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Abstract: Cartographic design is fundamental to effective mapmaking, requiring adherence
to principles such as visual hierarchy, symbolization, and color theory to convey spatial in-
formation accurately and intuitively, while Artificial Intelligence (AI) and Large Language
Models (LLMs) have transformed various fields, their application in cartographic design
remains underexplored. This study assesses the capabilities of a multimodal advanced
LLM, GPT-4o, in understanding and suggesting cartographic design elements, focusing
on adherence to established cartographic principles. Two assessments were conducted:
a text-to-text evaluation and an image-to-text evaluation. In the text-to-text assessment,
GPT-4o was presented with 15 queries derived from key concepts in cartography, covering
classification, symbolization, visual hierarchy, color theory, and typography. Each query
was posed multiple times under different temperature settings to evaluate consistency
and variability. In the image-to-text evaluation, GPT-4o analyzed maps containing deliber-
ate cartographic errors to assess its ability to identify issues and suggest improvements.
The results indicate that GPT-4o demonstrates general reliability in text-based tasks, with
variability influenced by temperature settings. The model showed proficiency in classi-
fication and symbolization tasks but occasionally deviated from theoretical expectations.
In visual hierarchy and layout, the model performed consistently, suggesting appropriate
design choices. In the image-to-text assessment, GPT-4o effectively identified critical design
flaws such as inappropriate color schemes, poor contrast and misuse of shape and size
variables, offering actionable suggestions for improvement. However, limitations include
dependency on input quality and challenges in interpreting nuanced spatial relationships.
The study concludes that LLMs like GPT-4o have significant potential in cartographic
design, particularly for tasks involving creative exploration and routine design support.
Their ability to critique and generate cartographic elements positions them as valuable
tools for enhancing human expertise. Further research is recommended to enhance their
spatial reasoning capabilities and expand their use of visual variables beyond color, thereby
improving their applicability in professional cartographic workflows.

Keywords: large language models (LLMs); cartographic design; artificial intelligence (AI);
cartographic principles; AI-assisted mapmaking

1. Introduction
Cartographic design is the backbone of effective mapmaking, transforming raw ge-

ographical data into meaningful, accessible, and visually compelling information [1,2].
The application of principles such as visual hierarchy, layout, symbolization, scale, color
choices, symbol sizes, and data classification ensures that maps convey accurate spatial
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information in an intuitively understandable manner [3,4]. A well-designed map not only
distills complex spatial data into clear insights but also anticipates the needs of diverse
audiences—including scientists, policymakers, and the general public—thereby facilitating
informed decision-making [5,6]. Without proper attention to these cartographic principles,
maps may become unclear, misleading, or overly complex, thus failing in their fundamental
goal of effective communication. As geographic data continues to grow in volume and com-
plexity, adherence to these principles becomes increasingly critical to prevent information
overload and to ensure that maps remain usable tools [7].

Artificial Intelligence (AI) and Large Language Models (LLMs) have rapidly trans-
formed numerous fields, from healthcare and finance to entertainment and education [8,9].
Among these, Generative Pre-trained Transformer (GPT) models, such as GPT-3 and GPT-4,
exemplify the sophisticated capabilities of LLMs in understanding and generating human-
like language. These advances have been driven by the increased availability of data
and computational power, alongside the development of transformative architectures like
the Transformer model [10], which underpins many LLMs, including GPT. In areas such
as natural language processing, pattern recognition, and automated content creation, AI
technologies, particularly GPT-based models, have demonstrated exceptional capabilities,
expanding what was once thought possible for machine-assisted tasks [11].

LLMs, such as GPT-3 and beyond, have been impactful in domains that require
interaction with language, including creative writing, automated customer service, and
complex research synthesis [12,13]. Their ability to understand context, provide detailed
explanations, and generate fluent text has made them valuable tools for enhancing human
capabilities in both routine and intellectually demanding tasks [14]. As AI technologies
grow more sophisticated, their use cases are expanding to new domains, including the
traditionally human-centric field of cartography. Investigating the integration of AI into
creative and technical fields like mapmaking is essential for understanding how these
technologies can enhance cartographic practices and overcome current limitations [15].

While there have been GeoAI studies addressing cartographic topics like map general-
ization, object detection, feature extraction, expert systems, and ontologies [15–19], there is
a noticeable lack of research on the application of LLMs in cartographic visualization and
design. Existing applications rely on standard color palettes and default settings in Python
libraries like Matplotlib, leading to uniform maps that may neglect essential cartographic
rules. This homogenization results in maps that lack diversity and fail to communicate
spatial information. Although many studies have explored the use of LLMs for spatial
analysis and map production, a comprehensive examination of their capabilities and limita-
tions in cartographic representation is still missing. The ‘black box’ nature of LLMs further
complicates the understanding of the extent and scope of their knowledge, necessitating
an in-depth analysis to uncover their cartographic potential. To address these challenges,
researchers and practitioners in the field are developing benchmarks with diverse focuses,
such as mathematics, to evaluate and enhance LLM performance. Such efforts aim to
improve their spatial reasoning capabilities and expand their use of visual variables beyond
color, ultimately advancing their role in professional cartographic workflows.

The primary purpose of this study is to assess and compare the capabilities of GPT-4o
model in understanding and suggesting cartographic design elements. In the study, the
feasibility of using GPT-4o in cartographic design processes is examined, with a focus on
how well they adhere to established cartographic principles. By evaluating their ability
to understand and implement key design aspects like visual hierarchy, symbolization,
and color usage, this research seeks to evaluate the potential role of LLMs in enhancing
cartographic workflows.
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To accomplish this, two assessments were conducted using GPT-4o, selected among
other LLMs through preliminary testing for its advanced capabilities and high performance
in natural language processing. Leveraging its multimodal capabilities to process and
integrate both textual and visual inputs, the first assessment focused on text-to-text analysis,
while the second evaluated image-to-text interpretation, both influenced by well-known
cartography textbooks [3,5,20]. The results were analyzed within the framework of five
fundamental cartographic design principles outlined in the Geographic Information Science
& Technology Body of Knowledge (GIS&T BoK), providing a systematic approach to
evaluating GPT-4o’s proficiency in cartographic interpretation.

The rest of this paper is organized as follows: Section 2 reviews relevant literature
on GeoAI, cartographic design principles, and LLM applications. Section 3 outlines the
methodology for assessing LLM capabilities in cartographic design. Section 4 presents
the study results, while Section 5 discusses the implications, limitations, and potential
opportunities for LLMs in cartography. Finally, Section 6 concludes with key findings and
recommendations for future research.

2. Literature Review
2.1. Overview of Large Language Models

LLMs have seen significant advancements in recent years due to improved neural
network architectures, increased computational power, and the availability of massive
datasets [21]. Early LLMs were focused on simple tasks like sentence completion or text clas-
sification. However, the introduction of the Transformer architecture by Vaswani et al. [10]
enabled LLMs to better understand and generate complex language structures, paving the
way for advanced models like GPT-3 and GPT-4 [22].

GPT-4, developed by OpenAI, is one of the most advanced LLMs available today,
building on the strengths of its predecessors in natural language understanding and
generation [23]. Other notable LLMs include Llama, developed by Meta [24], Gemini
by Google DeepMind [25], and Claude by Anthropic [26]. With hundreds of billions of
parameters, these models excel at understanding syntax, semantics, and world knowledge.
They can engage in sophisticated dialogue, translate languages, summarize documents,
and create content such as stories or poems. Their adaptability across domains marks a
shift from task-specific models to general-purpose intelligence tools.

LLMs have demonstrated capabilities in logical reasoning and multi-step problem-
solving, supported by reinforcement learning from human feedback (RLHF), which helps
align model outputs with human expectations [27]. These capabilities are driving transfor-
mative changes across various industries by streamlining workflows, assisting profession-
als, and enhancing creative processes. In healthcare, they support clinical workflows, assist
in analyzing medical literature, and aid in diagnosing conditions [28,29]. In education,
LLMs function as adaptive tutoring systems, generate content, and provide personalized
feedback, which helps both educators and students by creating lesson plans and educa-
tional materials that enrich the learning experience [30]. Creative industries also benefit,
as writers, designers, and artists utilize LLMs to brainstorm ideas and collaborate on
content [31]. Technical fields like software development leverage LLMs for code genera-
tion and problem-solving. Additionally, in financial and legal sectors, LLMs automate
tasks such as market sentiment analysis, report generation, and legal research, making
information processing more efficient [32–34].

An emerging frontier in LLM development is multimodality, where models can pro-
cess and integrate data across diverse formats, such as text, images, audio, and video.
Multimodal LLMs demonstrate remarkable capabilities by interpreting visual data and
generating accurate, context-aware textual descriptions. For example, these models can
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analyze complex images—ranging from medical scans to infographics—and provide pre-
cise textual summaries or annotations that aid in diagnostics, accessibility, and content
understanding [35,36]. This capability expands the scope of applications for LLMs, enabling
cross-disciplinary workflows such as image-based documentation, enhanced accessibility
tools for visually impaired individuals, and automation in creative tasks like generating
captions or narratives for visual content.

Despite significant advancements in artificial intelligence, critical ethical and practical
challenges persist. Among these are biases embedded in model outputs, which can perpet-
uate systemic inequalities and lead to unfair outcomes [37,38]. Additionally, the potential
for misinformation dissemination raises concerns about the reliability and trustworthiness
of AI-generated content [39,40]. Furthermore, the substantial environmental impact associ-
ated with training large-scale models underscores the need for sustainable practices in AI
development [41,42].

2.2. GeoAI in Cartography

GeoAI, a confluence of geographic information science and artificial intelligence, has at-
tracted considerable interest for its potential to transform cartographic design. By enabling
automated processes and enhancing the efficiency of traditionally complex cartographic
tasks, GeoAI has emerged as a promising tool in spatial science [43–45].

GeoAI models have facilitated various cartographic applications, particularly in au-
tomating labor-intensive tasks like map generalization and symbolization [17,18,46,47].
Researchers have leveraged machine learning models to streamline map production by
automating repetitive design tasks, such as positioning and color schematization, which
traditionally require expert input [48], while AI models have been applied to tasks rang-
ing from spatial pattern recognition to geospatial visualization, their success depends on
specific data modalities, such as raster or vector data, which suit distinct cartographic
functions [19].

A promising area involves integrating GeoAI with cartographic symbolism. Some
studies have explored GeoAI for “active cartographic symbolism”, where AI models assist
in selecting optimal design parameters to match user contexts, moving beyond rigid
rule-based frameworks to more adaptive and context-sensitive designs [49]. Specifically,
LLMs enhance AI-assisted mapmaking by generating thematic elements, labeling, and
interpreting spatial datasets. For instance, the development of Autonomous Geographic
Information Systems (GISs) leverages LLMs’ capabilities in natural language understanding,
reasoning, and coding to automate spatial data collection, analysis, and visualization [50].
Additionally, the GeoLLM framework demonstrates how LLMs can extract geospatial
knowledge, contributing to tasks such as population density measurement and economic
livelihood assessments [51].

Furthermore, LLMs with geospatial technologies have demonstrated potential in
enhancing GIS applications and democratizing their accessibility. Zhang et al. [52] intro-
duced BB-GeoGPT, a GIS-specific LLM that utilizes curated training data (BB-GeoPT and
BB-GeoSFT) and an evaluation dataset (BB-GeoEval) to improve the model’s geospatial
understanding and performance. Their findings underscore the model’s superiority over
general-purpose LLMs like Alpaca-7B and Vicuna-7B but highlight limitations compared
to GPT-3.5-turbo, particularly in addressing GISs’ interdisciplinary demands. Concurrently,
Mansourian and Oucheikh [53] proposed ChatGeoAI, a system leveraging LLMs for trans-
lating natural language queries into geospatial analysis code, exemplifying its utility in
domains like health and disaster management. Their study emphasizes the need for error
correction loops and Retrieval-Augmented Generation (RAG) to refine system reliability
and expand its contextual scope. Zhang et al. [54] also introduced MapGPT, a framework
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employing GPT-4 to autonomously design maps based on natural language inputs. With
68 dedicated mapping tools, MapGPT aims to benefit both professional cartographers and
non-experts, though limitations in interaction design, tool diversity, and cartographic best
practices require further exploration.

Despite significant advancements in GeoAI, technical challenges persist. Notably,
current GeoAI-based metrics often provide superficial evaluations that fail to capture the
intricate nuances of cartographic design, thereby limiting their application. Kang et al. [55]
highlight that although AI techniques like Generative Adversarial Networks (GANs) can
transfer multiscale map styles, they may not fully replicate the complexities inherent in
traditional cartographic aesthetics. Quantitative, machine-based metrics provide scalable
methods to assess map quality; however, they often fall short in evaluating the subjective
aesthetic elements crucial to effective map design [56]. Another significant challenge is the
interpretability of AI outputs. The opaque nature of “black-box” models obscures the un-
derstanding of how specific inputs influence cartographic decisions, thereby complicating
error tracking and quality assurance processes [57].

2.3. Cartographic Design Principles

In the creation of maps, cartographers must make numerous decisions to effectively
visualize geographic information. This process involves several critical steps, including
the classification of data, the design of symbolization and visual variables, and the deter-
mination of visual hierarchy and layout, as well as decisions on color schemes and the
appropriate use of typography. These stages are well-documented across the literature,
particularly in foundational cartography textbooks. Among these resources, one stands out
as particularly comprehensive: The GIS&T BoK, which provides an in-depth exploration of
these mapping principles and practices.

GIS&T BoK is a foundational resource outlining the essential concepts, methodologies,
and competencies within geographic information science and technology. Initially pub-
lished in 2006 by the University Consortium for Geographic Information Science (UCGIS),
the BoK serves as a reference framework for curriculum development, professional certi-
fication, and research in GIS&T. It organizes its content into ten Knowledge Areas, each
subdivided into Units and Topics, covering diverse domains such as spatial analysis, data
modeling, and cartography, which allows for a systematic understanding of geospatial
science [20,58,59].

The GIS&T BoK identifies several key principles that are instrumental for cartogra-
phers: classification, visual hierarchy and layout, symbolization and visual variables, color
theory, and typography. Each principle plays a unique role in organizing, displaying, and
interpreting spatial data, ensuring that maps are both visually engaging and analytically
informative. These cartographic principles are outlined below in five categories based on
the GIS&T BoK.

Classification: Transforming raw data into structured categories through classification
enhances visual interpretation in cartography. Classification is a key component within the
broader category of “Statistical Mapping, Enumeration, Normalization, and Classification”
as described in the GIS&T BoK. The equal interval method is ideal for uniformly distributed
data with familiar ranges, as it creates classes with consistent intervals, making it easy
to interpret. However, it may not account for uneven data distributions. The quantiles
(equal count) method is well-suited for ordinal data or evenly distributed datasets, as it
places an equal number of observations into each category, highlighting patterns clearly.
This approach is intuitive for users but may obscure outliers due to the forced balance in
counts. Meanwhile, the mean–standard deviation method excels with normally distributed
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datasets, providing meaningful distinctions around ‘averages’ and deviations, making it
effective for highlighting data trends in such distributions [20].

Visual Hierarchy and Layout: Visual design principles highlights the distinctions
between attributes perceived as ‘stronger’ or ‘weaker’ in a visual hierarchy. Key elements
such as size, color, focus, and arrangement play a critical role in guiding viewer attention
and establishing visual dominance. Larger elements naturally draw more attention than
smaller ones, while warm hues and highly saturated colors are more visually prominent
than cool or pale tones. Additionally, contrast in color value—such as dark on light or light
on dark backgrounds—significantly enhances visibility, emphasizing the importance of
contrast as a fundamental aspect of effective design [20].

Symbolization and Visual Variables: Symbolization translates data attributes into
visual forms, making abstract information accessible. For nominal data, which represents
categories without inherent order, variables like shape, color hue, orientation, and texture
are highly effective, as they allow clear distinction between categories without implying
hierarchy or progression. In contrast, ordinal data, characterized by a meaningful order
among categories, benefits from variables such as size, color value, color saturation, and
transparency, which intuitively convey a sense of progression or ranking. Finally, for
numerical data, where precise quantities and measurable intervals are essential, variables
like size, color value, color saturation, and texture excel, as they enable proportional
representation and fine granularity [20].

Color Theory: The principles of color theory play a crucial role in enhancing both the
aesthetics and readability of maps. To create effective maps and visualizations, the careful
selection and arrangement of colors is essential to reflect the underlying data structure. A
database of color palettes tailored for choropleth and qualitative maps has been developed,
incorporating three types of color schemes based on the number of classes and the data’s
nature [3,60]. Sequential schemes are designed to depict ordered data, progressing from
light to dark hues to represent increasing values, making them ideal for data such as
percentages or densities. Diverging schemes combine two sequential schemes diverging
from a shared midpoint, useful for highlighting critical thresholds or contrasts, such as
increases and decreases in a phenomenon. Qualitative schemes, conversely, employ distinct
hues of similar lightness to differentiate between categories, ensuring visual emphasis is
given to key data points, making them ideal for nominal or categorical data like land use
or inventory maps [20].

Typography: Effective typography is essential for map legibility, as it influences the
clarity and hierarchy of information. According to GIS&T BoK, primary labels (e.g., place
names) should stand out, while secondary labels remain subdued to create a clear infor-
mation structure. Typeface choices can also reflect the map’s tone, with sans-serif fonts
often suggesting modernity and serif fonts tradition. Well-designed typography avoids
clutter, guiding users through textual and graphical elements fluidly. Furthermore, it is
essential to acknowledge the concept of the “semantic effect” of typefaces, a phenomenon
extensively explored in prior research. Empirical evidence indicates that typefaces pos-
sess distinct personalities that can evoke specific emotional or cognitive associations in
viewers [61,62]. This inherent personality of typefaces influences how textual content is
perceived, interpreted, and understood. The “semantic effect”, as defined by Childers and
Jass [63], refers to this ability of typefaces to convey meaning or evoke impressions beyond
the literal content of the text they display [20].
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3. Methodology
3.1. Research Design

This research employs a mixed-methods approach, combining qualitative and quan-
titative methodologies to comprehensively evaluate the capabilities of a large language
model, GPT-4o, in the context of cartographic design. The study involves two distinct
assessments—a text-to-text evaluation and an image-to-text evaluation—designed to gauge
GPT-4o’s proficiency in cartographic tasks and to understand the potential of LLMs for
AI-assisted mapmaking.

The text-to-text assessment focused on the model’s ability to understand and apply
cartographic theory, terminologies, and best practices. A set of 15 direct questions—three
dedicated to each of five different categories—was developed, primarily derived from key
concepts in the GIS&T BoK. The questions followed a consistent structure, such as: “As
a cartographer tasked with creating a map to [task], which [method] would you choose?
Provide only a short answer, without explanation”. These queries required the model to
identify the most suitable cartographic method for various tasks, ensuring responses were
succinct to facilitate quantitative evaluation.

Each text-based query was posed 100 times using OpenAI’s API with Python, ensuring
a zero-shot mode with a clear history and memory reset between each attempt. This
approach provided quantitative metrics to assess the consistency and reliability of GPT-4o’s
responses. The distribution of the results was analyzed both qualitatively and quantitatively,
offering in-depth insights into the model’s interpretative abilities and examining how well
it aligns with cartographic conventions and standards.

The image-to-text evaluation tested GPT-4o’s ability to analyze and interpret visual
cartographic elements. Stimuli were drawn from established cartography textbooks to
ensure that the maps and design elements represented cartographic norms. Each image
contained deliberate cartographic errors, such as typographic issues or improper sym-
bolization, to gauge the model’s ability to identify these mistakes and provide suitable
corrections. A set of five image-based queries was created, each featuring basic maps or
map components with specific intentional errors. The model was asked questions like: “Is
this [method] correct on this map? Briefly critique it and suggest a new one if applicable”.

Using the GPT-4o user interface, each image-based query was presented 10 times
in a zero-shot mode with memory reset between attempts. The results were analyzed
qualitatively in depth, incorporating information from textbooks and leveraging the authors’
domain knowledge. This combination allowed for both in-depth qualitative insights
into the model’s interpretative abilities and quantitative assessment of its consistency
and reliability.

Both assessments were structured to provide a systematic evaluation of GPT-4o’s
performance using fundamental cartographic design principles, which serve as ideal
benchmarks for evaluating AI capabilities in mapmaking. Qualitative and quantitative
methodologies were combined, and the distribution of responses was analyzed to com-
prehensively assess the model’s proficiency in cartographic tasks and to understand the
potential of LLMs for AI-assisted mapmaking.

3.2. LLM Selection and Temperature Settings

GPT-4o was selected for this study following a preliminary testing phase due to its
advanced multimodal capabilities and consistently high performance in natural language
processing, contextual understanding, and cartographic interpretation. Several key cri-
teria informed the decision to use GPT-4o over other LLMs, such as Llama and Gemini.
These criteria included the model’s parameter size, benchmark test results, and specific
performance in geography-related studies [64,65].
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The temperature parameter in LLMs controls the randomness of the generated output,
affecting the balance between creativity and consistency. Lower temperatures (close to 0)
make the output more predictable, producing responses that align closely with common
patterns and established knowledge. Higher temperatures (approaching 1 or beyond)
introduce more variability, encouraging the model to take creative or less conventional
approaches. In our text-to-text experiments, three temperature settings were tested: 0.4
(less creative), 0.7 (default), and 1.0 (most creative), allowing us to observe and discuss
the variability in responses across these levels. For our image-to-text experiments, the
default temperature value of 0.7 was used to maintain a balanced approach, as high levels
of creativity were not required in this context. This approach helped us evaluate how
temperature adjustments impact both the consistency and creativity of the model’s output.

4. Results
4.1. Text-to-Text Assessment

The results are presented using a structured approach that combines tables and vi-
sualizations to enhance clarity and accessibility. An initial summary table highlights the
categories and corresponding queries, offering a quick overview. This is followed by de-
tailed sub-tables organized by category, allowing for focused analysis within each thematic
area. Variability in responses across temperature settings of 0.4, 0.7, and 1.0 is illustrated,
demonstrating how the distribution of answers shifts with different settings. Finally, a
heatmap provides a comprehensive view of response consistency across all questions and
temperature settings, highlighting areas where the model’s reliability varies.

Table 1 provides a summary of the various categories and corresponding queries used
in the text-to-text assessment. The table organizes the queries into distinct thematic cate-
gories that reflect key aspects of cartographic design, allowing for a systematic evaluation
of the model’s capabilities.

Table 1. Thematic Categorization of Queries for Text-to-Text Assessment in Cartographic Design Evaluation.

Query No. Category Query

1 Classification Map with uniform data distribution, which classification?

2 Classification Map with normal data distribution, which classification?

3 Classification Map with evenly distributed ordinal data, which classification?

4 Visual Hierarchy and Layout Strong contrast, which color?

5 Visual Hierarchy and Layout Weak contrast, which color?

6 Visual Hierarchy and Layout A background layer that visually recedes, which color?

7 Symbolization and the Visual Variables Nominal data, which visual variable?

8 Symbolization and the Visual Variables Ordinal data, which visual variable?

9 Symbolization and the Visual Variables Numerical data, which visual variable?

10 Color Theory Ratio data, which color scheme?

11 Color Theory Land Use/Land Cover data, which color scheme?

12 Color Theory Visualize the cheapest and most expensive places to live in a city, which
color scheme?

13 Typography A map depicts legal designations of property, which typeface?

14 Typography A map depicts entertainment venues someone has visited, which typeface?

15 Typography A map depicts Star Wars planets and colonies, which typeface?

In the Classification category, queries are designed to assess the model’s suggestions
for classifying data types based on their distribution (e.g., uniform, normal, or evenly
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distributed ordinal data). Expected responses include the use of equal intervals for uni-
form distributions, standard deviation for normal distributions, and quantiles for evenly
distributed ordinal data [20].

Visual Hierarchy and Layout includes questions regarding color choices to establish
different levels of visual importance. Expected contrasts include the following: strong
contrast is achieved through large size, warm hues, intense saturation, and bold transitions
between dark and light values; conversely, weak contrast is characterized by small size,
cool hues, pale saturation, and subtle transitions between dark and light values [20].

The Symbolization and Visual Variables category focuses on determining which visual
variables should be used for nominal, ordinal, or numerical data representation. For nomi-
nal data, expected variables include shape, color hue, orientation, and texture. Ordinal data
should utilize size, color value, color saturation, transparency, crispness, and resolution,
while numerical data primarily relies on size as a visual variable [20].

Color Theory examines the use of color schemes appropriate for various types of data.
Sequential color schemes are expected for ratio data, qualitative schemes for land use/land
cover data, and diverging schemes for cheapest and costliest locations [20].

Lastly, the Typography category tests the model’s recommendations for suitable
typefaces for different types of maps, ranging from property maps to entertainment-focused
depictions. Unlike other categories, Typography does not have a single correct answer, as
multiple fonts can effectively fulfill the same purpose among the thousands of available
options [20].

4.1.1. Classification

Table 2 presents the distribution of responses generated under different temperature
settings, focusing on nominal data, normally distributed data, and evenly distributed
ordinal data. Bolded entries in the table denote the expected optimal responses for each
data type, serving as a benchmark against cartographic best practices.

Table 2. Distribution of Response Rates Across Temperature Settings for Uniform Distribution,
Normal Distribution, and Evenly Distributed Ordinal Data.

No. Query Temperature 0.4 (%) Temperature 0.7 (%) Temperature 1.0 (%)

1 Uniform distribution Equal Intervals: 99
Natural Breaks: 1

Equal Intervals: 92
Quantiles: 7
Natural Breaks: 1

Equal Intervals: 85
Quantiles: 12
Natural Breaks: 3

2 Normal distribution Natural Breaks: 47
Equal Intervals: 40
Quantiles: 13

Natural Breaks: 63
Equal Intervals: 22
Quantiles: 14
Std. Deviation: 1

Natural Breaks: 63
Equal Intervals: 17
Quantiles: 18
Std. Deviation: 2

3 Evenly distributed ordinal data Equal Intervals: 100 Equal Intervals: 96
Natural Breaks: 3
Quantiles: 1

Equal Intervals: 93
Natural Breaks: 7

Bolded responses denote the expected answers according to GIS&T BoK.

For uniform distribution, the model consistently recommended the ‘Equal Intervals’
method across all temperature settings, demonstrating reliability even with increased
randomness, though some minor variations appeared at higher temperatures. In the case of
normally distributed data, the model’s responses diversified as temperature increased, with
‘Natural Breaks’ becoming more prominent. Conversely, the expected response, ‘Standard
Deviation’, was rarely observed at higher temperatures, suggesting that the observed shift
might stem from amplified variability rather than the appropriateness of the response.
Similarly, for evenly distributed ordinal data, the model predominantly suggested ‘Equal
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Intervals’ rather than the desired ‘Quantiles’, while the model’s recommendations cannot
be deemed entirely incorrect given the nuanced dependence on specific data characteristics,
they are not fully aligned with theoretical expectations.

4.1.2. Visual Hierarchy and Layout

Table 3 highlights the distribution of responses across temperature levels for design
prompts targeting contrast and background emphasis. Bolded responses in the table
indicate optimal answers based on GIS&T BoK, serving as benchmarks for evaluation.

Table 3. Distribution of Response Rates Across Temperature Settings for Contrast and Background
Emphasis Prompts.

No. Query Temperature 0.4 (%) Temperature 0.7 (%) Temperature 1.0 (%)

1 Strong contrast Complementary: 100 Complementary: 100 Complementary: 99
Vibrant, Saturated: 1

2 Weak contrast Light Gray: 100 Light Gray: 95
Muted or Pastel: 5

Light Gray: 84
Muted or Pastel: 16

3 Receding background Soft or Muted: 100 Soft or Muted: 100 Soft or Muted: 100
Bolded responses denote the expected answers according to GIS&T BoK.

For strong contrast, the model consistently selected ‘Complementary’ colors across
all temperatures, demonstrating a stable application of color hue principles, with warmer
colors used effectively for stronger contrasts. In weak contrast scenarios, the model primar-
ily leaned towards gray tones, incorporating only a single color from the range of cooler
hues on the opposite side of the color wheel. Higher temperatures introduced slightly
more variety, with muted and pastel tones appearing 10% more frequently. For background
receding effects, the model reliably adhered to expectations, selecting soft, muted colors
such as light gray, pale blue, and soft green, regardless of temperature.

4.1.3. Symbolization and the Visual Variables

In this section, the model’s capability to assign appropriate visual variables to different
types of cartographic data—nominal, ordinal, and numerical—based on text-to-text queries
was evaluated, as presented in Table 4.

Table 4. Distribution of Response Rates Across Temperature Settings for Visual Variables to Nominal,
Ordinal, and Numerical Data .

No. Query Temperature 0.4 (%) Temperature 0.7 (%) Temperature 1.0 (%)

1 Nominal data Color Hue: 93
Color: 7

Color Hue: 88
Color: 12

Color Hue: 76
Color: 24

2 Ordinal data Color Hue: 99
Color Value: 1

Color Hue: 96
Color Value: 4

Color Hue: 92
Color Value: 8

3 Numerical data Color Value: 40
Color Hue: 34
Color Saturation: 14
Color Gradients: 11
Color: 1

Color Value: 44
Color Hue: 21
Color Gradients: 17
Color Saturation: 12
Color: 6

Color Value: 42
Color Gradients: 16
Color Saturation: 14
Color Hue: 9
Color: 9
Size: 8
Graduated Symbols: 2

Bolded responses denote the expected answers according to GIS&T BoK.

For nominal data, the model consistently selects ‘Color Hue’ as the primary visual
variable, aligning with expected preferences. However, as the temperature increases, a
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slight expansion of choices is observed, though the model generally overlooks other suitable
variables namely shape, orientation, and texture outlined in the GIS&T BoK. For ordinal
data, the model predominantly assigns ‘Color Hue’, while occasionally incorporating ‘Color
Value’ (a combination of the original responses ‘Choropleth Shading’ and ‘Graduated
Colors’) as the temperature rises, while ‘Color Value’ aligns with the expected response,
the predominant attribute, ‘Color Hue’, is not recommended as a good practice for ordinal
data according to the GIS&T BoK. Despite the GIS&T BoK listing multiple viable visual
variables for ordinal data, such as size, transparency, and crispness, the model’s responses
remain narrowly focused on color-based solutions. For numerical data, the results are
notably diverse. At lower temperatures, the model demonstrates a preference for ‘Color
Value’ and ‘Color Hue’. As the temperature increases, the responses broaden significantly,
encompassing ‘Color Gradients’, ‘Color Saturation’, and occasionally the expected ‘Size’
variable, which aligns better with GIS&T BoK recommendations.

4.1.4. Color Theory

Table 5 outlines the distribution of the model’s responses for prompts addressing
the use of color schemes in three scenarios: ratio data, land use/land cover, and thematic
representation of economic data, such as the cheapest and costliest places.

Table 5. Distribution of Response Rates Across Temperature Settings for Color Scheme Selection in
Ratio Data, Land Use/Land Cover, and Economic Thematic Mapping.

No. Query Temperature 0.4 (%) Temperature 0.7 (%) Temperature 1.0 (%)

1 Ratio data Sequential: 100 Sequential: 100 Sequential: 100

2 Land Use/Land Cover Earth Tones: 100 Earth Tones: 100 Earth Tones: 100

3 Cheapest & Costliest Places Diverging: 100 Diverging: 100 Diverging: 100
Bolded responses denote the expected answers according to GIS&T BoK.

For ratio data, the model consistently suggests a sequential color scheme, reflecting
an appropriate approach for ordered data, regardless of temperature. In the case of land
use/land cover data, where a qualitative scheme is expected, the model demonstrates a
nuanced understanding of color theory. It predominantly suggests custom color palettes, a
subset of qualitative schemes, including greens for vegetation, browns for urban areas, and
blues for water bodies, aligning with traditional cartographic practices, while temperature
variations introduce slight changes (e.g., gray for urban areas or brown for barren land),
the underlying recommendations remain aligned with established principles. For thematic
representations of economic extremes, such as the cheapest and costliest locations, the
model consistently opts for a diverging scheme, often suggesting shades of green for the
cheapest areas and shades of red for the most expensive. This adherence to the expected
diverging color scheme persists across all temperature levels, with no alternative color
combinations offered.

4.1.5. Typography

Table 6 illustrates the distribution of the model’s typographic suggestions across dif-
ferent temperature settings (0.4, 0.7, and 1.0) within the Typography category, showcasing
its ability to adapt to various cartographic contexts: ‘Property Legal Designations’, ‘Visited
Entertainment Venues’, and ‘Star Wars Planets & Colonies’.

The results demonstrate the influence of temperature on creativity and variability
in font selection. Lower temperatures tend to favor stable and conventional typeface
choices, while higher temperatures introduce greater diversity and creativity. For instance,
in the ‘Property Legal Designations’ context, Helvetica was the dominant choice across all
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settings, reflecting its clean and professional semantic effect. Although higher temperatures
introduced alternatives like Garamond and Gotham, the overall variability remained
limited, aligning with the semantic needs of this context.

Table 6. Distribution of Response Rates Across Temperature Settings for Divers Cartographic Contexts.

No. Query Temperature 0.4 (%) Temperature 0.7 (%) Temperature 1.0 (%)

1 Property Legal Designations Helvetica: 59
Sans-Serif: 17
Serif: 14
Garamond: 9
Arial: 1

Helvetica: 68
Garamond: 12
Sans-Serif: 8
Serif: 5
Gotham: 5
Arial: 2

Helvetica: 56
Garamond: 13
Serif: 12
Gotham: 7
Sans-Serif: 5
Arial: 2
Other: 5

2 Visited Entertainment Venues Helvetica: 89
Sans-Serif: 11

Helvetica: 78
Sans-Serif: 13
Montserrat: 4
Avenir: 4
Futura: 1

Helvetica: 56
Sans-Serif: 12
Avenir: 10
Futura: 8
Montserrat: 7
Open Sans: 3
Other: 4

3 Star Wars Planets & Colonies Eurostile: 64
Trajan: 15
Star Jedi: 8
Star Wars: 5
News Gothic: 3
Sans-Serif: 2
Other: 3

Eurostile: 57
Trajan: 15
Star Jedi: 6
Aurebesh: 5
Bank Gothic: 4
Futura: 3
Other: 10

Eurostile: 40
Trajan: 17
Bank Gothic: 8
Aurebesh: 6
Futura: 4
Gotham: 4
Other: 21

In contrast, the ‘Visited Entertainment Venues’ queries displayed greater sensitivity to
temperature changes. At lower temperatures, the model preferred Helvetica, but higher
temperatures expanded the range to include fonts like Avenir and Futura, suggesting that
context and word choice significantly influence typographic diversity. For example, some
queries featured up to eight fonts even at low temperatures, while others exhibited minimal
variability. This variability underscores the importance of thematic alignment in achieving
creative outputs. Similarly, for ‘Star Wars Planets & Colonies’, the model consistently
suggested futuristic and bold typefaces such as Eurostile, which aligns with the semantic
expectations of the theme. Higher temperatures further diversified the output, introducing
imaginative fonts like Aurebesh and Star Jedi, reinforcing the model’s ability to adapt to
stylistic and thematic demands.

4.1.6. Response Consistency of GPT-4o Across Temperature Settings

Figure 1 presents a heatmap showcasing the response consistency of GPT-4o across
questions under three different temperature settings (0.4, 0.7, and 1). The heatmap provides
a comparative visual analysis of response distributions, with darker shades indicating
higher consistency and lighter shades highlighting areas of variability.

Categories like ‘Color Theory’ and ‘Visual Hierarchy and Layout’ demonstrate near-
perfect consistency across all temperature settings, suggesting a robust understanding of
these design principles. In contrast, the variability observed in responses to questions
involving more nuanced or subjective elements, such as ’Symbolization and the Visual Vari-
ables’ and ’Typography’, indicates potential limitations in the model’s ability to consistently
align with specific design conventions.
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Figure 1. Heatmap illustrating the response consistency of GPT-4o across 15 cartographic design
questions under three temperature settings.

4.2. Image-to-Text Assessment

This section focuses on evaluating the model’s capability to interpret and critique
visual cartographic elements through image-based queries. In this part of the study, a
series of five different map images, each designed with specific, deliberate errors, was
presented to the language model. The goal was to assess how effectively the model could
identify inaccuracies and provide constructive feedback or suggestions for improvement.
These images showcased basic maps or individual cartographic components, allowing
us to examine whether the model could discern principles of cartographic design from
visual input.

4.2.1. Map Scenario 1—Misleading Color Scheme

The model’s ability to interpret and critique visual cartographic elements was evalu-
ated using an illustrative map that visualized regional preferences for hotdog condiments
(ketchup, mustard, relish) based on plurality opinion (Figure 2a). This map, adapted from
Krygier and Wood [5], was intentionally designed with a misleading and problematic color
scheme—hues of red, orange, and yellow—that violated best practices in cartographic
design. These colors, being sequential and tonally similar, are neither colorblind-friendly
nor sufficiently distinct, creating confusion for viewers. When prompted, the model success-
fully identified the issue, noting the inappropriate use of sequential colors for categorical
data. It suggested a revised color scheme with more distinct and intuitive choices: red for
ketchup, yellow for mustard, and green for relish, aligning with commonly associated color
conventions. An example map created based on the suggestions is shown in Figure 2b.
Additionally, the model demonstrated the ability to assess the appropriateness of color
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schemes for individuals with visual impairments, offering alternative recommendations to
enhance accessibility.

Figure 2. (a) Example of a Misleading Cartographic Design, and (b) Improved Design Reflecting
GPT-4o Suggestions for Hotdog Condiment Preferences.

4.2.2. Map Scenario 2—Improper Monochromatic Gradient

In Figure 3a, the map, reproduced from Krygier and Wood [5], depicts farm density
across a region using a monochromatic grayscale gradient, categorized into five ranges.
This design, intentionally flawed, was employed to evaluate the model’s ability to critique
and improve cartographic visuals. Grayscale palettes, while occasionally used in cartog-
raphy, present significant challenges for interpretability, particularly for individuals with
visual impairments or in low-light conditions. The minimal contrast between adjacent
categories (e.g., “1.31–1.80” and “1.80–2.21”) diminishes clarity, making it difficult to dis-
cern spatial differences. Additionally, the color ramp in this map violates intuitive design
principles, where darker shades typically represent higher values and lighter shades lower
values. When prompted, the model successfully identified these issues, highlighting the
perceptual hierarchy problem and suggesting a more effective approach (Figure 3b). It
recommended replacing the grayscale scheme with a sequential multi-hue palette, such
as transitioning from light blue for the lowest density to darker shades for higher ranges.
Furthermore, the model demonstrated versatility by proposing texture patterns as an al-
ternative solution for scenarios requiring grayscale, showcasing its ability to adapt visual
variables for different contexts.

4.2.3. Map Scenario 3—Misleading Color Palette and Data Categorization

In Figure 4a, the map, reproduced from Krygier and Wood [5], illustrates the percent
change in interest in “Worm Rooping” across a region, segmented into six data ranges.
The map uses a sequential red-to-yellow color palette, intentionally flawed to assess the
model’s ability to critique and propose improvements for misleading visual designs. The
current color scheme assigns highly saturated red hues to minimal positive percent changes
(e.g., “1% to 25%”) while using lighter yellows for significant negative changes (e.g.,
“−500% to −1000%”), creating a misleading visual emphasis. This design misrepresentation
can bias viewers into perceiving small increases as more impactful than large decreases.
Additionally, the wide data bins for negative changes (e.g., “−500% to −1000%” and
“−100% to −499%”) and the use of overly similar hues for distinct categories (e.g., “0 to
−99%” and “1% to 25%”) obscure the granularity and accuracy of the information, reducing
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interpretability. The model effectively identified these issues, categorizing them as a lack of
intuitive gradient and clarity in distinguishing positive from negative changes (Figure 4b).
It proposed a more suitable color scheme that introduces a clear contrast between cool
tones (light blue to dark blue for positive changes) and warm tones (light orange to dark
red for negative changes), improving the visualization’s ability to convey the increasing
or decreasing trends across regions. However, it is important to note that the use of cool
tones for positive changes and warm tones for negative changes may vary depending on
the data, as well as regional and cultural differences.

Figure 3. (a) Example of Improper Monochromatic Gradient for Farm Density Visualization
(b) Improved Design Reflecting GPT-4o Suggestions.

Figure 4. (a) Example of Misleading Color Palette and Data Categorization for Percent Change in
Interest in ‘Worm Rooping’ (b) Improved Design Reflecting GPT-4o Suggestions.
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4.2.4. Map Scenario 4—Inappropriate Shape Symbolization

The map, reproduced from Krygier and Wood [5], in Figure 5a visualizes the distri-
bution of active hate groups across the United States, employing geometric shapes (stars,
diamonds, circles, squares, and triangles) to represent different numerical ranges by state.
This map contains intentional design flaws to assess the model’s capability in identifying
cartographic visualization principles. Most notably, the map employs an inappropriate
visual variable—geometric shapes—to represent quantitative data, violating fundamental
principles of visual hierarchy and perceptual ordering. Unlike continuous variables such
as size or color intensity, geometric shapes lack natural ordinal properties, making it chal-
lenging for viewers to intuitively comprehend the relative magnitudes between states. The
model demonstrated proficiency in detecting this core cartographic flaw, consistently recom-
mending more appropriate visual variables such as color gradients or proportionally sized
symbols that better align with quantitative data visualization principles (Figure 5b). Be-
yond identifying the primary design issue, the model exhibited sophisticated cartographic
understanding by suggesting several enhancement strategies: incorporating qualitative
descriptions for numerical ranges (e.g., “very high”, “moderate”, “low”), adding temporal
context to track changes over time, utilizing inset maps for areas with high density, and
implementing more granular category divisions to better capture spatial variations. These
additional recommendations reflect the model’s capacity to not only identify problematic
design choices but also propose comprehensive solutions for improving map legibility
and effectiveness.

Figure 5. (a) Example of Misleading Map Design Using Abstract Geometric Shapes to Represent
Quantitative Data of Active Hate Groups (b) Improved Design Reflecting GPT-4o Suggestions.

4.2.5. Map Scenario 5—Misused Size Variable

The map, reproduced from Krygier and Wood [5], in Figure 6a depicts the spatial
distribution of dominant hate groups across the United States, utilizing graduated circle
symbols to represent different types of extremist organizations, including the Ku Klux
Klan (KKK), Neo-Nazis, Black Separatists, Neo-Confederates, Christian Identity, and Racist
Skinheads. This map incorporates deliberate cartographic flaws to evaluate the model’s
understanding of visual variable selection principles. The primary design flaw lies in the
inappropriate use of circle size—a quantitative visual variable—to represent qualitative
categorical data. This misapplication creates an unintended hierarchical impression among
the hate group categories, potentially leading viewers to incorrectly infer relative impor-
tance or magnitude where none exists. The model successfully identified this fundamental
cartographic error, demonstrating consistent recognition that size variation is unsuitable
for categorical data representation. It appropriately recommended the use of color hues
(e.g., red for KKK, blue for Neo-Nazis, green for Black Separatists) as a more suitable
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visual variable for distinguishing between qualitative categories (Figure 6b). Beyond iden-
tifying the primary design flaw, the model exhibited broader cartographic awareness by
suggesting additional improvements: incorporating alternative visual variables such as
patterns (cross-hatching, dots, stripes), enhancing the legend with detailed explanations,
and addressing the contextual ambiguity of the term “dominant” by clarifying whether it
refers to numerical presence, influence, or geographic extent. These supplementary recom-
mendations reflect the model’s capacity to consider both technical cartographic principles
and the broader communicative context of sensitive thematic data.

Figure 6. (a) Example of Misleading Map Design Using Size Variation to Represent Categorical Data
of Dominant Hate Groups (b) Improved Design Reflecting GPT-4o Suggestions.

4.2.6. Map Scenario 6—Improper Labeling

The map in Figure 7, reproduced from Brewer [3], depicts the Pacific coastline with
three labeled locations—Cannon Beach, Pleasant Valley, and Neskowin. This map includes
intentional cartographic flaws to evaluate the model’s ability to interpret and critique
visual map elements. Notably, the labels for Cannon Beach and Neskowin are misaligned,
positioned too far to the right of their respective points, compromising spatial accuracy.
Correcting this misalignment by placing the labels in the water could better emphasize
their coastal locations. Additionally, the label for Pleasant Valley inappropriately spans
from water onto land, violating cartographic conventions, while the model identified some
of these alignment issues, it failed to recognize the specific error in the placement of the
Pleasant Valley label, highlighting a limitation in its interpretative capabilities.

Figure 7. Example of Intentionally Mislabeled Coastal Locations.
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4.2.7. Map Scenario 7—Misleading Design for Elderly People

In Figure 8, the model was evaluated for its ability to interpret and critique visual
cartographic elements of a map illustrating the percentage of the population aged 65 and
older in Florida counties during Hurricane Charley in 2004, overlaid with the storm’s
wind path. This map, reproduced from Krygier and Wood [5], intentionally designed with
flaws to test the model’s critique capabilities. The model successfully identified issues
such as poor color gradient choice and ineffective visual hierarchy—problems particularly
relevant for older viewers who may experience reduced color perception or color vision
deficiencies. However, while the model provided actionable suggestions to address these
issues, it disproportionately relied on adjustments to color properties, despite the original
source of the map (Krygier and Wood [5]) emphasizing the importance of incorporating a
variety of visual variables, such as appropriately sized proportional symbols, to enhance
map readability and accessibility.

Figure 8. Example of Misleading Map Design Using Ineffective Color Choices, Hindering Interpreta-
tion by Elderly Users.

5. Discussion
5.1. Text-to-Text Assessment

The findings from this study reveal the nuanced interplay between the GPT model’s
reliability and the variability introduced through temperature tuning across diverse car-
tographic elements. In classification tasks, the model demonstrates general reliability;
however, the influence of temperature-induced variability and the characteristics of the
underlying data significantly impact the appropriateness of its classification outputs. This
suggests that while the model is adept at responding to text-based queries, its choices
may not always align with domain-specific expectations, particularly in dynamic or high-
variability contexts.

The potential impact on cartographic workflows is notable here. The model’s ability
to handle classification tasks can streamline certain processes, such as the rapid catego-
rization of map features or labels. However, the variability introduced by temperature
adjustments may require human oversight to ensure that domain-specific criteria are met,
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especially when dealing with complex datasets. Therefore, the integration of GPT-4o into
cartographic workflows should emphasize their role in augmenting, rather than replacing,
expert judgment, particularly when precision is critical.

Regarding visual hierarchy and layout, the model performs with stability and pre-
dictability under lower temperatures, maintaining coherence and professional applicability.
However, higher temperatures foster a limited yet meaningful stylistic diversity, partic-
ularly in settings involving weaker contrasts. This ability to introduce variation while
retaining overall structural integrity highlights the model’s potential for both routine and
exploratory design scenarios. To capitalize on this, GPT-4o could be used in iterative design
workflows—where initial drafts are generated automatically and refined by designers—
allowing for faster prototyping while still ensuring alignment with best practices.

In tasks involving symbolization and visual variables, the model shows a capacity
for exploratory variability, particularly at higher temperatures. This variability allows the
model to propose diverse symbolization strategies, often favoring color variables over the
theoretically preferred ‘Size’ for representing numerical data. These outcomes underline the
model’s adaptability to creative or unconventional queries but also highlight constraints.
Specifically, there is a gap in aligning outputs with established cartographic principles,
especially at lower temperatures where more adherence to norms is expected. To integrate
GPT-4o effectively, cartographers may need to develop predefined templates or training
data that guide the model towards more conventional symbolization choices, reducing the
manual intervention required to achieve standard outcomes.

In the domain of color theory, the model reliably adheres to established principles,
maintaining consistency in its internal representation of color relationships even when vari-
ability is intentionally increased through temperature adjustments. However, constraints
arise from the model’s limited ability to contextualize these color choices within a broader
map design framework. For instance, while specific hues or tones may shift, the overall
impact on map readability may require human evaluation. The effective integration of
GPT-4o could involve coupling them with tools that simulate end-user perception, thereby
enhancing the model’s ability to consider the accessibility and usability of its color choices.

Finally, in typography, the model balances consistency and creativity effectively
through temperature tuning. Lower temperatures prioritize consistency and precision,
making the model suitable for professional and formal design contexts. Conversely, higher
temperatures enable creative exploration, offering value for thematic or imaginative design
use cases. This adaptability provides practical guidance for cartographers, allowing them
to calibrate temperature settings to achieve the desired balance between variability and
semantic alignment. Incorporating GPT-4o into cartographic workflows here could provide
significant time savings by automating typographic standardization across large-scale map
projects, with flexibility for creative customization when needed.

5.2. Image-to-Text Assessment

The evaluation of the model’s capabilities in interpreting and critiquing visual carto-
graphic elements revealed its potential to identify and address critical design flaws in seven
distinct map scenarios, each emphasizing a different type of cartographic error. Across
multiple tests, the model demonstrated proficiency in recognizing problematic aspects of
cartographic design and suggesting actionable improvements, particularly in the domains
of color schemes, accessibility, and interpretability.

Additionally, beyond detecting poorly chosen color palettes or label misalignment
issues, the model recognized the misuse of geometric shapes to represent quantitative
data and the flawed application of symbol size to differentiate categorical data, under-
scoring how mismatched visual variables can distort viewers’ perceptions—whether by
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obscuring ordinal relationships through shapes or by introducing artificial hierarchies
among categories via size. Consistent with its overall approach, GPT-4o recommended
more appropriate variables (e.g., color gradients for quantities, distinct hues or patterns for
categories) to ensure visual clarity and avoid misleading interpretations.

In terms of practical impact, these capabilities could transform cartographic review
processes. For instance, the model’s ability to identify issues like inappropriate color
schemes, poor contrast, or the misuse of shapes and size can help streamline map design
reviews, reducing the time that experts need to spend on such tasks. However, constraints
affecting these results include the model’s dependency on the quality of input imagery and
its limited ability to interpret nuanced spatial relationships, which can lead to occasional
inaccuracies, as seen in the Pleasant Valley label misalignment, which extended onto water
and created ambiguity about whether it represents a coastal or land feature. These factors
imply that the use of GPT-4o in this context requires human validation to ensure spatial
accuracy, especially for maps involving detailed labeling or intricate layouts.

The model’s critiques of visual cartographic elements—such as recommending acces-
sible color palettes or identifying perceptual imbalances—suggest that GPT-4o could be
integrated into mapmaking software as assistive features. By providing context-aware sug-
gestions during the design process, these models can serve as intelligent assistants, guiding
designers towards best practices while leaving final decisions to human experts. Addition-
ally, further training on spatial alignment and layout assessment data could enhance the
model’s utility in areas where current limitations exist.

Finally, while the model effectively recommended improvements for color gradients
and visual hierarchy, its over-reliance on color as a corrective measure indicates a need
for more robust multi-variable strategies. To integrate GPT models effectively, it would be
beneficial to augment their training with diverse visual examples that emphasize the use of
alternative variables, such as orientation or texture, ensuring that their recommendations
encompass a wider range of design tools. This would enable more comprehensive design
support, particularly for audiences with specific accessibility needs, such as older viewers
or those with visual impairments.

5.3. Limitations

Several limitations should be noted for this study. First, GPT-4o was selected according
to criteria derived from geographic studies, which may not fully address the details required
for visualization tasks. The assumption that success in text-based tasks directly translates
to success in visualization-based tasks may not always be valid. Additionally, multiple
responses from GPT-4o were analyzed to gauge the model’s handling of map knowledge, a
subject influenced by subjective interpretations. Designing a purely quantitative method
to evaluate map designs remains challenging, as cartography involves complex, context-
driven principles alongside artistic and perceptual elements that are difficult to measure.

Another limitation arises from the prompt design strategy. Variations in prompt design
can significantly affect how models like GPT-4o perform, particularly in image-to-text tasks
and map design. However, different prompt designs were not systematically examined,
since open-ended responses were used instead of a multiple-choice format, while this
approach provides richer qualitative insights—especially in creative tasks—it limits the
ability to determine the most effective prompt designs.

Lastly, the image-to-text experiments focused mainly on color, size, and shape, leaving
out other important visual variables such as orientation, density, and texture. This focus
was guided by map designs recommended in standard cartography textbooks, which
emphasize best practices for color use and labeling. Although this method made it possible
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to evaluate certain cartographic conventions, it constrained the scope of how GPT-4o’s
performance is understood in relation to the full range of visual factors.

6. Conclusions
This study evaluated the capabilities of LLMs, specifically GPT-4o, in cartographic

design through text-to-text and image-to-text tasks, revealing both strengths and limitations.
In text-based tasks, GPT-4o demonstrated adaptability, offering creative variability through
temperature tuning, yet struggled to consistently align with established cartographic princi-
ples in dynamic or domain-specific contexts. Their critiques of visual elements highlighted
strong performance in identifying and addressing issues related to color schemes, acces-
sibility, and interpretability, while limitations in spatial accuracy and over-reliance on
color-based solutions were noted. These findings position GPT-4o as reliable yet evolving
tools for cartographic workflows.

This research contributes to the emerging field of AI-assisted mapmaking by system-
atically evaluating GPT-4o’s performance across diverse cartographic design elements. It
highlights the nuanced interplay between model variability, task requirements, and carto-
graphic principles, offering practical insights into their application. The study underscores
the adaptability of GPT-4o in creative tasks, such as symbolization and typography, while
also pinpointing areas where domain-specific alignment is needed. These insights advance
understanding of how GPT-4o can complement human expertise in cartography and inform
their calibration for optimal results.

While GPT-4o show promise, this study identifies key areas for further research.
Enhancing spatial reasoning capabilities, such as improving accuracy in label placement
and alignment tasks, is critical for integrating these models into professional cartographic
workflows. Additionally, exploring their ability to leverage alternative visual variables,
such as size and texture, could reduce reliance on color-based solutions and expand their
versatility. Investigating the impact of training data characteristics and refining model
prompts to better align with domain-specific conventions also merit deeper exploration.

The findings illustrate the transformative potential of LLMs in cartography, partic-
ularly in tasks requiring creative exploration or routine design support. Their ability to
critique and generate cartographic elements positions them as valuable tools for augment-
ing human expertise. Notably, the study underscores two key applications: the system’s
proficiency in recommending color schemes aligned with color theory principles, aiding in
the creation of clear and aesthetically balanced maps, and its role as a supportive critique
tool for less experienced users, fostering the development of higher-quality maps. While
challenges remain in achieving domain-specific precision and expanding their repertoire of
visual strategies, their adaptability and scalability offer a promising foundation for future
innovation. With continued refinement and integration, LLMs have the potential to reshape
the landscape of cartographic design, enabling more accessible, inclusive, and effective
mapmaking practices.
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