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Abstract: Understanding intra-urban travel patterns through quantitative analysis is crucial
for effective urban planning and transportation management. In previous studies, a range
of distribution functions were modeled to lay the groundwork for human mobility research.
However, few studies have explored the nonlinear relationships between travel distance
patterns and environmental factors. Using travel distance data from ride-hailing services,
this research divides a study area into 1 × 1 km grid cells, modeling the best travel
distance distribution and calculating the coefficients of each grid. A machine learning
framework (Extreme Gradient Boosting combined with Shapley Additive Explanations) is
introduced to interpret the factors influencing these distributions. Our results emphasize
that the travel distance of human movement tends to follow a log-normal distribution and
exhibits spatial heterogeneity. Key factors affecting travel distance distributions include
the distance to the city center, bus station density, land use entropy, and the density of
companies. Most environmental variables exhibit nonlinear and threshold effects on the log-
normal distribution coefficients. These findings significantly advance our understanding
of ride-hailing travel patterns and offer valuable insights into the spatial dynamics of
human mobility.

Keywords: human mobility patterns; ride-hailing; distance distribution; built environment

1. Introduction
Comprehending, modeling, and forecasting human movement within urban envi-

ronments is an essential task for various domains and applications, including human
behavior [1], transportation and activity analysis [2], and urban planning [3]. Modeling the
distributions of fundamental indicators is essential for investigating latent mobility patterns
and serves as a critical foundation for advancing research in human mobility [4–6]. The re-
cent accessibility of extensive datasets on human movement and behavior has facilitated the
creation and validation of human mobility models [7]. Numerous empirical studies have
shown that mobility metrics can be effectively represented using significant distributions.

Studies have used different means of modeling individual travel metrics. A statistical
examination of banknote trajectories indicated that the displacement distribution closely
follows a power-law approximation [8]. González and colleagues performed a statistical ex-
amination of human movement patterns, analyzing six months of call detail records (CDR)
from almost 100,000 anonymous mobile phone users. They discovered that the distances
traveled by these individuals typically follow a power-law distribution, which is truncated
by an exponential function [1]. Jiang analyzed the GPS traces of 50 taxis across four Swedish
cities over a six-month period, discovering that the travel distances of cab riders follow
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a bimodal power-law distribution [2]. Liang et al. investigated a larger-scale dataset of
taxi trip distances and found that the travel distances had an exponential distribution [9].
Individual traveler characteristics, extracted from private vehicle data, indicated that trip
distances approximate an exponential distribution [10,11]. Using data from online social
networks [12–14] and GPS trajectories [9,15], it was found that the displacement distribu-
tion can be well represented using an exponential curve, particularly for short distances.
Additionally, analyses of GPS data from taxis [16,17] indicated that displacements might
also conform to log-normal distributions. Differences in the conclusions of these studies
may arise from the use of different datasets and inconsistencies in the datasets covering
the groups. The modeling and empirical results for current travel distance distributions
are mainly summarized as power-law, power law with exponential cutoff, exponential,
log-normal, and other functions.

Existing datasets in the literature include, but are not limited to, call detail records
(CDRs), location-based social network data (LBSN), GPS trajectories of vehicles, and card-
swipe records from public transportation systems such as buses or subways. However,
there is currently no consensus on which distribution best describes these empirical datasets.
Ride-hailing, as an emerging mode of transportation, shares similarities with traditional
taxis in external form but remains underexplored as an empirical dataset in mobility studies
due to its relatively recent adoption [18,19]. Online ride-hailing datasets are distinguished
by their high quality, fine-grained resolution, and extensive scale, effectively recording
precise spatiotemporal trajectories alongside actual trip origins and destinations. Conse-
quently, these services present a comprehensive and reliable data source for distribution
modeling, creating fresh opportunities and challenges for enhancing insights into human
travel patterns and urban mobility dynamics.

The impact of the built environment on human mobility cannot be overlooked, as it sig-
nificantly influences how individuals navigate within and engage with urban environments.
Since the early days of travel behavior research, the relationship between travel patterns
and the built environment has been a central topic of investigation. Components including
land use, infrastructure, and urban density are known to influence how people make travel
decisions, including their choice of transport mode, route, and travel frequency [20–22].
These studies typically use survey data to capture the interplay between human behavior
and the built environment, providing valuable insights into how localized urban features
can either facilitate or constrain mobility choices. Research on collective human mobility
patterns has frequently concentrated on exploring the overarching connection of the built
environment and spatiotemporal dynamics, as well as urban vitality. This includes investi-
gating how factors such as land use diversity, functional zoning, and the distribution of
public spaces impact human movement and activity levels across larger urban areas [23–25].
These studies explore how different urban designs and layouts can foster increased human
interaction and dynamic mobility, contributing to a city’s vibrancy and economic produc-
tivity. However, most previous studies have concentrated on general mobility patterns
rather than deeply analyzing travel metric distributions in different urban settings.

Traditional regression techniques like Ordinary Least Squares (OLS) and Random
Forest (RF) are commonly used to explore influential urban factors, yet they often face
challenges of overfitting or underfitting with urban datasets. Additionally, Prior research
typically employed methods such as Variable Relative Importance (RI) [26] and Partial
Dependence Plots (PDPs) [27] to illustrate broad relationships among variables; however,
these approaches do not adequately meet the demand for localized explanations in diverse
spatial contexts. This limitation contributes to the "black box” character of conventional
machine learning models, obscuring a detailed understanding of factor impacts on specific
local urban settings.
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Previous work in this area has several significant limitations that need to be ad-
dressed: (1) Prior research ignored the spatial heterogeneity of distance distributions using
ride-hailing and was therefore inefficient in depicting divergences in distance distribu-
tions across different urban contexts. (2) Relatively few studies have utilized large-scale
spatiotemporal datasets to specifically examine how the built environment influences hu-
man travel distances across various urban contextsc [28] and to empirically uncover the
mechanisms behind the spatial variations in distance distributions. (3) It remains unclear
how these factors differ in their nonlinear relationships with travel distances. (4) Finally,
Previous studies commonly used methods like RI and PDPs to explore broad variable
relationships, yet these techniques lack the capability to provide detailed explanations
specific to individual spatial units.

To bridge these gaps, this study seeks to analyze the nonlinear association between
the built environment and distance distribution coefficients using extensive ride-hailing
data and machine learning models. First, the data are preprocessed, and the relevant city
is divided into a 1 × 1 km grid. Second, the probability distribution function (PDF) of
travel distances in different urban contexts is empirically estimated. Third, the influence of
various variables on the parameters of probability distribution related to ride-hailing usage
is examined using Extreme Gradient Boosting (XGBoost), leveraging multivariate data
from emerging technological tools. Fourth, Shapley Additive Explanations (SHAP) analysis
is conducted to uncover the differences in how factors influence the fitting parameters.

As a result, the main goals of this study are outlined as follows: (1) To quantify the
movement distances of residents and group them based on grids, with the probability
density functions (PDFs) in different urban contexts based on the ride-hailing trips; (2) to
reveal the relative significance of built environment features to the distribution of travel
distances; (3) to elucidate the nonlinear and threshold effects of explanatory factors on the
distribution of travel distances; and (4) to provide insights into urban mobility for urban
planners and policymakers.

The following sections of this paper are organized as follows: Section 2 outlines
the method for assessing appropriate formulas, computing built environment indicators,
and specifying models for XGBoost and SHAP. Section 3 details the findings, Section 4
explores the discussion, and Section 5 offers concluding remarks.

2. Materials and Methods
2.1. Study Area and Data Sources

We established a conceptual framework to assess the non-linear relationships between
intra urban distance distribution and factors such as socio-demographic characteristics,
facility accessibility, construction density, and traffic connectivity. Figure 1 illustrates the
framework, which involves both data preparation and analysis. The first step, data prepa-
ration, includes gathering ride-hailing data, population statistics, POI details, and other
relevant datasets. Prior to analysis, the data was aggregated into 1 × 1 km grids. The proba-
bility density function (PDF) of travel distances across various urban environments was
then empirically estimated. Subsequently, the significance of explanatory variables, along
with the identification of non-linear effects and thresholds, was analyzed using the most
accurate machine learning models and SHAP values. The subsequent subsection offers an
in-depth description of the data and methodology.
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Figure 1. Research framework

2.1.1. Study Area

Nanjing serves as the capital of Jiangsu Province, covering a land area of 6582.31 square
kilometers and boasting a resident population of 9,491,100. With an urbanization rate of
86.9% and one of the highest levels of socio-economic development in China, it has diverse
urban functions and exhibits strong spatial heterogeneity.

We selected the city center districts as the study area (Figure 2). The studied area
encompasses diverse urban contexts, comprising both municipal areas and natural environ-
ments such as forests and water bodies. The city center is significantly influenced by the
surrounding natural landscape and feature distinct spatial functional layouts. Although the
city center occupies only 12% of the total area, it is home to 80% of the population. It
stretches 54.53 km from south to north and 40.86 km from east to west. The city center
districts are well equipped with residential facilities and employment opportunities, ac-
commodating the majority of residents’ daily life and work activities, making them ideal
locations for studying human mobility patterns.
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Figure 2. Study area.

2.1.2. Data Sources

The ride-sourcing order data encompassed all trips in Nanjing from 6 March to
12 March 2023. Each order consists of a sequence of data encompassing nine fields: an
anonymized order ID, the longitude and latitude of both the pick-up and drop-off points,
the start and stop times of each trip, the driving distance, and the driving time (Table 1). The
dataset comprises over 2 million ride-sourcing trips, covering a comprehensive geographic
spread across the metropolitan area and representing a wide demographic spectrum of
users. This substantial data volume ensures a robust basis for analyzing urban mobility
patterns within the context of ride-sourcing services. However, the demographic profile
of ride-sourcing users, typically younger and more affluent, may not accurately reflect
the broader population [29], which could skew the insights into overall urban mobility
patterns. Thus, the study could potentially overestimate or underestimate the impact of
specific built environment factors.

Table 1. Data selection after processing.

Field Type Example

Order ID Int 35,295,630,329,820
Pick-up longitude Float 119.03238
Pick-up latitude Float 31.631422
Drop-off longitude Float 119.177723
Drop-off latitude Float 31.575701
Pick-up time stamp Int 1,676,824,955
Drop-off time stamp Int 1,676,826,093
Miles driven Float 18.14
Driving time Float 19

To assess built environment indicators across all analysis zone, we utilized the Gaode
Web Map Service Platform (http://lbs.amap.com/) as our primary data source. Through

http://lbs.amap.com/
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this platform, we collected information on 14 distinct categories of Points of Interest
(POIs) (Appendix A Table A1) and building-related attributes, such as building heights.
After conducting rigorous data cleaning, including the removal of duplicates and filtering
to focus exclusively on the study area, our dataset comprised 288,512 unique buildings and
572,951 individual POIs. This extensive dataset offers a thorough depiction of the spatial
and structural attributes of the urban landscape, crucial for precise analysis.

We utilized a second-hand housing price dataset obtained from Beike (https://m.ke.
com/), one of China’s largest companies offering map-based searches for comprehensive
housing property coverage. The dataset employed in this research contains information
collected in 2023 on thousands of residential properties in Nanjing.

Demographic data were obtained from the World of Pop database (https://www.
worldpop.org/), according to The Statistical Yearbook of Chengdu Cityin 2016 and 2017 to
adjust the calibration. Administrative division data were sourced from the National Cata-
logue Service for Geographic Information website (https://www.webmap.cn/), while road
network data were obtained from OpenStreetMap (https://www.openstreetmap.org/).

2.2. Variables
2.2.1. Dependent Variables

Data cleaning proved indispensable, as several trip records were deemed unsuitable
for inclusion in this study. As a result, it was crucial to remove datasets that exhibited
abnormal operations, including duplicates, missing data and overflow. Additionally,
considering citizens’ travel patterns and urban area characteristics, we established criteria:
(1) distances spanning from 1 to 100 km; (2) travel durations under 1 min or exceeding 2 h;
(3) a Average speeds slower than 5 km/h or faster than 80 km/h, and (4) the positions of
the origin and destination outside the study area limits [30]. Excluding records according
to the specified criteria resulted in 1,935,704 entries deemed suitable for this study.

Drawing from the spatial characteristics of the study area and consulting previous
research findings [31], we established 1 × 1 km grids. Consequently, the study area was
divided into 630 grids. Interaction networks were established using the centroids of the
grids. The next step was to allocate the distance data into statistical 1 × 1 km grids using cell
coverage area centroids. In this context, the travel distance pertains to the actual length of
the route traversed by the origin–destination trip within road networks. Data preprocessing
was finalized with the elimination of nets containing fewer than 200 interactions to optimize
the representational efficiency of the curve.

The optimal model parameters were selected as the dependent variable. The aim of
selecting a fitting function is to determine the most suitable distribution based on empirical
trip data. Table 2 presents a range of common probability distribution functions (PDFs)
found in prior research, encompassing exponential, power-law, lognormal, and truncated
power-law distributions. The parameters were fitted through maximum likelihood estima-
tion (MLE), with comprehensive guidance [32]. Additionally, the table provides formulas
for expectation and variance, which are pivotal for discerning distribution characteristics.
The Akaike weights wi for the four models were calculated based on the Akaike Informa-
tion Criterion (AIC). The model with the highest Akaike weight wi was considered to have
the best-fitting distribution.

https://m.ke.com/
https://m.ke.com/
https://www.worldpop.org/
https://www.worldpop.org/
https://www.webmap.cn/
https://www.openstreetmap.org/
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Table 2. Functions and parameters of some common probability distributions.

Distribution
Distribution Function and Normalization Constant *

p(x) = C f (x)

f (x) C

Power law x−α (α − 1)xα−1
min

Power law with exponential cutoff x−αe−λx λ1−α

Γ(1−α,λxmin)
**

Exponential e−λx λe−λxmin

Log-normal 1
x e−

(lnx−µ)2

2σ2

√
2

πσ2 [er f c(− lnxmin−µ√
2σ

)]−1 ***

* for each distribution, the basic function form f (x) and appropriate normalization constant C are given for the
continuous case such that

∫ ∞
xmin

C f (x)dx = 1. ** Γ(·) represents the upper incomplete gamma function (upper
incomplete gamma function). *** er f c(·) represents the complementary Gaussian error function (complementary
Gaussian error function).

In addition, the Akaike information criterion (AIC) can provide another decision-
making method. The AIC score is a function of its maximized log-likelihood (Li) and
the number of estimated parameters (Ki) for each candidate model i, and it is calculated
as follows:

AICi = −2 · lnLi + 2 · Ki (1)

The relative likelihood of the model is represented by the weight wi, which is defined
as follows:

AICmin = min{AICi} (2)

∆i = AICi − AICmin (3)

wi =
e−∆i/2

∑N
j=1 e−∆j/2 (4)

The largest model i is most likely to be selected. The optimal model has the smallest
AICi (i.e., AICmin) and the largest contribution to the denominator. Therefore, its weight
wi is close to 1.

2.2.2. Independent Variables

Table 3 outlines the independent variables, which are divided into four categories:
socio-demographic characteristic, facility convenience, construction intensity and traffic
accessibility. This provides a holistic framework for analyzing urban dynamics. The defi-
nitions and calculation methods for the built environment factors are detailed in Table 3,
with measurements obtained separately within each network.

Table 3. Variable descriptions and descriptive statistics.

Variable Abbreviation Description Mean Standard
Deviation Source

Socio-demographic characteristics

Housing price (ten thousand
CNY/km2) HP

The average value of
second-hand housing prices
within each analysis zone.

2.2713 1.7595 [33,34]

Population density
(person/km2) PD

The population divided by the
total area within each
analysis zone.

7721.7519 9372.4370 [33,34]
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Table 3. Cont.

Variable Abbreviation Description Mean Standard
Deviation Source

Facility Convenience

Distance to the city center (m) DCC The distance to the nearest
city center. 9444.6175 4415.8310 [35]

Density of working POIs
(numbers/km2) DWP

Number of working facilities
divided by the total area
within each analysis zone.

1591.4286 1739.9334 [34,36]

Density of recreation POIs
(numbers/km2) DRP

The number of recreation
facilities divided by total area
within each analysis zone.

817.4651 665.3297 [34,36]

Construction intensity

Building density BD
The ratio of the total building
base area to the total land area
within each analysis zone.

0.1425 0.0876 [34]

Land use entropy LUE The mixed status of POIs
within the analysis zone. 0.7673 0.1369 [33,34,36]

Traffic accessibility

Motorized road density (km) MD

The length of primary and
secondary roads available for
ride-hailing in each
analysis zone.

7.2065 3.3221 [37]

Bus station density
(numbers/km2) BSD The number of bus stations in

each analysis zone. 4.4079 3.0891 [38]

Distance to the city center: City centers were identified via population raster, and the
actual distance from each analysis zone particle to the nearest city center was calculated by
the Gaode API. We assumed that the routes recommended by Gaode map closely reflect the
routes most individuals would realistically adopt. Python scripts were used to access the
Gaode map API developer portal to extract driving routes for all trips. The API provided
outputs such as the trajectory of the recommended route and the total distance of each trip,
allowing us to calculate the plausible driving distances for each journey.

Land use entropy: The larger the entropy value, the more evenly distributed the
functions of various facilities in the street, and the smaller the entropy value, the lower the
degree of mixed functions.

MixUsedk = −

M

∑
i=1

Pk,i ln Pki

ln M
(5)

pki is the proportion of the number of Class i POIs in cell k to the number of POIs in
the current space cell, and M is the type of POI in the current space cell.

2.3. Data Processing and Modeling

To establish robust regression models, we initiated our analysis by evaluating mul-
ticollinearity among the independent variables. Following the guidelines outlined by W.
Yang et al. [28] and Yi et al. [39], we confirmed that all variables had a variance inflation
factor (VIF) below 10, allowing us to retain all variables in the analysis without concern
for multicollinearity. In contrast, for nonlinear and nonparametric approaches such as
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XGBoost, the issue of multicollinearity is less critical. This flexibility permitteds us to
retain all independent variables in our analysis, as highlighted by Luo et al. [40]. Following
this, we divided the dataset into training and testing sets, using a 7:3 ratio to improve
model validation. To counter potential overfitting and enhance model performance, we
implemented 10-fold cross-validation [41]. This method divides the dataset into ten dis-
tinct subsets, utilizing one subset for validation while the others contribute to the training
process, iteratively rotating through all subsets. For parameter optimization within the
XGBoost model, we employed Grid Search, allowing us to systematically explore a range of
parameter configurations. In addition to using XGBoost, we experimented with OLS, GWR
and RF models to identify the method that provided the greatest predictive accuracy for
our specific application. This comparative analysis ensured that the selected model aligned
with the characteristics of our dataset and research objectives, enhancing the reliability
of our findings. The entire regression analysis was conducted using Python, ensuring a
comprehensive and replicable methodology.

2.4. XGBoost Model and SHAP

In machine learning, the gradient boosting decision tree algorithm has the capability
to predict outcomes for new input data by learning from training data and detecting trends.
This approach offers numerous advantages, making it a popular choice among researchers
in the age of big data for elucidating data patterns and achieving precise predictions.
XGBoost diverges from traditional gradient boosting methods that utilize gradient descent
in function space by employing a technique similar to the Newton-Raphson method. This
method involves using a second-order Taylor expansion of the loss function, which allows
for more accurate updates and quicker convergence.This nuanced optimization strategy
enhances both the efficiency and accuracy of the model. This approach has proven effective
in clarifying the influence of various urban elements on phenomena like urban vitality [42]
and transportation [43].

SHAP (SHapley Additive exPlanations) is a method grounded in game theory for
interpreting machine learning models. It calculates an importance value for each feature in
a model, termed the SHAP value, by equitably distributing the model’s prediction output
among all input features. These values stem from the Shapley value concept in cooperative
game theory, which guarantees that the contributions of all potential feature combinations
are considered. SHAP accounts for feature interactions by assessing how the inclusion
or exclusion of each feature in various subsets influences the model’s prediction accuracy.
This method offers both local explanations for individual predictions and global insights
that apply to the entire dataset. Due to its ability to ensure consistency and accuracy, SHAP
has become a widely used tool for elucidating complex models such as neural networks
and gradient boosting machines.

The Shapley value for a specific feature i is defined as the weighted sum of its marginal
contributions across all possible combinations of features. It is formulated as follows:

ϕi = ∑
S⊆N

|S|!(n − |S| − 1)!
n!

[v(S ∪ {i})− v(S)] (6)

Here, |S| signifies the number of features in a subset S. n is the total count of features,
v(s) is the model prediction with the current set of features, and v(S ∪ i) is the prediction
when feature i is added to the subset S. By applying this method, we delve into the specific
contributions of each independent variable to the prediction, providing nuanced insights
that are instrumental for urban planning and policy making.
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3. Results
3.1. Spatial Distribution of Coefficients
3.1.1. Best-Fit Distributions of Trip Distance

Based on the Akaike weight wi, the log-normal distribution consistently outperforms
the other three models in capturing travel distance patterns, fitting more than 90% of the
travel distance data. Additionally, more than 85% of the nets achieve a goodness-of-fit
value exceeding 0.6 (Figure 3a). The fitting parameters for the distance distribution exhibit
considerable variation, indicating that the mobility characteristics of ride-hailing services
are not uniform across different urban contexts within cities (Figure 3b,c).

Figure 3. Frequency histograms of R square, µ and σ. (a) R square of lognormal functions. (b) The
distribution of the lognormal parameter µ. (c) The distribution of the lognormal parameter σ (The
blue line likely represents a fitted probability density function).

The log-normal distribution exhibits an upward trend followed by a downward trend.
The log-normal distribution has two parameters: µ and σ (Figure 4). The parameter µ

represents the highest probability point in the distribution. A smaller µ indicates that the
peak of the distribution is farther to the left, indicating a smaller average travel distance.
Conversely, a larger µ indicates that the peak is farther to the right, indicating a larger
average travel distance. The concentration of travel is represented by σ, with a smaller σ

indicating a more concentrated trend in the graph of the log-normal distribution, meaning
that travel is more concentrated, and residents’ travel activities may comprise mostly
essential trips, with the proportion of non-essential activities may decreasing rapidly.
A larger σ indicates more dispersed distribution, indicating that travel is more random,
with a higher proportion of decisions overcoming costs. Taking residents’ travel in the city
as an example (Figure 4), smaller µ values and larger σ values imply that residents could
have relatively close average travel distances and scattered activity locations. Residents can
access resources in the city relatively easily and have more choices. Larger µ values and
smaller σ values imply that residents could have farther average travel distances, and their
travel activities may be mostly concentrated at specific distances, meaning that residents
need to travel to specific areas to access resources.
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Figure 4. Log-normal distribution diagram.

3.1.2. Spatial Distribution of Log-Normal Distribution

The spatial distribution of log-normal distribution parameters in the study area is
shown in Figure 5, which demonstrates a clear gradient from the core of the city to its pe-
riphery. The parameters associated with analysis zones (nets) reveal distinct agglomeration
patterns, indicating the clustering of certain characteristics or activities within specific areas.
These patterns reflect the spatial concentration of urban features, which influences mobility
behaviors and the distribution of services. Commercial centers, hospitals and schools in
Xinjiekou, Dongshan, Xianlin, Liuhe, Dachang and Jiangbei have become the city centers
of the study area. The heat map in Figure 5a shows that clusters of low-level µ values are
concentrated in the city’s core areas, with the lowest category of µ, ranging from 1.085 to
1.77, demarcated by blue shading.

Figure 5. Spatial distribution of log-normal distribution. (a) The coefficients µ of log-normal distribu-
tion in urban space. (b) The coefficients σ of log-normal distribution in urban space.

This central area of low µ values is surrounded by a moderate-value transition zone,
indicated in yellow to orange tones, reflecting a increase of 1.77 to 1.967. As we move to
more marginal areas of the city, the reported incident rate rises notably, as depicted in red,
indicating the highest density category of 1.967 to 2.647. Figure 5b shows that the areas
north of the Yangtze River and Xianlin exhibit the highest σ values, extending from 0.85 to
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1.11. Xinjiekou, jiulonghu and tianbao display relatively high σ values, ranging from 0.79 to
0.85. Their surrounding areas show lower σ values that range from 0.452 to 0.79.

The model indicates a strong correlation between the parameters of the log-normal
distribution and urban centrality, with the shortest distances observed in areas likely
associated with high pedestrian flow and economic activity. In contrast, the city’s periphery,
which may encompass housing communities and less accessible public spaces, shows longer
travel distances. Interestingly, the other parameter of the log-normal distribution, σ, is
roughly the opposite of µ in value. There are more travel options in the city center, resulting
in a larger σ, whereas in the outskirts, the higher costs that residents need to overcome lead
to a smaller σ. Intuitively, this variation might be explained by several potential differences,
such as the geographical layouts of urban areas, the spatial arrangement of activity sites,
and the influences of social, economic, and cultural factors.

3.2. Model Comparison

In machine learning models, the selection of adequate parameters is essential for
attaining maximum efficiency. In the case of XGBoost, important parameters include
n_estimators, the learning rate, max depth, min_child_weight, subsample, and gamma, all
of which significantly impact model efficacy. Our tests indicated that the settings outlined
in Table 4 resulted in the highest R-squared values of 0.23 and 0.41 for XGBoost, reflecting
improved algorithm performance. These parameters were selected for their effectiveness
in balancing model intricacy and universality. analogous optimization strategies were
employed for the other models as well.

Table 4. The optimal values for µ and σ.

Olsample
Bytree Gamma Learning

Rate
Max

Depth
n

Estimators
Reg

Alpha
Reg

Lambda Subsample

µ 0.8 0 0.2 5 20 0 1.5 0.8
σ 1.0 0 0.2 5 30 0.1 1.5 0.8

A thorough performance evaluation of the regression models, presented in Table 5,
revealed that XGBoost outperforms the OLS, GWR and RF models. XGBoost demonstrates
the strongest explanatory power for the log-normal fit parameter across various networks.
Furthermore, the XGBoost model demonstrates superior performance across error metrics,
achieving the lowest mean absolute error (MAE) values of 0.13 and 0.06, along with root
mean square error (RMSE) values of 0.18 and 0.07. These findings underscore the model’s
precision and dependability in forecasting outcomes for the specified application.

Table 5. Regression model results.

Model R2 MAE RMSE

OLS µ 0.13 0.14 0.18
σ 0.27 1.07 1.09

GWR µ 0.15 1.45 0.20
σ 0.31 1.09 0.12

RF µ 0.16 0.13 0.17
σ 0.40 0.05 0.07

XGBoost µ 0.23 0.13 0.18
σ 0.41 0.06 0.07
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3.3. Nonlinear Relationship Interpretation Using SHAP
3.3.1. Feature Importance Analysis

To elucidate the specific urban elements that significantly predict the log-normal fit
parameter, as depicted in Figure 6, the SHAP results provide a compelling representation
of feature importance. In this plot, each dot represents a SHAP value linked to a specific
observation, demonstrating how much each feature contributes to the model’s prediction.
The dots are color-coded, where red represents higher feature values and blue signifies
lower values. This color scheme effectively demonstrates the relationship between the
magnitude of a feature and its influence on the model’s output. The summary chart of
driving factors displays a non-uniform distribution between features with high and low
values, indicating that the relationship between these crucial determinants and the log-
normal fit parameters is not linear. The chart also shows the relative importance of each
independent variable, indicating their respective contributions to the predictive accuracy
during the modeling process, with the cumulative relative importance of all variables
totaling 100%. The indicators are ranked based on their importance (Table 6).

Figure 6. Feature importance. (a) Findings of SHAP feature importance analysis of log-normal fit
parameter µ; (b) Findings of SHAP feature importance analysis of log-normal fit parameter σ.

Table 6. Relative contribution of independent variables.

Category Feature Index
Relative Marginal Contribution (%) Ranking

µ σ µ σ

Socio-demographic characteristic HP 7.06 3.85 7 9
PD 6.85 5.12 8 7

Facility convenience
DCC 20.6 18.47 1 2
DWP 14.25 35.25 3 1
DRP 13.41 8.34 4 4

Construction intensity BD 3.76 4.33 9 8
LUE 8.52 8.26 5 5

Traffic accessibility MD 7.66 5.91 6 6
BSD 17.9 10.45 2 3

Facility convenience is the most important indicator for predicting coefficients. DCC
has the greatest influence on µ, reaching 20.6%. This makes sense, as commuting often
constitutes the main travel activity on weekdays for a majority of individuals. The distance
they commute is influenced by the locations of their residences and workplaces, with nu-
merous employment opportunities situated in or close to urban centers. DWP has the
greatest influence on σ, reaching 35.25%. The DRP has less influence than the DWP. This
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could be because necessary commuting is more important than non-essential commuting
in urban travel concentration modes.

Construction intensity is also a key factor shaping urban mobility patterns. The role
of LUE is significantly greater than that of the BD. Comparatively, the BD’s contribution
to promoting resident activity is relatively limited. In particular, in large cities in which
construction land is limited, the vertical expansion of construction space is more crucial
than horizontal growth for internal urban activities.

Both traffic accessibility indicators play a role in shaping urban travel patterns, partic-
ularly the BSD, the relative importance of which for σ and µ reached 17.9% and 10.45%,
respectively, ranking second and third among all indicators. In Figure 5a, the right side
shows an extended blue line, while the left side features a shorter red line, indicating that a
low number of bus stations leads to a sharp increase in travel distances. However, a higher
number of bus stations does not reduce travel distances to the same extent. Overall, the
two indicators have a greater influence on µ than on σ.

Socio-economic indicators have the least impact on average trip distance and trip
dispersion, ranking seventh to ninth. For σ, most HP data points are dispersed around a
SHAP value of 0, indicating that this variable has little impact on the concentration of most
trips. However, it is positively correlated with µ .

3.3.2. Nonlinear Relationship Analysis

(1) Driving factors of µ

To investigate the cumulative influence of driving factors on µ and to quantify the
relationship between these factors and µ, scatter distribution charts of the SHAP values of
the driving factors were generated based on the feature summary chart (Figure 7). The order
of the graph is sorted by the importance of its elements.

Figure 7. Nonlinear relationships between log-normal fit parameter µ and variables. (a) DCC; (b) BSD;
(c) DRP; (d) DWP; (e) LUE; (f) PD; (g) MD; (h) HP; (i) BD.
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The DCC emerges as the most influential feature in the model, exerting the greatest
impact on its predictions (Figure 7a). The DCC exhibits an “N-shaped” pattern, and within
the range of approximately 0 to 8000, it is negatively correlated with µ. When the DCC
exceeds 8000, the effect shifts from negative to positive, meaning that the farther from the
city center, the larger the µ value and the longer the average travel distance. This could be
due to the fact that resources are typically concentrated in city centers, so individuals living
farther from the central business district tend to travel longer distances to access various
resources [44].

When the BSD exceeds 4, the impact shifts from positive to negative (Figure 7b). In
areas with a higher density of bus stations, residents may be more likely to opt for other
modes of transportation to meet long-distance travel needs, while ride-hailing is more
often used to supplement short-distance connections. The analysis further indicates that a
rivalry between short-distance ride-hailing options and public transit in the central urban
zones [45]. The nonlinear impact of bus station density likely reflects a saturation point at
which additional stations no longer significantly improve travel distances.

The DRP positively influences µ at around 100 and negatively influences µ at around
200 (Figure 7c). An excess of entertainment facilities (exceeding 1000) negative affects the
average trip distance of ride-hailing services. First, most entertainment needs, such as
movies, dining, or exercise facilities, are localized, meaning that residents tend to choose
facilities close to home rather than traveling long distances across regions. Additionally,
areas with a high density of entertainment facilities often have a well-developed transporta-
tion infrastructure, enabling people to opt for public transportation, bicycling or walking
instead of relying on long-distance ride-hailing services.

When the DWP exceeds 4800, it is negatively correlated with µ (Figure 7d). This
indicates that increasing the number of companies beyond this threshold may reduce the
commuting distance for ride-hailing services used for work. The increase in workplace
facilities enhances the likelihood of residents finding jobs nearby, particularly in densely
populated residential communities. This reduces the need for long-distance commuting to
meet employment needs.

We observed that the impact of LUE on µ shifts from positive to negative around
0.75 (Figure 7e). After 0.9, the higher the LUE, the longer the travel distance. We note that
the nonlinear influence of land use entropy may stem from threshold effects in which a
balanced mix of land uses promotes efficient mobility but excessive diversity could lead to
congestion or inefficiency.

When the MD is below approximately 4, it is positively correlated with µ. This may
be because certain residential communities, scenic areas or campuses, despite having low
road density, can generate a significant amount of long-distance travel. The MD shows a
correlation with distance traveled, and SHAP values tend to be positive as motor vehicle
lanes increase to 8.5 (Figure 7g). The denser the motorized lanes, the more convenient it is
to travel via car and the more likely it is that long-distance trips are made.

When the HP exceeds 20,000 (Figure 7h), it positively influences the average travel
distance. This may be because residents in high-priced areas have greater financial capacity,
allowing for a wider range of activities and travel.

When the BD exceeds 0.25, it negatively impacts µ. This is likely because areas with
high building density are often equipped with more living and working facilities (e.g.,
commercial, office, entertainment), reducing the need for long-distance travel. Most points
for the PD are distributed near zero, suggesting that its impact on µ may be minimal. This
could be because population size primarily influences the total travel demand rather than
the travel distance. In other words, a larger population increases the number of ride-hailing
orders but does not directly alter the length of trips.
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(2) Driving factors of σ

Figure 8 presents nonlinear relationships between the log-normal fit parameter σ and
built environment variables.

Figure 8. Nonlinear relationships between log-normal fit parameter σ and variables. (a) DWP;
(b) DCC; (c) BSD; (d) LUE; (e) MD; (f) DRP; (g) PD; (h) BD; (i) HP.

When the DWP reaches 2000, its effect on σ shifts from positive to negative and
stabilizes (Figure 8a). However, as the DWP reaches 3000, the local effect remains at
its lowest value, indicating that beyond a certain threshold, increasing the number of
companies does not further enhance the dispersion of travel distances. The increase in the
number of companies is often associated with improved job-housing balance, allowing
more people to find employment near their residences. In such cases, travel distances
tend to stabilize, and ride-hailing trip lengths do not diversify further as the number of
companies grows.

The DCC is positively correlated with the log-normal fit parameter σ for distances
less than 5000 m or greater than 13,000 m (Figure 8b). This may be due to the fact that
some residents start from the city center, from which there are many ride-hailing rides
with a high dispersion of distance distribution, while some residents start from sub-centers
more than 13 km from the city center, with a higher dispersion of distance distribution for
their trips.

When the BSD is between 0 and 4, it is negatively correlated with σ (Figure 8c). This
may be because in suburban areas with limited bus availability, ride-hailing serves as a
complementary mode of transportation to public transit. The fewer the buses, the greater
the diversity in ride-hailing trips. In areas with fewer buses, passengers rely more heavily
on ride-hailing services as public transit routes cannot meet their travel needs. Whether
for short distances (e.g., shopping, last-mile connections) or long distances (e.g., cross-
district commutes, suburban outings), passengers tend to choose ride-hailing services and
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taxis, leading to greater diversity in travel distances. After the BSD exceeds 4, the trend
changes, and the BSD value positively affects the dispersion. This indicates that areas in the
city center have many bus stations and ride-hailing services, leading to a more dispersed
distribution of travel distances.

The trend changes when the mixing degree is greater than 0.75 (Figure 8d). The LUE
value initially has a negative effect on dispersion, indicating that in areas with lower levels
of facility mixing, residents’ travel distances tend to be more concentrated, suggesting that
insufficient functional diversity hinders travel diversity. However, beyond this threshold,
the effect of mixing degree shifts to a positive value. Areas with high LUE typically feature a
combination of functions such as residential, commercial, office, entertainment, and public
services. This multifunctional overlap diversifies travel purposes and destinations, leading
to a high degree of variability in travel distances. Additionally, regions with high LUE often
attract not only local residents but also a significant transient population (e.g., commuters
and tourists), further increasing the diversity of travel distances within the area.

When the MD is less than 5 or greater than 8, it negatively impacts the SHAP
(Figure 8e), indicating that both very low and very high motor vehicle lane densities
are not conducive to promoting travel diversity. In areas with excessively low road density,
land is often allocated to single-use functions (e.g., residential or agricultural) lacking the
mixed-use features of commercial, office or entertainment spaces. This functional singu-
larity forces residents to travel across regions for daily needs such as work, shopping and
leisure, concentrating travel patterns on fixed long-distance commuting. what’s more,
an excessively high road density implies a tightly knit road network in which distances
between destinations are shortened. In such areas, residents tend to walk, cycle or use
shared transportation for short-distance travel. Consequently, ride-hailing orders could be
limited primarily to short-distance trips (e.g., from residential areas to the nearest subway
station), resulting in a significant reduction in long-distance ride-hailing demand.

When the DRP is between 250 and 1100, it positively influences travel dispersion
(Figure 8f), meaning that the greater number of recreational facilities there are available,
the greater the dispersion of trips. When the DRP is less than 250, residents have fewer
entertainment options, leading to more concentrated travel patterns. When the DRP
exceeds 1100, The local effect tends to stabilize. When the number of nearby entertainment
facilities increases to a certain threshold, residents tend to choose closer facilities rather than
distant ones. As a result, even with an increase in the number of entertainment facilities,
the distribution of travel distances does not change significantly and may become more
concentrated within a short-distance range.

When the PD (Figure 8g) exceeds 10,000, its local effect shifts from positive to nega-
tive. However, as the PD reaches 20,000, the local effect stabilizes at its minimum value,
indicating that beyond a certain threshold, the influence of the PD on σ does not continue
to increase. The effect of the BD (Figure 8h) and HP(Figure 8i) on SHAP tends to be close
to zero, suggesting that there may not be a direct relationship between the distribution of
distance traveled on ride-hailing trips and the distribution of the BD and HP.

3.3.3. Local and Spatial Effects on Coefficients

A clustering approach was employed to categorize grids exhibiting similar patterns of
local effects. This method enables the identification of spatially coherent regions in which
driving factors influence outcomes in comparable ways, facilitating a more nuanced under-
standing of localized urban dynamics. Figure 9 graphically displays the local explanations
for four chosen grids within the study area, each symbolizing different clusters. As shown
in Figure 9, four types of travel patterns were identified, accounting for 15%, 30%, 45% and
10%, respectively. The red and blue bar charts in Figure 9 represent the local impact effects
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of the travel patterns, with red signifying positive variables and blue signifying negative
variables. The boundary between the red and blue bars represents the predicted values for
σ and µ.

Figure 9. Clustered SHAP value and local effects by cluster type.

Cluster 1 shows a smaller µ and a larger σ. In this case, the case 1 is situated at
Wanda Plaza in Liuhe. The geographic barrier created by the river separating the city’s
sub-center from the main urban area limits travel demand on the opposite bank to within
the local region. Within the sub-center, short-distance trips, such as shopping and dining,
dominate. In contrast, outbound (cross-river) commuting or visitor flows may require
medium-distance travel. This dual demand leads to a diversification of travel distances.
Factors such as the DCC, DWP, BSD, LUE, DRP, HP, and BD positively influence the average
ride-hailing trip distance. Additionally, the LUE, PD, and BSD all contribute to decreasing
trip dispersion.

Class 2 shows a larger µ and a medium σ. The second case is situated in Nanjing’s
residential district, Yingtiecun Community, which is on the south side of Xuanwu Avenue.
Factors such as the DWP, DRP, BD, HP, LUE and MD all have a significant positive influence
on the average ride-hailing trip distance, suggesting that areas with higher values for these
features tend to require longer travel distances. Additionally, the NWP, BD, DCC, MD
and DRP positively influence the dispersion of ride-hailing trips, indicating that these
factors contribute to greater diversity in trip destinations and routes, thereby increasing
travel dispersion.

Class 3 exhibits the smallest µ and a moderate σ, representing a well-developed and
mature urban area with higher housing prices and more job opportunities. Case 3, which
is located in Xinjiekou near the Nanjing World Trade Center, features high functional
density, allowing residents and visitors to meet most of their travel needs within a compact
area. This leads to shorter ride-hailing distances while supporting a diverse range of trips,
reflecting a wide distribution of destinations across the city. Key features such as the
HP, NWP, DCC, PD, NRP, BD, and BSD positively influence the average ride-hailing trip
distance. Meanwhile, the MD, BSD, NRP, LUE, and DCC positively affect trip dispersion,
whereas the NWP, PD, and BD have a negative impact on trip dispersion.

Cluster 4, which is located on the outskirts of the city, has the largest µ and the smallest
σ, as seen in case 4. The ride-hailing distances are longer, but the diversity of trip distances
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is lower. This may be due to the functional singularity of peripheral areas, which results in
a concentration of travel destinations; insufficient public transportation and sparse road
networks, which limit travel options; and job–housing separation, which may lead to long-
distance commuting dominating the travel demand. Features such as the DWP, DRP, BSD,
BD, DCC, and LUE positively influence the average ride-hailing trip distance. However,
the DCC, DRP, BSD, and HP reduce trip dispersion.

4. Discussion
4.1. Comprehensive Interpretation of Nonlinear Relationships

This study provides a comprehensive analysis of urban mobility patterns based on
ride-hailing data collected for Nanjing, China. Key findings include the quantification of
travel distances using probability density functions (PDFs) derived from ride-hailing trip
data, revealing significant spatial heterogeneity. The results also highlight the nonlinear
and threshold effects of explanatory variables, such as land use entropy and bus station
density, on the distribution of travel distances. These results highlight the significance of
accounting for spatial and contextual differences when modeling urban mobility patterns.

The analysis highlights how urban mobility patterns are influenced by built envi-
ronment factors through nonlinear and threshold effects. (1) DCC: Travel distances (µ)
decrease up to 8000 m and then increase as individuals travel farther to access resources [35].
Variability (σ) is higher close to urban cores and sub-centers [46]. (2) BSD: Beyond four
stations, the BSD reduces travel distances (µ) as residents rely more on walking or cy-
cling [47]. The presence of a few stations decreases dispersion (σ), while many stations
diversify urban trips. (3) DWP: A higher density (above 4800) reduces commuting dis-
tances (µ) by improving the job–housing balance [6,48]. Travel dispersion (σ) stabilizes
beyond 2000 companies. (4) DRP: A moderate recreational facility density increases travel
dispersion (σ) and supports longer travel distances (µ). However, as the facility density
surpasses a threshold (approximately 1100), residents increasingly choose closer facilities,
stabilizing travel distances and reducing variability [49]. (5) LUE: Balanced land use short-
ens trips (µ), while excessive diversity increases travel inefficiencies and dispersion (σ) [50].
(6) MD: Denser motorized lanes (up to 8.5) facilitate longer trips (µ). Extremely low or high
densities limit travel diversity (σ). (7) HP: Higher-priced areas correlate with longer travel
distances (µ) [51]. The impact on dispersion (σ) is minimal. (8) BD: High building density
reduces long-distance travel (µ) as it supports localized living and working facilities. This
concentration of facilities minimizes the need for dispersed trips, making its impact on
travel dispersion (σ) negligible. (9) PD: A higher population density primarily increases the
total demand for travel [33], without significantly altering travel distances (µ). Dispersion
(σ) decreases beyond a threshold (20,000).

4.2. Policy Implications

The average length and dispersion of travel distances can be influenced by maintain-
ing built environment elements within appropriate ranges; the following approaches may
be used: (1) Promoting the job–housing balance—balancing the distribution of workplaces
and residential areas within urban regions to reduce long-distance commuting demands;
when DWP is greater than 4800 and DRP is greater than 800, both factors suppress µ.
(2) Adjusting LUE to an appropriate level—promoting urban functional diversity by in-
creasing the availability of commercial, educational, medical and entertainment facilities
around residential areas. When LUE is between 0.75 and 0.85, it reduces the demand for
cross-regional long-distance ride-hailing caused by single-function land distribution. Such
planning helps allocate urban resources more effectively, optimize residents’ travel patterns
and foster sustainable urban development. (3) Optimizing the public transportation net-
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work layout—increasing bus routes in low-coverage areas, particularly rapid transit lines
connecting suburban areas to the city center. In areas where BSD exceeds 4, residents are
less likely to rely on ride-hailing for long-distance commuting. (4) Enhancing connections
with public transportation—establishing ride-hailing pick-up points at key nodes such
as subway stations and bus hubs to facilitate short-distance transfers. This approach will
increase the number of short-distance ride-hailing trips and enhance the diversity of travel
distances. (5) Encouraging the transition of short-distance ride-hailing in urban centers
to sustainable modes of transportation. It is worthwhile to encourage the transition of
short-distance ride-hailing to sustainable modes of transportation, especially during peak
hours [52]. Specifically, enhancing public transit subsidies are effective strategies. More-
over, raising the cost of short-distance ride-hailing during peak periods and rationalizing
free-floating bike-sharing systems can motivate non-urgent short-trip travelers to opt for
walking or public transportation.

4.3. Limitations and Future Directions

Due to data limitations, we were unable to incorporate a sufficient range of socio-
economic characteristics across different regions. Nevertheless, it is expected that socio-
economic factors could significantly effect the distance distribution patterns. For example,
variations in income may affect travel behaviors, while different age groups and gender
identities might lead to distinct mobility choices. Furthermore, our empirical analysis was
limited to an online car-hailing dataset exclusively from Nanjing, China, which may restrict
the applicability of our findings to other urban contexts. The reliance on ride-hailing data
may introduce biases, as these datasets predominantly capture certain demographic or
geographic user groups, potentially leading to an incomplete representation of urban mo-
bility patterns. Urban mobility patterns are inherently variable due to temporal, spatial and
socio-economic factors. The current study does not extensively discuss how this variability
might impact the robustness of the results. Future studies should aim to incorporate a
broader range of socio-economic indicators and diverse datasets from multiple locations to
deepen the understanding of these relationships. Additionally, integrating alternative data
sources, such as public transit or pedestrian movement data, could improve the general-
izability of the findings. To further enhance the robustness of the results, future research
could also perform sensitivity analyses to evaluate the stability of the conclusions under
varying scenarios.

5. Conclusions
The best-fit distributions of trip distance with its parameters were first shown. Then,

we further analyzed the nonlinear relationship interpretation and interaction effects of
the built environment. Finally, we attempted to identify the local and spatial effects on
human mobility.

Over the past decade, a surge of technological advancements has significantly in-
creased the interest of researchers and urban planners in ride-hailing services. However,
related performance, usage patterns, and interactions with the built environment remain
underexplored. This research, based on empirical data from Nanjing, China, aimed to
fill a gap in existing literature by analyzing the spatial variability in the distribution of
distances in online car-hailing and its nonlinear interactions with the built environment.
The objective was to comprehend how ride-hailing spatially interacts within urban contexts,
thereby guiding sustainable urban planning and encouraging broader adoption of these
services in various urban environments.

Distance distribution functions for various regions were estimated using 1 × 1 km
analysis zones. The optimal model was chosen to empirically assess these functions across
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different areas. Our analysis uncovered significant spatial heterogeneity in the distance
distribution of online car-hailing usage across diverse urban environments. By utilizing
data from varied sources, we identified multiple built environmental factors—including
facility convenience, construction intensity, traffic accessibility, and socio-demographic
characteristics—within different research units. We employed the XGBoost model to explore
the nonlinear relationships between these built environment factors and the log-normal fit
parameters of online car-hailing. Our findings demonstrate that certain built environment
factors significantly influence the distance distribution laws governing online car-hailing
trips. Regarding µ, the BSD and LUM negatively affected µ, while the DCC and DWP
positively affected µ. As for σ, the BSD and LUM both positively affected σ, while the
DWP, DCC, and BD negatively affected σ. Furthermore, the use of SHAP enhanced our
understanding of the nonlinear relationships by elucidating how the variables interact with
the log-normal fit parameters. This method allowed for a more detailed analysis of the
contributions of each variable to the model’s predictions.

The primary contributions and key findings of this study are outlined as follows: First,
this study identified the significant influence of built environment and socio-economic
factors on urban mobility patterns. Second, the application of advanced machine learning
techniques, such as XGBoost and SHAP, enhanced the interpretability of model outcomes.
Third, this study offers policy-relevant insights by linking urban design elements with
mobility behaviors, providing a foundation for sustainable urban planning strategies
tailored to specific city contexts.
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Appendix A

Table A1. POI categories.

Land Use Categories Code POI Category

Working POI 1 Governmental organizations
2 Social communities
3 Schools and educational institutions
4 Company and business

Recreation POI 5 Restaurants
6 Coffee/tea shops
7 Sports stadiums
8 Tourism spots
9 Cultural venues
10 Recreation stores and centers
11 Supermarkets
12 Shopping malls
13 Parks/squares
14 Hotels
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