sparsely populated areas, including significant disparities in the number of entities,
relationships, density, and category distributions. This pattern poses unique challenges to
the construction of geographic knowledge graphs and to representation learning.

The horizontal axis in Figure 8 is divided into 13 coarse-grained regions based on
Community Districts. Since these coarse-grained regions are named with numbers, we
have labeled them sequentially as R1 to R13 according to their actual names. Additionally,
we used Census Tracts to subdivide the coarse-grained regions into multiple fine-grained
areas, and the order of the horizontal axis is arranged based on the entity density of each
fine-grained region, from largest to smallest. According to the statistical results shown in
Table 4 and Figure 8, several key findings can be observed:

Firstly, at both coarse and fine granular levels, different regions exhibit significant
distributional differences in the number of triples, entities, relationships, geographic entity
categories, and density. The statistical results indicate that geographic semantic information
in different regions displays obvious spatial heterogeneity.

Secondly, regarding geographic density, as shown in Table 4, there are significant
differences in geographic density between regions, with dense and sparse areas showing
distinct distribution characteristics. For example, regions 1 to 8 are relatively dense, while
regions 9 to 13 are comparatively sparse. This density variation not only affects the data
distribution of the geographic knowledge graph but also presents different challenges for
subsequent model representation learning.

Thirdly, the number of attribute entities is significantly higher than that of geographic
entities. This is because the attributes of different entities exhibit considerable variability.
Additionally, relationships are primarily composed of spatial and attribute relationships,
with the number of attribute relationship types being significantly greater than that of spa-
tial relationship types. This is because spatial relationships describe the spatial connections
between two geographic entities, which are usually more homogeneous and limited in
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type. In contrast, attribute relationships describe the characteristics of geographic entities,
and the high heterogeneity of these characteristics leads to greater diversity in attribute
relationship types.

Figure 8. Data statistics in the coarse and fine-grained regions of HGeoKG-MHT-670K.

These findings indicate that although different regions have certain similarities in
the composition of entities and relationships, there are significant differences in sparsity
and spatial heterogeneity between regions. Such pronounced spatial heterogeneity and
sparsity differences may potentially impact the representation learning of geographic
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knowledge. Therefore, when applying this data, these characteristics should be fully con-
sidered, and methods that adapt to these regional features should be designed to improve
model performance.

4.2.2. Popularity Bias in HGeoKG

Many general-purpose knowledge graphs are primarily constructed by automatically
extracting information from online resources like Wikipedia [31], leading to popularity bias:
a small number of well-known entities possess rich information, while the majority of enti-
ties have sparse data [32]. Knowledge graphs built through crowdsourcing may exacerbate
this issue due to contributors’ implicit biases, affecting representation learning and poten-
tially resulting in erroneous rule learning or poor embedding performance [33]. Similarly,
GeoKGs constructed based on crowdsourced geographic data (e.g., OpenStreetMap) are
also susceptible to contributor biases, impacting their quality. To enhance the comprehen-
siveness and accuracy of GeoKGs, this paper conducts a case study to analyze the issue of
popularity bias within GeoKGs, exploring its characteristics and the modeling challenges
it presents.

The long-tail distribution pattern describes the characteristic where a small number
of high-frequency categories account for the majority of the data, while a large number
of low-frequency categories form the long tail. In HGeoKG-MHT-670K, this pattern is
primarily reflected in the distribution of entity and relationship categories. To reveal this
phenomenon, we counted the frequency of occurrence for entity and relationship categories
and plotted frequency distribution curves. The x-axis represents entities or relationships
sorted in descending order of frequency, and the y-axis represents the frequency of category
occurrences. As clearly shown in Figure 9, a few high-frequency entities and relationships
account for the vast majority of the data, while a large number of low-frequency categories
form a noticeable long-tail distribution.

(a) (b) (c)

(d) (e) (f)

Figure 9. Frequency distribution of entities and relationships in the Triples of HGeoKG-MHT-
670K. The entities or relations on the horizontal axis are ranked in descending order of frequency.
(a) All entities; (b) attribute entities only; (c) geographic entities only; (d) all relations; (e) attribute
relations only; (f) spatial relations only.
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Further analysis indicates that, compared to relationship categories, the frequency
distribution of entity categories is more skewed, as the number of entities in the knowledge
graph far exceeds the number of relationships. Additionally, the frequency distribution of
attribute entities is even more skewed than that of geographic entities. Geographic entities
typically participate in spatial relationship triples with other geographic entities, as well
as attribute triples related to their own attribute labels. Therefore, the frequency cap of a
single geographic entity is limited by its role in the knowledge graph. In contrast, some
common attribute labels can form triples with almost all geographic entities, resulting
in the highest frequency of attribute entities approaching the total number of geograp-
hic entities.

4.3. Geographic Knowledge Reasoning

In this section, we start with Section 4.3.1, which introduces the geographic knowledge
reasoning task and its evaluation metrics. We then provide a detailed description of the
HGeoKG-MHT-670K dataset statistics, followed by an overview of the baseline models and
experimental environment. The subsequent subsections further explore the challenges that
the data characteristics of HGeoKG pose to existing baseline models.

4.3.1. Experimental Setup

Evaluation task and metrics. This study uses geographic knowledge reasoning as the
evaluation task. The goal of geographic knowledge reasoning is to predict the missing entity
in a triple. For example, given (?, r, t), the task is to predict the head entity h, or given (h, r, ?),
the task is to predict the tail entity t. In the test set, the results are computed by ranking
the scores predicted by a scoring function. The performance of geographic knowledge
reasoning is evaluated using the Hit@k metric and the Mean Reciprocal Rank (MRR). Hit@k
measures the number of times the correct entity appears in the top k predictions, while
MRR represents the mean reciprocal rank of the correct predictions. Higher values of Hit@k
and MRR indicate better performance. Considering the spatial regions to which geographic
knowledge belongs, the Hit@k and MRR metrics can be extended into both macro and
micro forms to better evaluate the impact of regional spatial heterogeneity on geographic
knowledge reasoning task performance. The specific calculations for these metrics are
as follows:

Micro_Hit@k =
1
|N|

|N|

∑
i=1

Π(ranki ≤ k), (2)

Micro_MRR =
1
|N|

|N|

∑
i=1

1
ranki

, (3)

Macro_Hit@k =
1

|region|

|region|

∑
i=1

(
1

|Ni|

|Ni |

∑
j=1

Π
(
rankj ≤ k

))
, (4)

Macro_MRR =
1

|region|

|region|

∑
i=1

(
1

|Ni|

|Ni |

∑
j=1

1
rankj

)
, (5)

where |region| represents the number of geographic regions. |Ni| represents the total
number of prediction sets in region i. Metricij refers to the metric (such as Hit@k or MRR)
for the j-th triple entity in region i. Π is a conditional function that equals 1 if the condition
is true, otherwise 0.

The macro metrics used in this paper differ from traditional macro metrics used in
classification tasks. Traditional category-based macro metrics are designed to handle class
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imbalance problems, typically performing well in large classes with abundant labels, while
small classes tend to perform poorly due to sparse label data. The regional macro metrics
proposed in this paper are designed to address differences in spatial heterogeneity across
regions. The modeling difficulty for each region is determined not only by the number of
samples in the region but also by the complex geographic distribution patterns and rules
within each region (such as sample quantity, density, spatial range, and connectivity).

Experimental data. We carefully considered regional distribution when dividing
HGeoKG-MHT-670K. The training set, validation set, and test set for each sub-region
were divided in proportions of 80%, 10%, and 10%, respectively. The sum of the training,
validation, and test sets of each sub-region constitutes the training, validation, and test
sets of the parent region, maintaining the same 8:1:1 ratio for the entire dataset. This
region-based hierarchical data-partitioning method effectively balances the distribution
of the training, validation, and test sets across regions. Traditional random partitioning
methods may lead to an imbalanced regional sample distribution in the training, validation,
and test sets, introducing significant regional bias into the data. The results of the dataset
partitioning are shown in Table 5.

Table 5. Dataset partition statistics.

Region Triples Entity Relation Train Valid Test

All 669,222 61,784 600 535,492 66,932 66,798
R1 110,802 11,751 334 88,651 11,080 11,071
R2 98,271 7292 359 78,622 9827 9822
R3 86,142 8117 287 68,922 8618 8602
R4 74,527 7302 289 59,635 7455 7437
R5 56,249 6939 286 45,007 5624 5618
R6 54,285 5860 298 43,436 5429 5420
R7 49,441 6412 299 39,564 4945 4932
R8 43,943 7657 295 35,165 4396 4382
R9 26,393 3925 274 21,125 2639 2629
R10 22,752 3133 257 18,215 2277 2260
R11 19,571 2867 232 15,666 1956 1949
R12 17,423 2527 194 13,945 1744 1734
R13 9423 1351 220 7539 942 942

Baseline models. We selected classic KGE models as baselines to perform experimental
analysis on the dataset proposed in this paper.

TransE [34]: A translation-based KGE model and one of the most widely used KGE
models, which interprets relationships as translation operations between low-dimensional
entity embeddings.

DistMult [35]: A semantic matching-based KGE model and a popular tensor factor-
ization approach that uses a bilinear scoring function to evaluate knowledge triples.

ConvE [36]: A convolutional neural network-based KGE model, utilizing a multi-layer
convolutional network. The embedding vectors of the subject entity and relationship are
reshaped into matrices and concatenated, followed by a global 2D convolution to learn
deeper features.

R-GCN [37]: A graph neural network-based KGE model and an extension of the graph
convolutional network (GCN), designed to handle highly multi-relational knowledge
graph data. It aggregates contextual information into entities through relation-specific
transformations to capture neighborhood information.

Experimental environment. The baseline models were evaluated on a server equipped
with an Intel® Core™ i7-10700 CPU and an NVIDIA GeForce RTX 3090 GPU (24GB VRAM).
The experimental environment was based on Ubuntu 18.04 and CUDA 11.1. All methods
were implemented in Python 3.7 and PyTorch 1.12.0.
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4.3.2. Macro and Micro Comparison Analysis

HGeoKG-MHT-670K provides spatial semantic connections between geographic enti-
ties in the Manhattan region, as well as highly heterogeneous geographic entity attributes.
Given the high connectivity among geographic entities and the high sparsity and het-
erogeneity of attribute entities, we divided the evaluation metrics for the geographic
knowledge reasoning task of baseline models into three categories: all triples, attribute
triples only, and spatial triples only. This was carried out to analyze how the characteristics
of spatial and attribute relationships affect the baseline models’ metrics. In this subsection,
we provide a more comprehensive comparison of the benchmark methods.

From the results in Table 6, we can observe the following:

Table 6. Comparison of macro and micro performances of different baseline models.

Model All Triples Attribute Triples Only Spatial Triples Only

MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

TransE micro 28.26 8.23 38.35 69.30 35.08 29.49 38.47 44.96 25.63 0.03 38.30 78.68
macro 29.53 10.01 39.45 70.16 36.66 30.87 40.31 46.72 25.99 0.03 38.90 81.09

DisMult micro 45.69 34.51 53.45 65.66 0.95 0.54 0.96 1.64 62.94 47.62 73.70 90.35
macro 42.99 32.63 50.34 61.21 0.84 0.46 0.86 1.49 62.60 47.65 73.38 88.78

ConvE micro 43.08 31.67 49.26 63.25 32.47 27.24 32.81 41.70 52.23 37.78 60.66 77.78
macro 46.16 34.46 51.91 67.57 33.30 28.02 33.73 42.53 51.98 37.27 60.18 79.29

RGCN micro 47.16 30.58 58.58 78.47 26.45 21.43 29.24 35.31 55.17 34.14 69.90 95.11
macro 46.62 30.70 57.48 76.84 27.61 22.34 30.58 36.96 55.34 34.56 69.83 95.06

In this table, Micro_Hit@k represents the proportion of hits within the top k rankings at the micro level. By
averaging across all samples, it measures the overall hit rate (corresponding to Equation (2)). Micro_MRR refers to
the micro-level Mean Reciprocal Rank (MRR). It assesses the quality of the model’s ranking results by calculating
the average of the reciprocal ranks across all samples (corresponding to Equation (3)). Macro_Hit@k calculates
the hit rate within the top k rankings independently for each region at the macro level and then averages the
results across all regions to evaluate the overall performance between regions (corresponding to Equation (4)).
Macro_MRR is the macro-level Mean Reciprocal Rank. It first computes the average reciprocal rank for samples
within each region and then averages these across all regions, reflecting the ranking accuracy at the regional level
(corresponding to Equation (5)).

In the TransE and ConvE models, macro-averaged metrics are higher than micro-
averaged metrics, indicating that these models perform better in smaller regions by focusing
on individual triple samples and localized data distributions. These models can handle
data from regions of varying sizes relatively consistently. In contrast, in the DistMult and
R-GCN models, micro-averaged metrics outperform macro-averaged metrics, showing
that these models excel in larger regions by focusing on the neighborhood of triples and
the overall regional data distribution. They achieve the best and second-best performance
in the micro metrics, demonstrating their effectiveness in handling neighborhood and
contextual information in large-scale, data-rich regions.

Due to spatial heterogeneity, geographic distributions across regions exhibit varying
complexities. The TransE and ConvE models, which focus on local information, maintain
relatively balanced performance across both small and large regions. On the other hand,
the DistMult and R-GCN models, which emphasize overall data distribution, perform
better in larger regions but worse in smaller ones. Therefore, given the complex geographic
distribution patterns across different regions, our experimental analysis suggests that a
single model type cannot effectively capture the intricate geographic patterns of all regions.
It may be more effective to use different modeling strategies for different regions based on
the characteristics of the data.

In response to the specific phenomena presented in Table 6, we have conducted an
in-depth analysis of the following two significant issues. Firstly, the TransE model almost
completely fails (approaching 0) in Hits@1 for the Spatial triples task. This observation
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reflects the notable limitations of TransE in handling spatial relationship types. TransE’s
embedding mechanism is primarily based on translational operations, which inadequately
models complex geometric relationships, making it difficult to effectively capture the spatial
semantics between entities. Secondly, the DisMult model exhibits significantly lower MRR
and Hits@k values on the Attribute triples task compared to other models, indicating sub-
stantial difficulties in handling attribute relations. Although DisMult performs adequately
on the Spatial triples task, its scoring mechanism fails to fully capture the joint features of
attribute and spatial relations in the Attribute triples task. Our analysis suggests that this
issue arises from DisMult’s reliance on a bilinear scoring function, which demonstrates
clear limitations when handling highly heterogeneous and sparse attribute data. This
limitation hinders the effective modeling of complex interactions between attribute features
and spatial information, leading to a significant decline in predictive performance.

4.3.3. Performance Comparison Across Regions with Different Levels of Sparsity

This subsection analyzes the performance of baseline models across the 13 coarse-
grained regional datasets, examining the models’ learning tendencies for different types of
triples and the impact of data density. Specifically, the experiments were first conducted
using the complete HGeoKG dataset for model training and evaluation. Then, the MRR
performance for each region was calculated by dividing the dataset into coarse-grained
regions. According to the regional density information in Table 4, R1 to R8 are denser
regions, while R9 to R13 are sparser, with R13 being the sparsest.

From the results in Figure 10, it can be seen that the DistMult model performs normally
on spatial triples but almost completely fails to predict attribute triples. This indicates that
DistMult’s bilinear scoring mechanism cannot effectively learn both types of triples simulta-
neously, with the model tending to focus on the spatial triples, which constitute the majority
of the data. Further analysis reveals that DistMult’s scoring mechanism cannot adequately
capture the joint features of attributes and spatial relationships, which is closely related
to the bilinear scoring function it relies on. This function shows clear limitations when
dealing with highly heterogeneous and sparse attribute data, making it difficult to model
the complex interactions between attribute features and spatial information effectively.

(a) (b) (c)

Figure 10. Experimental results in coarse-grained regions with different levels of sparsity. (a) All
triples; (b) attribute triples only; (c) spatial triples only.

In addition, Figure 10b shows that, aside from DistMult, the other three baseline
models (TransE, ConvE, and RGCN) exhibit significant regional differences in performance
on attribute triples: their performance is better in sparser regions than in denser ones. This
phenomenon is likely because the proportion of spatial triples decreases in sparse regions,
while the proportion of attribute triples increases. This enables the model to focus more on
learning attribute relationships during training, leading to better performance.

Finally, from Figure 10c, it can be observed that the four baseline models exhibit stable
learning performance on spatial triples, with the MRR metric showing little variation across
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regions. However, the DistMult model experiences a significant performance drop in the
sparsest R13 region, further highlighting its limitations when handling data sparsity.

The density differences between regions are one manifestation of spatial heterogene-
ity. Our experimental results reveal the learning characteristics of the baseline models
on different types of triples, as well as the challenges posed by spatial heterogeneity in
geographic knowledge representation learning and the significant impact of data density on
model performance.

4.3.4. Comparative Analysis of Global and Local Training

In this subsection, we employed both global and local training strategies to evaluate
the model’s performance across different geographic regions. For global training, we used
the complete HGeoKG dataset to ensure that the model could learn general geographic
knowledge across regions. For local training, we divided the HGeoKG dataset by different
geographic regions and performed model training on specific regions. This division allowed
the model to better capture regional geographic semantics and improve its performance in
scenarios with strong regional heterogeneity. Specifically, global training involved splitting
the dataset into training, validation, and test sets and training the model on the entire
global dataset. In local training, we divided the data based on geographic regions (such
as administrative divisions or geographic units) and ensured that the model was trained
and evaluated separately for each local region. This approach helps improve the model’s
adaptability and generalization across different geographic environments.

From the experimental results in Figure 11, it can be seen that ConvE and TransE
perform better in global training than in local training, whereas DistMult and RGCN show
better performance in local training compared to global training. The reasons for this may
be related to the model mechanisms, data distribution characteristics, and the impact of
spatial heterogeneity. ConvE and TransE rely more on global data distributions to learn
general semantic features. In global training, these models are exposed to rich relational
information from different regions, which helps them capture broader semantic patterns,
particularly in cross-regional spatial relationship modeling. For example, TransE learns
simple relational features through translation embeddings, and the rich global data help to
generate more accurate relationship representations. Similarly, ConvE captures complex
contextual relationships through convolution operations, and global data provide more
samples and context, thereby enhancing model performance.

(a) (b)

(c) (d)

Figure 11. Comparison between global and local training. (a) ConvE; (b) TransE; (c) DistMult;
(d) RGCN.
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In contrast, DistMult and RGCN perform better in local training because local train-
ing reduces data heterogeneity and complexity, allowing these models to focus more on
relationship modeling within specific regions. DistMult relies on a bilinear scoring func-
tion, which struggles to model the diverse semantic relationships in complex global data.
However, in local data, where heterogeneity is reduced, the model can more accurately
learn regional characteristics. RGCN captures neighborhood features through graph neural
networks, and local training offers a more compact data distribution, enabling it to model
local semantic relationships more efficiently within each region.

Spatial heterogeneity leads to significant differences in data distributions across re-
gions. In global training, the model has to handle the differences in data distribution
between dense and sparse regions, which may cause the insufficient learning of specific
regional characteristics. Local training, by partitioning the data by region, reduces this
heterogeneity and allows the model to focus on learning the semantic relationships specific
to each region. As a result, DistMult and RGCN perform better in local training.

The advantage of ConvE and TransE in global training lies in their ability to capture
global general patterns, while the better performance of DistMult and RGCN in local
training reflects their ability to adapt to regional characteristics once heterogeneity is
reduced. These experimental results further reveal the profound impact of spatial hetero-
geneity on model performance and also suggest that model selection should be optimized
based on the data distribution characteristics and the specific requirements of the applica-
tion scenario.

4.3.5. The Impact of Relationship Hierarchy

This subsection explores the various challenges that explicit modeling of spatial se-
mantic relationships at different granularities brings to existing KGE models. We focus
on analyzing the impact of explicitly modeling spatial semantic relationships, the effect of
integrating entity-type information into these relationships, and the influence of incorpo-
rating entity-type information at different granularity levels. Table 7 explains the types of
spatial semantic relationships at different granularities and indicates what information is
explicitly modeled.

Table 7. Different granularities of spatial relationships.

Example Spatial Relationship-Type Description

Point_pois-Adjacent-Polygon_water 2, spatial relationship explicitly models fine-grained entity types
Point-Adjacent-Polygon 1, spatial relationship explicitly models coarse-grained entity types
Adjacent 0, spatial relationship does not consider any entity-type information
None −1, no spatial relationship

Table 7 shows the explicit modeling of spatial semantic relationships at different levels
of granularity. A granularity level of −1 indicates no spatial relationship semantics are
included in the dataset, only attribute triples for geographic entities. A granularity level of
0 indicates that spatial relationship semantics are explicitly modeled between entities, but
no entity-type information is integrated. In this case, these spatial relationships are defined
solely based on the calculation of geometric distance or spatial topology. A granularity level
of 1 incorporates the coarse-grained spatial types of entities (point, line, polygon) into the
spatial relationship semantics, while a level of 2 incorporates both coarse-grained spatial
types and fine-grained entity-type information into the spatial relationship modeling.

The results in Table 8 reveal the performance of different models on HGeoKG-MHT-
670K with spatial semantic relationships of varying granularity. This phenomenon indicates
that the inclusion of spatial semantic relationships enriches the semantic information and
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enhances the connectivity of the knowledge graph, allowing models to more effectively
learn the important connections between geographic entities through spatial semantic
edges. Additionally, the attribute information of entities can be more efficiently propagated
to neighboring entities’ embeddings through spatial semantic edges.

Table 8. Performance comparison of different baseline models on HGeoKG-MHT-670K.

Model Level
All Triples Attribute Triples Only Spatial Triples Only

MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

TransE

2 28.26 8.23 38.35 69.30 35.08 29.49 38.47 44.96 25.63 0.03 38.30 78.68
1 28.27 8.11 38.37 69.32 34.76 29.06 38.46 44.65 25.77 0.03 38.34 78.84
0 32.21 7.99 47.91 79.51 34.13 28.69 37.32 43.65 31.47 0.00 51.99 93.34
−1 / / / / 35.44 30.65 38.04 43.94 / / / /

DistMult

2 45.69 34.51 53.45 65.66 0.95 0.54 0.96 1.64 62.94 47.62 73.70 90.35
1 42.89 30.68 51.31 64.63 0.69 0.37 0.64 1.25 59.16 42.36 70.86 89.08
0 36.78 24.97 43.83 58.97 0.72 0.38 0.69 1.24 50.68 34.45 60.46 81.23
−1 / / / / 22.24 19.34 23.75 27.36 / / / /

ConvE

2 43.08 31.67 49.26 63.25 32.47 27.24 32.81 41.70 52.23 37.78 60.66 77.78
1 42.96 30.73 50.06 63.90 33.08 27.50 33.08 43.11 51.78 36.31 61.59 78.06
0 43.93 26.26 56.07 77.08 33.69 27.04 34.23 47.16 53.18 30.39 69.84 95.78
−1 / / / / 29.73 27.46 31.24 33.61 / / / /

RGCN

2 47.16 30.58 58.58 78.47 26.45 21.43 29.24 35.31 55.17 34.14 69.90 95.11
1 41.12 23.70 52.18 75.20 23.69 18.93 26.08 32.18 47.76 25.45 62.17 91.71
0 29.65 9.41 41.41 71.15 23.01 17.83 26.01 31.94 32.24 6.23 47.36 86.22
−1 / / / / 24.92 20.11 27.44 32.96 / / / /

In this table, Micro_Hit@k represents the proportion of hits within the top k rankings at the micro level. By
averaging across all samples, it measures the overall hit rate (corresponding to Equation (2)). Micro_MRR refers to
the micro-level Mean Reciprocal Rank (MRR). It assesses the quality of the model’s ranking results by calculating
the average of the reciprocal ranks across all samples (corresponding to Equation (3)).

When analyzing the different levels of spatial semantic edges, the three granularities—0,
1, and 2—represent the absence of entity-type information, the inclusion of coarse-grained
entity-type information, and the inclusion of fine-grained entity-type information, respec-
tively. The experimental results show that datasets incorporating entity-type information
perform better in terms of metrics, demonstrating that richer entity-type information aids in
achieving more comprehensive entity and relationship embedding learning. Furthermore,
the results with fine-grained entity-type information outperform those with coarse-grained
entity-type information, suggesting that more detailed entity-type semantics provide addi-
tional categorical details, helping models to learn and uncover potential patterns through
the joint effect of spatial semantics and entity-type information. This finding emphasizes the
importance of considering detailed entity-type information when modeling spatial seman-
tic relationships.

In response to the unusual phenomena observed in Table 8, we conducted the follow-
ing analyses. First, the TransE model performs poorly in all levels of the Spatial triples
task, especially on the Hits@1 metric, which is almost zero. This result is consistent with
the analysis in Table 6, further confirming the significant limitations of the TransE model
in handling spatial relations. TransE’s embedding mechanism is relatively simple and
struggles to effectively model complex spatial semantic features, resulting in poor perfor-
mance across different levels of spatial relations. Second, when handling the Attribute
triples task, the DisMult model experiences a significant performance drop when spatial
relations are incorporated, nearly failing entirely. Although DisMult performs adequately
on the Spatial triples task, its scoring mechanism fails to fully capture the joint features of
attribute and spatial relations. When faced with highly heterogeneous attribute data, the
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bilinear scoring function used by DisMult shows clear limitations in modeling the complex
interactions between attribute features and spatial information, leading to a substantial
decline in predictive performance. These analyses are consistent with the conclusions
in Table 6 and highlight the differences in performance of these models when handling
different types of relations.

4.3.6. Representation Challenges Caused by Popularity Bias

The previous subsection statistically analyzed the phenomenon of popularity bias
in the GeoKG dataset, which exhibits a pronounced long-tail distribution pattern. This
subsection evaluates the impact of such popularity bias on KGE quality, focusing on the
geographic knowledge reasoning task.

We examined how popularity bias in GeoKGs affects the performance of knowledge
graph embedding models. The experimental results as illustrated in Figure 12 show that
popular entities and relationships achieve better performance metrics compared to their
less popular counterparts. Additionally, as the proportion of popular entities decreases,
the performance of embedding models also declines. This indicates that classic knowledge
graph embedding models tend to generate more accurate embeddings for well-represented,
popular entities and relationships, while neglecting less popular ones.

Figure 12. Performance of entity embeddings with different ratio on geographic knowledge reason-
ing tasks.

In GeoKGs, facts can be categorized into popular and unpopular groups. The high-
frequency head items belong to the popular category, while unpopular items can be further
divided into two subcategories:

Far-tail items: These appear in very few triples, sometimes only one, making it
challenging to predict them reliably. Long-tail items: These appear in enough triples that a
good model should be able to learn meaningful embeddings for them. Classic embedding
models tend to perform well on both popular and long-tail items.

The notable bias in embedding models can be explained by their training process.
During training, popular entities and relationships have more contextual information and
background in the data and receive more attention during optimization. Additionally,
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popular entities and relationships appear in more triples, leading to more frequent updates.
As a result, the model infers new facts about these entities with higher accuracy, while less
popular entities and relationships are overlooked. This means that the accuracy of knowl-
edge graph embedding models is largely driven by their ability to handle popular entities
well, but they fail to effectively represent less popular entities. However, in geographic
knowledge reasoning tasks, less popular entities are often the ones of greater interest. The
dataset exhibits significant spatial heterogeneity and a long-tail distribution pattern, which
poses challenges for the effectiveness of KGE.

5. Conclusions
This paper proposes a hierarchical geographic knowledge graph, HGeoKG, which

provides a comprehensive semantic representation of geographic knowledge, encompass-
ing rich attributes and spatial relationships, while featuring both regional and spatial
relationship hierarchies. It offers theoretical and methodological references for constructing
GeoKGs. Extensive geographic knowledge reasoning experiments on HGeoKG demon-
strate that the performances of most knowledge graph embedding (KGE) models are signif-
icantly affected by the marked regional heterogeneity and long-tail distribution patterns in
the HGeoKG dataset, resulting in unsatisfactory embedding quality. This highlights the
importance of considering different modeling strategies for different regions and improv-
ing the embedding quality of long-tail geographic entities when designing or deploying
HGeoKG embedding algorithms in practice. Current evaluation metrics do not adequately
capture the effects of spatial heterogeneity, and designing suitable metrics specifically for
geographic datasets remains a crucial direction for future research.

We believe that HGeoKG can serve as a valuable new benchmark for studying the char-
acteristics of geographic knowledge and evaluating geographic knowledge representation
learning. However, the open-source geographic information used in this study (e.g., OSM)
may suffer from issues such as incompleteness and inconsistency. These data deficiencies
could have a significant impact on the results, particularly in regions with imbalanced
entity types or incomplete annotations. Additionally, the use of administrative boundaries
as the basis for geographic unit division in this study could introduce certain biases. The
administrative divisions were not specifically designed for this study, and their spatial
distribution may not be fully compatible with the model’s requirements. Finally, as this
study focuses on hierarchical geographic knowledge graph embedding and inference, the
model’s ability to handle extreme conditions in specific tasks (e.g., sparse or heterogeneous
data distributions) is still limited. Future work will further explore methods to improve
model performance under these conditions.
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