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Abstract: This study addresses the prevalent challenges of inefficiency and suboptimal qual-
ity in indoor 3D scene generation and rendering by proposing a parameter-tuning strategy
for 3D Gaussian Splatting (3DGS). Through a systematic quantitative analysis of various
performance indicators under differing resolution conditions, threshold settings for the av-
erage magnitude of spatial position gradients, and adjustments to the scaling learning rate,
the optimal parameter configuration for the 3DGS model, specifically tailored for indoor
modeling scenarios, is determined. Firstly, utilizing a self-collected dataset, a comprehen-
sive comparison was conducted among COLLI-SION-MAPping (abbreviated as COLMAP
(V3.7), an open-source software based on Structure from Motion and Multi-View Stereo
(SFM-MVS)), Context Capture (V10.2) (abbreviated as CC, a software utilizing oblique
photography algorithms), Neural Radiance Fields (NeRF), and the currently renowned
3DGS algorithm. The key dimensions of focus included the number of images, rendering
time, and overall rendering effectiveness. Subsequently, based on this comparison, rigorous
qualitative and quantitative evaluations are further conducted on the overall performance
and detail processing capabilities of the 3DGS algorithm. Finally, to meet the specific
requirements of indoor scene modeling and rendering, targeted parameter tuning is per-
formed on the algorithm. The results demonstrate significant performance improvements
in the optimized 3DGS algorithm: the PSNR metric increases by 4.3%, and the SSIM metric
improves by 0.2%. The experimental results prove that the improved 3DGS algorithm
exhibits superior expressive power and persuasiveness in indoor scene rendering.

Keywords: 3DGS; indoor scene rendering; performance evaluation; parameter optimization

1. Introduction
Three-dimensional (3D) models of indoor environments are of paramount importance

for a variety of applications such as navigation assistance and emergency response [1].
However, unlike their outdoor counterparts, the 3D reconstruction of indoor environments
still poses specific challenges due to the nature of the complicated layout of the indoor
structure, the complex interactions between objects, clutter, and occlusions [2]. In the
context of indoor 3D scene generation and rendering, several primary algorithms are
used. These include oblique photogrammetry, SFM-MVS [3], NeRF [4], and the noTable
3DGS [5] algorithm.

In the realm of traditional oblique photogrammetry algorithms, particularly those
employing RGB-D camera technology, Yuan Zhilu et al. [6] conducted a comprehensive
review of recent advancements and verified their potential through the analysis of various
datasets. In the interim, Li Jikun and colleagues [7] conducted a study on the utilization of
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drone imagery in conjunction with Context Capture software (V10.2) for urban modeling
and employed DP-Modeler to improve the quality of individual models. Jin Ye et al. [8]
propose a 3D simulation system for indoor soft decoration based on OpenGL and Direct3D.
Zavar H et al. [9] introduce a topology-aware data-driven approach for 3D reconstruction
of indoor spaces. Although these studies primarily focus on the application and innovation
of conventional algorithms, the issue of efficiency remains a critical challenge. Wang Jun
et al. [10] proposed a novel framework aiming to reconstruct a high-quality, globally consis-
tent 3D model for indoor environments using only an RGB-D sensor. An automatic indoor
reconstruction method that quickly and effectively reconstructs the indoor environment of
multi-floors and multi-rooms using both point clouds and trajectories from mobile laser
scanning (MLS) is proposed [11].

In the field of Geographic Information Technology, BIM technology has become in-
creasingly mature. The model construction and data organization of indoor maps are
the key scientific problems that urgently need to be solved in the current indoor LBS
application [12]. Poux, F et al. [13] propose a new shape grammar approach for the effi-
cient generation of 3D models of indoor environments from point clouds. An overview
of the geometric, semantic, and topological reconstruction of the indoor environment is
presented, where the existing methodologies, advantages, and disadvantages of these three
reconstruction types are analyzed and summarized [14].

In the domain of vision-based three-dimensional (3D) reconstruction, Structure from
Motion (SFM) has gained considerable traction due to its capacity for automated camera
tracking and motion estimation. Nevertheless, in practical applications, SFM-based 3D
reconstruction methodologies are vulnerable to various influences, including image quality
and the effectiveness of matching algorithms [15]. The SFM-MVS algorithm, recognized
for its remarkable data processing efficiency, faces limitations when reconstructing typi-
cal scenes, reflecting challenges akin to those encountered with oblique photogrammetry
techniques. In intricate scenarios characterized by reflections, low-texture regions, and
occlusions, the SFM-MVS approach may encounter significant obstacles that lead to match-
ing failures or suboptimal reconstruction outcomes. Dong Chen et al. [16] introduce a
framework for reconstructing fine-grained room-level models from indoor point clouds.

The rapid advancements in neural rendering have led to the emergence of the concept
of NeRF [17], seamlessly integrating deep learning into the domain of three-dimensional
modeling and heralding a significant transformation in voxel reconstruction techniques.
NeRF can render photorealistic 3D scenes [18]. Neural Radiance Fields (NeRFs) offer a
state-of-the-art quality in synthesizing novel views of complex 3D scenes from a small
subset of base images [19]. Jiakai Cao et al. [20] introduce NeRF-based Polarimetric Multi-
view Stereo (NPMVS), a novel 3D reconstruction method that combines the advantages
of neural radiance field (NeRF) and shape-from-polarization (SFM) to address the chal-
lenge posed by textureless areas while preserving the fine-scale geometric details. NeRF
demonstrates exceptional capability in tackling intricate scenes featuring reflections, low-
texture areas, and occlusions, ultimately enabling the creation of highly realistic virtual
environments that enhance the vividness, authenticity, and seamless flow of visual pre-
sentations. Nevertheless, the challenge of prolonged training times persists as a notable
challenge. In a groundbreaking move in 2021, Shihao Qin et al. [21] method incorporates
the advantages of Zip-NeRF and incorporates depth information to reduce the number of
required images and solve the scale-free problem in borderless scenes. Thomas et al. [22]
introduced hash encoding into NeRF, significantly curtailing the training duration. Despite
this commendable enhancement, NeRF continues to grapple with limitations stemming
from the non-intuitive nature and limited controllability of implicit representations, along
with hurdles in achieving high-resolution real-time rendering. Qiuxian Li et al. [23] pro-
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posed E2DSNeRF, which utilizes a high-dynamic-range and low-latency event camera to
replace the conventional RGB-D camera as the input for NeRF. This approach enhances
the rendering quality of sparse views, eliminating blur and ghosting artifacts caused by
dynamic inputs. After NeRF, NeuS [24], and VolSDF [25] attempted to represent scenes
using implicit representation methods and introduced neural volume rendering, making
it possible to perform multi-view 3D reconstruction based on volume rendering. Kristina
Prokopetc et al. [26] and Yujie Lu et al. [27] respectively, illustrate the significant advan-
tages of deep learning-based multi-view 3D reconstruction methods by introducing their
practical applications in medical mixed reality and civil engineering, transitioning from
classical methods to deep learning approaches. These methods have become the current
mainstream technology. As demonstrated by Sixu Li et al. [28], applying neural implicit 3D
reconstruction algorithms to virtual/augmented reality enables instant 3D reconstruction
with a time consumption of no more than 5 s per scene. Valeria Croce et al. [29] proposed
combining neural implicit 3D reconstruction algorithms with actual photogrammetry for
application in digital cultural heritage. Yingwei Ge et al. [30] utilized a 3D reconstruction
algorithm that integrates Signed Distance Functions (SDF) with neural radiance fields
for the reconstruction of ancient architectures, providing high-quality models of ancient
buildings for surveying, mapping, visualization, and heritage preservation.

Despite its popularity, NeRF algorithm typically requires clear, static images to func-
tion effectively, leading to reduced performance when dealing with real-world scenarios
that present non-ideal conditions such as complex reflections, low dynamic range, dark
scenes, and blurriness resulting from camera motion or defocus photography [31]. The
emergence of 3DGS (3DGS) technology presents a compelling solution to the previously
encountered challenges posed by NeRF. The emergence of 3DGS (3DGS) has greatly acceler-
ated rendering in novel view synthesis [32]. This technology incorporates a swift rendering
algorithm capable of anisotropic splatting, which not only accelerates the training process
but also augments rendering efficiency. Consequently, 3DGS has ushered in a paradigm
shift within the realm of three-dimensional modeling. By representing scenes through
explicit point clouds and leveraging a highly parallelized and differentiable rasterization
pipeline, 3DGS achieves a notable improvement in both training speed and rendering effi-
ciency, while simultaneously preserving the superior quality attributes of volume rendering.
Furthermore, it creates an environment conducive to enhanced scene control.

2. Methods
2.1. 3D Rendering Algorithms-NeRF(Instant-NGP)

The NeRF (Neural Radiance Fields) observes the object located at a specific three-
dimensional coordinate and from a particular viewpoint, estimating the color information
and volume density through an MLP (Multi-Layer Perceptron) network. In this exam-
ple, the direction is represented by a unit vector in the Cartesian coordinate system. o
denotes the origin point from which the object is observed, and the camera ray is a virtual
laser beam that emanates from this origin and projects towards the object, as depicted in
Equation (1). This signifies that we are considering a point located along the vector, as seen
from the origin.

r(t) = o + td. (1)
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2.1.1. Volume Rendering

The volume rendering process is a methodology that derives the expected color values
that can appear in a pixel by utilizing the information obtained through the MLP (Multi-
Layer Perceptron). This can be represented mathematically as shown in Equation (2).

C(r) =
∫ t f

tn
T(t)σ(r(t)c(r(t), d)dt, (2)

tn and t f represent the depth of the 3D space to be rendered, while σ(r(t)),c(r(t), d),
and T(t) refer to the density, color value, and transmittance, respectively, which are all
derived from the MLP. In this scenario, c is associated with the density, such that as the
density approaches 1, the transmittance decreases.

When light rays calculate their interaction with each point, the computation can
include unnecessary pixels, limiting performance. To obtain sampling points, stratified
sampling is used, which divides the interval between tn and t f into N strata, and randomly
selects one sample from each stratum. The entire process can be represented by Equation (4)
and applied to Equation (3).

T(t) = exp(−
∫ t

tn
σ(r(s))ds). (3)

ti ∼ u[tn +
i − 1

N
(t f − tn), tn +

i
N
(t f − ti)], . (4)

2.1.2. Multi-Resolution Hash Encoding

A significant reduction in learning time is achieved by employing a multi-resolution
hash encoding approach, as opposed to traditional position encoding methods. From an
object-centric perspective, a large number of sampling points are placed along virtual rays,
as illustrated in Figure 1.

X 

4 T 
5 

Vertex Coordinates of a Voxel 

Hash function 

Hash index 

Figure 1. Diagram of Multi-Resolution Hash Encoding method. The blue, brown, orange, and green
boxes represent the index calculation of hash tables at different Levels. Each Level has a different
grid resolution. T denotes the size of the hash table.
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Sampling points are encapsulated within voxel cubes located in 3D space, and the
coordinates of these voxels are input into a hash function. In this example, the hash function
is given by Equation (5). Here, h(x) represents the hash index, and T is the limitation on
the size of the hash index due to the operation denoted by mod.

h(x) =
(
(

d
⊕

i=1
xiπi)

)
modT. (5)

By utilizing all 2D features matched through hash indices computed for each voxel
vertex along each ray, distances between sampling points and voxel vertices are weighted
to generate a single 2D feature. This feature is then input into the neural network through
linear interpolation operations. At this point, the number of features that can be generated
by a ray is calculated as the product of the pixel size in the image and the number of
sampling points along the ray. The features are derived from voxels consisting of 16
different levels of sizes, all of which are concatenated, completing the multi-resolution hash
encoding process.

In addition to employing the multi-resolution hash encoding method, the Tiny-Cuda-
NN library based on Cuda and C++, along with a simple MLP for dimensionality reduction
at each layer of the neural network, are utilized to reduce training and rendering time. By
adopting the described methodology, excellent memory utilization has been achieved, and
good results can be produced with minimal learning time.

2.2. 3D Rendering Algorithms-3DGS

The Three-Dimensional Gaussian Splatting (3DGS) technique defines the radiance
field in a 3D scene on a discrete cloud of 3D Gaussian points to enable differentiable
volume rendering. The technical process is illustrated in Figure 2. In 3DGS, each point is
represented as an independent 3D Gaussian distribution [33], which can be mathematically
expressed as Equation (6) below:

G(x) = exp(−1
2
(x − µ)T∑ (x − µ)). (6)

Figure 2. Overview of 3DGS technology.

In this context, µ and ∑ represent the mean and covariance matrix, respectively, of the
3D Gaussian distribution. Each Gaussian point P is also assigned an opacity o and a color
value c, which together represent the radiance field of the 3D scene. Due to phenomena
such as specular reflection and highlights, the color of the same object can vary depending
on the viewing angle. To simulate the variation of color values concerning the viewing
direction, 3DGS employs Spherical Harmonics (SHs) for modeling.
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2.3. Evaluation Indices

Using PSNR (Peak Signal-to-Noise Ratio) [34], SSIM (Structural Similarity Index
Measure) [35], and LPIPS (Learned Perceptual Image Patch Similarity) [36], the quality of
the rendered images was evaluated.

2.3.1. PSNR

PSNR serves to indicate the lossy information associated with the generated image, as
shown in Equation (7). Here, ‘MAX’ represents the maximum possible pixel value, and
‘MAX’ denotes the Mean Squared Error (MSE), which is the difference between each pixel,
averaged across all pixels.

PSNR = 10 log
MAX2

MSE
. (7)

2.3.2. SSIM

Unlike PSNR, SSIM is an evaluation method that indicates the image quality as
perceived by humans, rather than simply numerical errors. It is calculated by assessing
the brightness, contrast, and structure between images, as shown in Equation (8). In this
context, µx and µy represent the average pixel values of the images, σx and σy denote the
standard deviations of the pixel values, σxy is the covariance between the pixel values of
the images, C1 equals 6.5025, and C2 equals 58.5225.

SSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µx2 + µy2 + C1)(σx2 + σy2 + C2)
. (8)

2.3.3. LPIPS

LPIPS is a model that employs AlexNet, VGG, and SqueezeNet to evaluate image
similarity in a manner that mimics human perceptual characteristics. By leveraging in-
termediate layer features from networks trained on the ImageNet dataset, it measures
the similarity between two features. The LPIPS calculation for input images is given by
Equation (9), where l represents the layer, y and y0 are unit-normalized feature vectors at
the channel level, ω is a scaling factor, and H and W denote the height and width, respec-
tively. Unlike PSNR and SSIM, LPIPS measures the distance between the feature vectors of
the original and generated images, and thus, a lower value indicates better performance.

LPLIPS(x, x0) = ∑
l

1
HlWl

∥∥∥ωl ⊙ ( ˆy′hω − ˆy′0hω

)∥∥∥2

2
. (9)

2.4. Test Data Preparation

To enable a comprehensive and detailed evaluation of the algorithm, the corridor
located on the fourth floor of the School of Aerospace Surveying and Mapping at Anhui
University of Science and Technology has been designated as the testing environment, as
depicted in Figure 3. This corridor, measuring a total length of 15 m, exhibits a highly di-
verse environmental design. It incorporates hanging decorations, a meticulously organized
arrangement of tables and chairs, pristine white walls, transparent glass structures, and
prominent corner elements. Collectively, these features create a testing space that is both
unique and broadly representative.
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Figure 3. Study Area. (a) Floor; (b) Ceiling; (c) Table; (d) Full View.

To ensure the fairness and comprehensiveness of the evaluation, all experiments
conducted in this study were performed in a standardized hardware environment, utilizing
RTX 4060 graphics cards and 16 GB of RAM. This approach was implemented to mitigate
any potential effects of hardware discrepancies on the experimental outcomes. The primary
objective of these experiments is to accurately assess and optimize the performance of
the algorithms.

3. Results
This study investigates the digital reconstruction of indoor scenes through the applica-

tion of four distinct technical approaches, encompassing both traditional and advanced
algorithms, to thoroughly examine efficient and precise reconstruction methodologies.
Initially, we employed the industry-leading Context Capture Center Master (CC), utilizing
its tilt photography technology specifically optimized for architectural applications to
achieve high-quality reconstruction and rendering outcomes. Furthermore, to enhance
our analytical framework and facilitate a more comprehensive comparative assessment,
we also evaluated the modeling efficacy of the open-source COLMAP software (V3.7).
Subsequently, in our pursuit of increased efficiency and speed in reconstruction and ren-
dering processes, we incorporated NeRF technology, particularly the Instant-NGP method
introduced by Thomas et al. [24]. Despite the notable advancements NeRF has achieved
in the realm of reconstruction, it continues to encounter challenges related to real-time
rendering and overall quality. Finally, we implemented the 3DGS algorithm for real-time
rendering. As a recent advancement in the domain of differentiable point cloud rendering,
3DGS distinguishes itself from other technologies due to its substantial enhancements
in speed, rendering efficiency, and accuracy. Specifically, in terms of optimization speed,
rendering speed, and accuracy, 3DGS significantly surpasses NeRF technology, thereby
elevating the capabilities of differentiable rendering technology to new heights.
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3.1. Image Data Acquisition and Preprocessing

Due to the complex geometric features of the experimental area, significant emphasis
was placed on managing image overlap at surface junctions and corners. By increasing the
number of photographs captured, the overlap rate in these critical areas was maintained
between 70% and 80%, thereby improving the effectiveness of multi-view image matching
(see Figure 4). To address the challenge of modeling white walls, which frequently exhibit
a lack of feature points, a technique involving the application of patterns on A4 paper,
followed by their attachment to the walls, was utilized to artificially introduce feature
points. This method effectively reduced modeling deficiencies and substantially improved
both the accuracy and quality of the resultant models.

Figure 4. Schematic diagram of data collection. The arrows indicate the direction and trajectory of
the shooting.

The image acquisition process involved the use of mobile phones to capture pho-
tographs, which were subsequently subjected to a comprehensive preprocessing protocol.
This protocol aimed to eliminate images that exhibited high exposure, reflections, and
other defects, thereby ensuring the integrity of the input data and establishing a solid
foundation for subsequent modeling and rendering tasks. The preprocessing workflow
not only streamlined the data processing procedure but also significantly enhanced the
overall quality and detailed representation of the final three-dimensional model. This
improvement provides considerable support for the precise reconstruction and rendering
of indoor environments.

3.2. Algorithm Performance Comparison

In the designated study area, a cohesive collection of 170 high-quality photographs was
assembled to serve as the foundational data for modeling purposes. Four distinct technical
methodologies—specifically, Structure from Motion (CC), COLMAP, NeRF, and 3DGS—
were employed to independently generate three-dimensional models. A comprehensive
evaluation was subsequently conducted through comparative analysis.

3.2.1. Comparison of Rendering Time and Results Among Four Algorithms

During the preliminary exploration phase, significant technical difficulties emerged
when utilizing CC to process complex scenes characterized by extensive areas of white
walls and floors. Specifically, conventional three-dimensional reconstruction algorithms
encountered challenges in extracting an adequate number of feature points from these
expansive white surfaces, which resulted in unsuccessful feature matching. This limitation
subsequently hindered precise registration during the aerial triangulation phase, ultimately
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leading to unsuccessful modeling outcomes. To mitigate this issue and achieve a com-
prehensive model, a substantial increase in the dataset was considered, resulting in the
incorporation of 895 unrestricted photographs for re-modeling through CC, as illustrated in
Figure 5a. Although initial modeling results were obtained, the output displayed significant
voids and protrusions, and manual remediation proved to be inefficient. Consequently,
OSketch Up software(V1.0) was employed, leveraging its interactive object-based modeling
capabilities to enhance the preliminary CC model, as depicted in Figure 6c,d. This integra-
tion significantly improved processing efficiency and effectively reduced the time required
for manual corrections. Ultimately, by combining the functionalities of both software tools,
a successful object-based construction of the model was realized, with the final result pre-
sented in Figure 6b, thereby accomplishing both efficient and accurate three-dimensional
model reconstruction.

Figure 5. Model construction and rendered image generation. (a) CC modeling diagram, the
red border highlights the damaged area of the model.; (b) OSketch Up individualized rendering;
(c,d) OSketch Up interactive operation diagrams.

Figure 6. Comparison Chart of Rendering Effects Among Different Algorithms: (a) COLMAP;
(b) NeRF (Instant-NGP); (c) 3DGS; (d) CC.
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In the comprehensive evaluation of the effectiveness of four three-dimensional re-
construction and rendering methodologies—CC, COLMAP, NeRF, and 3DGS—stringent
assessment criteria were employed. Given CC’s limitations in accurately modeling certain
complex scenes, an augmented dataset was utilized to enhance contrast for comparative
analysis. For the assessment of COLMAP, NeRF, and 3DGS, a standardized dataset con-
sisting of 170 images was meticulously curated to ensure fairness and comparability of
the results. As illustrated in Figure 6, the upper row presents the rendering effect compar-
isons using 170 images, while the lower row displays the rendering effects derived from
895 images. Through extensive visual analyses, the following conclusions were drawn:

Utilizing 170 images, COLMAP, a conventional three-dimensional reconstruction tool,
produced a model with numerous voids and incomplete features. In contrast, with the
application of 895 images, after CC modeling, object-based modeling through OSketch Up,
and subsequent rendering processes, the resulting model appeared relatively complete
and visually appealing. However, in terms of color fidelity, the model generated by CC
exhibited slightly inferior to those produced by NeRF and 3DGS.

Both NeRF and 3DGS demonstrate exceptional performance in terms of model com-
pleteness, realism, and overall quality, attributable to their respective technical advantages.
NeRF, utilizing its sophisticated neural network architecture, adeptly captures and re-
produces intricate details and lighting variations within a scene, thereby facilitating the
generation of a highly realistic three-dimensional environment. Conversely, 3DGS exhibits
distinct strengths in managing complex geometric configurations and enhancing scene
consistency, resulting in rendered images that closely resemble real-world environments.

The initial methodology employed, which involved modeling with CC, followed by
individualization through OSketch Up and subsequent rendering, required a duration of
five days. In contrast, the modeling process utilizing COLMAP was accomplished in only
six hours. It is noteworthy that the NeRF and 3DGS algorithms exhibited exceptional effi-
ciency, achieving image rendering within a matter of minutes, thus positioning themselves
as the most effective techniques in this context.

3.2.2. Comparison of Reconstruction Results with Varying Image Quantities

Comparative analyses of the reconstructions within the experimental area were per-
formed utilizing 60, 110, and 170 images, with the results of these comparisons illustrated
in Figure 7. In this figure, ‘n’ denotes the number of images utilized.

As depicted in Figure 7, the three-dimensional reconstruction algorithms NeRF and
3DGS demonstrate considerable superiority over COLMAP. An increase in the number of
input images indicates that both NeRF and 3DGS effectively manage large-scale datasets,
demonstrating a clear trend toward improved modeling quality. This observation un-
derscores the robustness and advancements of these two algorithms in the field of three-
dimensional reconstruction. However, it is noteworthy that when assessing the three-
dimensional reconstruction and rendering results using a dataset comprising 170 images,
3DGS did not achieve the performance of NeRF and, in certain respects, lagged behind
renderings generated from a smaller number of images. This discrepancy invites further
investigation, with the underlying issue potentially related to the quality of the initial point
cloud data.
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Figure 7. A comparison of reconstruction results between COLMAP, NeRF, and 3DGS methods under
varying numbers of remote sensing images. (a–c) Showcase the modeling effects of COLMAP when
the number of images is 170, 110, and 66, respectively; (d–f) Demonstrate the modeling outcomes of
NeRF (Instant-NGP) with 170, 110, and 66 images; (g–i) Present the modeling performance of 3DGS
for the same sets of 170, 110, and 66 images.

Specifically, the efficacy of the 3DGS method is heavily contingent upon the quality
and accuracy of the initial point cloud data. In the data preprocessing phase, the failure
to adequately eliminate redundant Gaussian points can result in noise, which negatively
impacts the subsequent rendering process. Notably, covariance—a fundamental char-
acteristic of Gaussian points—is particularly vulnerable to noise interference during its
calculation and representation, which can lead to a decline in image quality during the
rendering phase.

At critical junctures involving 66 and 110 images, while NeRF and 3DGS demonstrate
a significant degree of consistency in the macro-level rendering of the overall scene, notable
differences emerge at the micro-level.

3.2.3. Comprehensive Evaluation of 3DGS Performance

Two representative facets of the models were deliberately selected for an in-depth
comparison, to clarify the nuanced differences between the two algorithms in terms of
texture detail processing, geometric structure restoration, and lighting simulation. This
meticulous methodology was implemented across datasets comprising 66 and 110 images.

The experimental results presented in Figures 8 and 9 indicate that contrary to initial
anticipation, the rendering quality of the NeRF algorithm did not improve progressively
with an increase in the number of images; instead, it demonstrated a slight decline. This
finding hints at potential limitations within the NeRF algorithm when managing datasets
of specific sizes, or it may reflect the intricate impacts of data augmentation on model
optimization. Conversely, the rendering quality of the 3DGS algorithm remained relatively
stable as the number of images increased from 66 to 110, with no significant changes
detected. This finding highlights the superior adaptability and stability of the 3DGS
algorithm when processing datasets of varying sizes, thereby ensuring consistent and
high-quality rendering outcomes.
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Figure 8. A comparative analysis of rendering outcomes of tables/chairs. (a,b) Modeling accuracy
of chairs utilizing NeRF (Instant-NGP) with 110 and 66 Images, respectively. (c,d) Reconstruction
fidelity of chairs by 3DGS for 110 and 66 images, respectively.

Figure 9. A comparative analysis of rendering outcomes of windows. (a,b) Modeling performance of
windows achieved by NeRF (Instant-NGP) with 110 and 66 images, respectively. (c,d) Reconstruction
precision of windows via 3DGS for the corresponding sets of 110 and 66 images, respectively.

At the level of overall perception, a meticulous comparison of images rendered using
the two techniques, 3DGS and NeRF, clearly demonstrates that, under equivalent condi-
tions, images produced by 3DGS exhibit superior clarity and quality in terms of detail
representation. When closely examining the finer elements within these images, the de-
tails rendered by 3DGS appear richer and sharper. Conversely, while NeRF can generate
high-quality images, it falls slightly short in terms of the completeness and clarity of certain
details, failing to match the level of detail achieved by 3DGS.
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It is worth noting that, despite an increase in photos from 66 to 110, the 3DGS algorithm
maintains a running time difference of less than ten minutes when processing these two
datasets of different sizes. This demonstrates the algorithm’s efficiency in handling datasets
of varying sizes. However, upon in-depth analysis of various performance indicators, it
was observed that the dataset with 66 images exhibited superior LPIPS, PSNR, and SSIM
values during the iterative process. This finding suggests that, under specific algorithm
and iteration conditions, rendering quality is not always positively correlated with the
number of photos. In other words, an increase in data volume does not necessarily translate
to an improvement in rendering quality and may, in some instances, lead to a decline
in performance indicators. Therefore, in practical applications, it is crucial to reasonably
control the dataset size based on the characteristics of the specific algorithm and iteration
conditions to achieve optimal rendering results.

To accurately assess the performance of the 3DGS algorithm, image datasets of dif-
ferent sizes (110 and 66 images) were subjected to 7 k, 15 k, and 60 k iterations, and key
performance indicators such as LPIPS (Learned Perceptual Image Patch Similarity), PSNR
(Peak Signal-to-Noise Ratio), and SSIM (Structural Similarity Index) were recorded, as
shown in Table 1. As the number of iterations increased, the LPIPS values gradually
approached zero, indicating that the rendered images generated by the 3DGS algorithm
became increasingly perceptually similar to real-world scenes, thereby significantly improv-
ing the rendering quality. Simultaneously, the increase in PSNR values further reflected the
improved quality of the rendered images, specifically manifested as a reduction in image
distortion. This trend was consistent with the changes in LPIPS values, collectively validat-
ing the optimization effect of the 3DGS algorithm during the iteration process. Additionally,
a continuous rise in SSIM values was observed, indicating that the similarity between the
rendered images and real-world scenes at the structural level was also continuously en-
hanced. This finding further underscores the stability and reliability of the 3DGS algorithm
in preserving scene structural information. In summary, the changes in these performance
indicators not only reveal the continuous optimization of algorithm performance but also
provide a more comprehensive and in-depth basis for evaluating and understanding the
algorithm’s capabilities.

Table 1. Comparative indices of 3DGS performance between 110 and 66 images.

Number of
Images (Sheets).

Iteration
Count.

Times
(min) LPIPS PSNR SSIM

110
7 k 12 0.360 22.874 0.802

15 k 32 0.275 25.418 0.844
60 k 350 0.170 29.145 0.898

66
7 k 12 0.369 22.708 0.796

15 k 39 0.260 25.778 0.852
60 k 340 0.137 30.451 0.915

3.3. Parameter Tuning

Despite the outstanding performance of the 3DGS algorithm in indoor modeling
and rendering, it still exhibits deficiencies when examined through panoramic images,
as illustrated in Figure 10. During the processing of high-resolution original images
(3024 × 4032), the algorithm inevitably introduces a certain degree of information loss due
to the step of resizing the images to 1.6 k resolution, which in turn affects the rendering
quality of areas such as ceilings. Furthermore, although adaptive control of the Gaussian
function can effectively represent scenes ranging from sparse to dense, balancing the issues
of “under-reconstruction” and “over-reconstruction” is required when filling in blank
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areas. This balancing process is highly sensitive to the selection of hyperparameters for
thresholds and density levels, which directly impacts the algorithm’s runtime speed and
the final rendering quality. Additionally, the learning rate (lr), a key factor in adjusting
model parameters in deep learning, has a direct influence on covariance training and the
quality of the Gaussian model. Therefore, to optimize the model’s performance, fine-tuning
the learning rate is necessary to ensure it functions optimally during the training process.
For parameter selection, we start with the original parameter settings of the algorithm
as a baseline. We then adjust one parameter value at a time, continually tweaking its
magnitude, until the PSNR, SSIM, and LPIPS values all perform well or even surpass the
original algorithm’s effectiveness. Based on this process, we select the parameter that has
the greatest impact on these three metrics. Finally, we incorporate the optimal parameter
values obtained from the aforementioned experiments into the algorithm to generate
qualitative and quantitative results, thereby achieving the goal of parameter tuning.

Figure 10. Comparison of scene images under different numbers of best pictures and iterations.
(a) Original image; (b) rendered image.

In summary, despite the 3DGS algorithm’s excellence in multiple aspects, attention
should be paid to its potential limitations in practical applications, and further enhance-
ments in performance can be achieved through precise parameter tuning.

3.3.1. Comparison of the Effects of the 3DGS Algorithm on Images of Different Resolutions

Under the conditions of fixing the number of photos at 66 and the number of iterations
at 7000, we conducted a comparison of the training durations for images of varying reso-
lutions. Additionally, we calculated the LPIPS, PSNR, and SSIM values, with the specific
data presented in Table 2. The experimental outcomes reveal a clear trend: as the resolution
of the image’s decreases, the LPIPS value progressively approaches zero, the PSNR value
steadily increases, and the SSIM value initially declines but then rises, gradually converg-
ing towards 1. This trend indicates that the training effectiveness gradually enhances
with decreasing resolution. However, it is crucial to recognize that reducing resolution
essentially entails down-sampling the image information, which inevitably results in a
loss of image details. Therefore, it is not advisable to excessively decrease the resolution.
Figure 11 shows a comparison of the dimensions of rendered images at various resolutions.
After carefully balancing the performance indicators of LPIPS, PSNR, and SSIM, along with
considerations of efficiency and the desired size of the rendered images, we determined that
0.8 k is the optimal resolution. This choice not only guarantees the rendering quality but
also enhances training efficiency to a certain extent while mitigating the issue of excessive
image information loss.
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Table 2. Comparative analysis of various indices for the 3DGS algorithm at different resolutions.

Res Times (min) LPIPS PSNR SSIM

0.3 k 2 0.169 25.978 0.867
0.5 k 2 0.282 24.597 0.831
0.8 k 4 0.355 23.650 0.806
1.2 k 6 0.375 23.038 0.798
1.5 k 8 0.372 22.779 0.797
1.6 k 12 0.360 22.708 0.796
2 k 18 0.358 22.680 0.799

2.9 k 1662 0.334 22.530 0.806

Figure 11. Comparison of dimensions for rendered images at various resolutions. (a–g) represent
rendered images with resolutions of 0.3 k, 0.5 k, 0.8 k, 1.2 k, 1.5 k, 1.6 k, and 2 k, respectively.

3.3.2. Comparison of the Effects of the 3DGS Algorithm with Different Thresholds τ for the
Average Magnitude of Spatial Position Gradients

As shown in Table 3, with the number of photos controlled at 66 and iterations set
to 7000, we compared the training duration and calculated the LPIPS, PSNR, and SSIM
values for different threshold values of the average magnitude of spatial position gradients.
Figure 12 presents a qualitative comparison of the effects of the 3DGS algorithm under
different threshold values for the average magnitude of spatial position gradients. Visually,
there is no significant difference among the results obtained with different threshold values.
However, from a quantitative perspective, when the threshold is set to 0.0003, the LPIPS
value is closest to 0, the PSNR value is the highest, and the SSIM value is also the highest,
with no significant difference in training duration. Therefore, selecting a threshold of 0.0003
is considered appropriate.

Table 3. Comparison of various indices of the 3DGS algorithm under different thresholds of gradient
average magnitude in different spatial locations.

τ Times (min) PSNR SSIM LPIPS

0.0001 4 22.363 0.793 0.36
0.0002 4 22.708 0.796 0.36
0.0003 4 22.779 0.807 0.364
0.0004 3 22.633 0.795 0.369
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Figure 12. Comparison of rendering effects for different threshold values of the average magnitude
of spatial position gradients. (a–d) represent the rendering effects when the threshold values are set
to 0.0001, 0.0002, 0.0003, and 0.0004, respectively.

3.3.3. Comparison of the Effects of the 3DGS Algorithm Under Different Scaling Learning
Rates (Scaling_lr)

As shown in Table 4, with the number of photos controlled at 66 and iterations set to
7000, we compared the training duration and calculated the LPIPS, PSNR, and SSIM values
for different learning rates at various scaling scales. Figure 13 presents a visual comparison
of the effects, and there is not much difference. However, as shown in Table 4, when the
learning rate is set to 0.005, the performance of various indicators is the best, which aligns
with the original algorithm’s approach as discussed in this paper.

Table 4. Comparison of various indices of the 3DGS algorithm under different scaling learning rates
(Scaling_lr).

Scaling_lr Times (min) LPIPS PSNR SSIM

0.004 10 0.358 22.77 0.796
0.005 10 0.36 22.708 0.796
0.006 10 0.354 22.582 0.796
0.008 9 0.351 22.432 0.796

Figure 13. Comparison of rendering effects for different learning rates at various scaling scales.
(a–d) represent the rendering effects when the scaling scale learning rates are set to 0.004, 0.005, 0.006,
and 0.008, respectively.
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3.3.4. Comparison of the Effects of the 3DGS Algorithm Under Different Hyperparameter
Settings for Controlling the Density Level (p)

This parameter p represents the percentage of the density level of the Gaussian kernel.
Different hyperparameter settings will result in varying degrees of density for the Gaussian
kernel, which in turn affects the subsequent cloning and cropping of the Gaussian kernel. It
serves as a condition for deciding whether to clone or crop the Gaussian kernel. When the
maximum scaling of a Gaussian kernel in a certain direction exceeds a certain threshold, it
will be cropped; otherwise, it will be cloned to increase the density of the Gaussian kernel.
Figure 14 presents a visual comparison of the effects, and there is not much difference.
According to Table 5, when the SSIM value does not change significantly and the time cost
is comparable, the LPIPS and PSNR values perform best when the value of p is set to 0.001.

Figure 14. Comparison of rendering effects for different hyperparameter settings. (a–e) represents the
rendering effects when the hyperparameter settings are 0.0005, 0.001, 0.002, 0.01, and 0.1, respectively.

Table 5. Comparison of various indices for the 3DGS algorithm under different hyperparameter
settings for density levels (p).

p Times (min) LPIPS PSNR SSIM

0.0005 10 0.377 23.017 0.797
0.001 10 0.36 23.178 0.799
0.002 11 0.369 22.893 0.793
0.01 10 0.36 22.708 0.796
0.1 10 0.382 21.522 0.786

3.3.5. Ranking of Sensitivity for Four Parameters

By substituting the optimal values of the selected parameters into the algorithm
and comparing them with the original results, we obtained the differences in Structural
Similarity Index (SSIM), Learned Perceptual Image Patch Similarity (LPIPS), and Peak
Signal-to-Noise Ratio (PSNR) values for each parameter. This allowed us to rank the param-
eters based on their impact on the algorithm, preparing for the next step of optimization.
As shown in Table 6, the resolution has the greatest impact on the algorithm: it increases
SSIM and PSNR values while decreasing the LPIPS value, outperforming other parameters.
Following that, the hyperparameter controlling the density of the Gaussian kernel and the
threshold value of the average magnitude of spatial position gradients also have significant
effects. The scaling scale learning rate has the least impact on the algorithm. Therefore,
during the parameter tuning process, we will no longer alter the scaling scale learning rate.
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Table 6. Sensitivity ranking table for four parameters.

Parameter PSNR SSIM LPIPS

Res +0.942 +0.01 −0.005
p +0.47 +0.003 0
τ +0.071 +0.011 +0.004

Scaling_lr 0 0 0

3.3.6. Optimization Results

After conducting the aforementioned experiments, the final determined algorithm
parameters are as follows: a resolution of 0.8 k, a threshold set to 0.0003, and a hyperpa-
rameter controlling the density of the Gaussian kernel set to 0.001. With these parameter
settings, the algorithm demonstrates the best performance in indoor rendering.

When using a self-collected dataset, Table 7 compares the three key image quality
evaluation metrics—LPIPS, PSNR, and SSIM values—before and after algorithm tuning.
The results show that the PSNR value increased by 4.3%, marking a significant enhancement
in image sharpness or reconstruction quality. Additionally, the SSIM value also improved by
0.2%, indicating better preservation of image structural information. Figure 15 below shows
a detailed comparison of image details before and after algorithm tuning. By observing
the comparison images, it is clear that the post-tuning images exhibit sharper and clearer
details, with better preservation of structural information. These changes directly reflect
the positive impact of algorithm tuning on image quality.

Table 7. Quantitative comparison results before and after algorithm tuning.

p τ Res Times
(min) LPIPS PSNR SSIM

0.001 0.003 0.8 k 10 0.36 23.694 0.798
0.01 0.002 1.6 k 10 0.36 22.708 0.796

Figure 15. Comparison diagram of ceiling area before and after algorithm optimization. (a) Before
optimization; (b) After optimization.
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The learning outcomes displayed in Figure 16 provide further substantiation for the
rapid convergence and stability of the refined 3DGS algorithm across iterations. As the
iteration count progresses, the algorithm’s learning performance exhibits a steady enhance-
ment, with all performance metrics demonstrating favorable trends. This underscores the
capability of the 3DGS algorithm to not only deliver high-quality rendering results on
constrained datasets but also to iteratively refine its performance, thereby enhancing its
adaptability to a wide range of application scenarios and demands.

Figure 16. Iterative 3DGS training results. (a) Original image; (b) Training result after 7 k iterations;
(c) Training result after 30 k iterations.

4. Discussion
We have conducted an extensive investigation into the potential applications of the

3DGS algorithm within the realm of indoor scene modeling. Through a series of meticu-
lously designed iterative experiments and a rigorous performance evaluation framework,
we have conducted a comprehensive performance comparison between this algorithm and
the current state-of-the-art indoor scene modeling techniques, including CC (traditional
computer vision methods), COLMAP (a dense reconstruction technique grounded in Struc-
ture from Motion), and NeRF (particularly its efficient variant, Instant-NGP). Building upon
this comparative analysis, we have undertaken meticulous tuning of the 3DGS algorithm
to further augment its adaptability and expressive capabilities in indoor scene modeling.

During the tuning phase, we paid particular attention to the algorithm’s proficiency
in detail preservation, rendering efficiency, and its handling of intricate indoor structures,
such as ceilings and corners. By refining the adaptive control strategy of the Gaussian
function, optimizing the image resolution processing pipeline, and finely adjusting crucial
parameters like the learning rate, we successfully bolstered the algorithm’s performance
in capturing intricate indoor scene details, minimizing information loss, and accelerating
the rendering process. These enhancements render the 3DGS algorithm more adept at
constructing high-precision, high-quality indoor scene models, thereby providing robust
technical support for subsequent applications in virtual reality, augmented reality, and
indoor navigation.

While the 3DGS technique has made strides in indoor scene modeling, it still encoun-
ters inefficiencies and suboptimal performance when dealing with high-resolution images,
which restricts its application in complex scenarios. Despite advancements in improv-
ing reconstruction efficiency and rendering quality, the technique remains constrained
by inherent limitations and a significant reliance on auxiliary technologies, such as SFM.
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Future research endeavors should concentrate on optimizing algorithm performance and
mitigating the dependency on auxiliary technologies to achieve more efficient and precise
3D reconstruction, thereby broadening its application scope to encompass a broader range
of indoor scenes.
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19. Zimny, D.; Waczyńska, J.; Trzciński, T.; Spurek, P. Points2NeRF: Generating Neural Radiance Fields from 3D Point Cloud. Pattern
Recognit. Lett. 2024, 185, 8–14. [CrossRef]

20. Cao, J.; Yuan, Z.; Mao, T.; Wang, Z.; Li, Z. NeRF-based Polarimetric Multi-view Stereo. Pattern Recognit. 2024, 158, 111036.
[CrossRef]

21. Qin, S.; Xiao, J.; Ge, J. Dip-NeRF: Depth-Based Anti-Aliased Neural Radiance Fields. Electronics 2024, 13, 1527. [CrossRef]
22. Thomas, M.; Evans, A.; Schied, C.; Keller, A. Instant Neural Graphics Primitives with a Multiresolution Hash Encoding. Trans.

Graph. 2022, 41, 1–15.
23. Li, Q.; Wang, Z.; Jie, L.; Hu, Y.; Deng, R.; Zhang, H. Dynamic Wind Turbine Blade 3D Model Reconstruction with Event Camera.

In Proceedings of the UNIfied Conference of DAMAS, IncoME and TEPEN Conferences (UNIfied 2023), Huddersfield, UK,
29 August–1 September 2023; Ball, A.D., Ouyang, H., Sinha, J.K., Wang, Z., Eds.; Mechanisms and Machine Science, 152. Springer:
Cham, Switzerland, 2024.

24. Wang, P.; Liu, L.; Liu, Y.; Theobalt, C.; Komura, T.; Wang, W. NeuS: Learning Neural Implicit Surfaces by Volume Rendering for
Multi-view Reconstruction. arXiv 2021, arXiv:2106.10689.

25. Yariv, L.; Gu, J.; Kasten, Y.; Lipman, Y. Volume Rendering of Neural Implicit Surfaces. In Proceedings of the 2021 Conference on
Neural Information Processing Systems (NeurIPS 2021), Online, 6–14 December 2021.

26. Prokopetc, K.; Dupont, R. Towards Dense 3D Reconstruction for Mixed Reality in Healthcare: Classical Multi-View Stereo vs
Deep Learning. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW), Seoul,
Republic of Korea, 27–28 October 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 2061–2069.

27. Lu, Y.; Wang, S.; Fan, S.; Lu, J.; Li, P.; Tang, P. Image-based 3D reconstruction for Multi-Scale Civil and Infrastructure Projects: A
Review from 2012 to 2022 with New Perspective from Deep Learning Methods. Adv. Eng. Inform. 2024, 59, 102268. [CrossRef]

28. Li, S.; Li, C.; Zhu, W.; Yu, B.; Zhao, Y.; Wan, C.; You, H.; Shi, H.; Lin, Y. Instant-3D: Instant Neural Radiance Field Training Towards
On-Device AR/VR 3D Reconstruction. In Proceedings of the 50th Annual International Syposium on Computer Architecture
(ISCA’23), Orlando, FL, USA, 17–21 June 2023; Association for Computing Machinery: New York, NY, USA, 2023; pp. 1–13.

29. Croce, V.; Billi, D.; Caroti, G.; Piemonte, A.; De Luca, L.; Véron, P. Comparative Assessment of Neural Radiance Fields and
Photogrammetry in Digital Heritage: Impact of Varying Image Conditions on 3D Reconstruction. Remote Sens. 2024, 16, 301.
[CrossRef]

30. Ge, Y.; Guo, B.; Zha, P.; Jiang, S.; Jiang, Z.; Li, D. 3D Reconstruction of Ancient Buildings Using UAV Images and Neural Radiation
Field with Depth Supervision. Remote Sens. 2024, 16, 473. [CrossRef]

31. Wang, X.; Yin, Z.; Zhang, F.; Feng, D.; Wang, Z. MP-NeRF: More Refined Deblurred Neural Radiance Field for 3D Reconstruction
of Blurred Images. Knowl. Based Syst. 2024, 290, 111571. [CrossRef]

32. Wu, T.; Yuan, J.Y.; Zhang, X.L.; Yang, J.; Cao, Y.-P.; Yan, L.-Q.; Gao, L. Recent Advances in 3DGS. In Computational Visual Media;
Springer: Berlin/Heidelberg, Germany, 2024; Volume 10, pp. 613–642.

33. Jian, G.; Linzhuo, C.; Qiu, S.; Xun, C.; Yao, Y. Advances in Differentiable Rendering Based on Three-Dimensional Gaussian
Splatting (Invited). Laser Optoelectron. Prog. 2024, 61, 1611010.

34. Horé, A.; Ziou, D. Image Quality Metrics: PSNR vs. SSIM. In Proceedings of the 20th International Conference on Pattern
Recognition, Istanbul, Turkey, 23–26 August 2010; pp. 2366–2369.

35. Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image Quality Assessment: From Error Visibility to Structural Similarity.
IEEE Trans. Image Process. 2004, 13, 600–612. [CrossRef] [PubMed]

36. Zhang, R.; Isola, P.; Efros, A.A.; Shechtman, E.; Wang, O. The Unreasonable Effectiveness of Deep Features as a Perceptual Metric.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018;
pp. 586–595.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.patrec.2024.07.002
https://doi.org/10.1016/j.patcog.2024.111036
https://doi.org/10.3390/electronics13081527
https://doi.org/10.1016/j.aei.2023.102268
https://doi.org/10.3390/rs16020301
https://doi.org/10.3390/rs16030473
https://doi.org/10.1016/j.knosys.2024.111571
https://doi.org/10.1109/TIP.2003.819861
https://www.ncbi.nlm.nih.gov/pubmed/15376593

	Introduction 
	Methods 
	3D Rendering Algorithms-NeRF(Instant-NGP) 
	Volume Rendering 
	Multi-Resolution Hash Encoding 

	3D Rendering Algorithms-3DGS 
	Evaluation Indices 
	PSNR 
	SSIM 
	LPIPS 

	Test Data Preparation 

	Results 
	Image Data Acquisition and Preprocessing 
	Algorithm Performance Comparison 
	Comparison of Rendering Time and Results Among Four Algorithms 
	Comparison of Reconstruction Results with Varying Image Quantities 
	Comprehensive Evaluation of 3DGS Performance 

	Parameter Tuning 
	Comparison of the Effects of the 3DGS Algorithm on Images of Different Resolutions 
	Comparison of the Effects of the 3DGS Algorithm with Different Thresholds  for the Average Magnitude of Spatial Position Gradients 
	Comparison of the Effects of the 3DGS Algorithm Under Different Scaling Learning Rates (Scaling_lr) 
	Comparison of the Effects of the 3DGS Algorithm Under Different Hyperparameter Settings for Controlling the Density Level (p) 
	Ranking of Sensitivity for Four Parameters 
	Optimization Results 


	Discussion 
	References

