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Abstract: Carbon emission inequality has become a critical factor constraining the co-
ordinated development of socio-economic systems and the natural environment. This
inequality exacerbates the disparity in carbon emissions across regions, hindering efforts
to achieve sustainable development and environmental justice. Previous research has
primarily focused on the structure of carbon footprints and their influencing factors, but
there has been limited quantitative research on carbon emission inequality, particularly
from a multi-scale perspective. This study constructs a 250 m-high-resolution consumption-
based carbon footprint grid for China and uses the Theil index to reveal significant spatial
inequalities in carbon footprints. The results indicate that smaller-scale analyses better
reveal the spatiotemporal heterogeneity of carbon footprints within regions. At the county
level, carbon footprints exhibit significant inequalities, with hotspots concentrated in re-
gions such as Beijing–Tianjin–Hebei, the Yangtze River Delta, and the Pearl River Delta.
The top 5% of areas with the highest carbon footprints (139 cities) contributed 19.6% of
the national total, indicating a concentration in a few large cities. The decomposition
of the Theil index shows that county-level cities contributed 55% of the national carbon
inequality. The study also reveals the complex relationship between carbon footprints
and income, as well as urban-rural disparities. The underdeveloped central and western
regions exhibit a pronounced spatial lag effect, with the growth rate of carbon footprints in
rural areas surpassing that of urban areas. Carbon footprints in impoverished areas and
inter-provincial marginal areas overlap significantly with low-emission zones, demonstrat-
ing characteristics of “low-carbon growth”. To achieve carbon peak and carbon neutrality
targets, China must adopt comprehensive measures to reduce carbon footprints and their
inequalities, including strengthening multi-scale carbon inequality monitoring, implement-
ing differentiated carbon reduction policies, and promoting coordinated emission reduction
development at the county level.

ISPRS Int. J. Geo-Inf. 2025, 14, 49 https://doi.org/10.3390/ijgi14020049

https://doi.org/10.3390/ijgi14020049
https://doi.org/10.3390/ijgi14020049
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijgi
https://www.mdpi.com
https://orcid.org/0000-0001-8850-0912
https://orcid.org/0000-0003-0407-1319
https://orcid.org/0000-0001-6853-3370
https://doi.org/10.3390/ijgi14020049
https://www.mdpi.com/article/10.3390/ijgi14020049?type=check_update&version=1


ISPRS Int. J. Geo-Inf. 2025, 14, 49 2 of 22

Keywords: carbon inequality; carbon footprint; multi-scale analysis; Theil index; carbon
peaking and carbon neutrality

1. Introduction
As the global consensus on sustainable development and the green economy emerges,

the United Nations has established 17 Sustainable Development Goals (SDGs), which
call for the balanced development of economic, social, and environmental aspects [1].
Within this framework, mitigating climate change and reducing inequality have emerged
as two urgent issues that need to be addressed. However, the Kyoto Protocol, in allocating
responsibilities for mitigating climate change, failed to adequately consider differences in
emissions and the capacities of individual countries to address climate change, resulting in
its inability to fundamentally resolve the imbalance in global carbon emissions [2,3].

Carbon emissions from household consumption have gradually attracted international
attention. The 2020 United Nations Environment Programme’s “Emissions Gap Report”
indicates that consumption-related carbon emissions account for 70% of global carbon
emissions [4,5], 2020. According to the International Energy Agency’s “CO2 Emissions from
Fuel Combustion 2020”, China’s household carbon emissions in 2019 represented 53% of
the country’s total carbon emissions and accounted for 19% of global household emissions,
the highest share worldwide [6,7]. Given this trend, household carbon emissions are
increasingly becoming a significant component of China’s total carbon dioxide emissions.
Furthermore, as China continues to implement policies to stimulate consumption and
boost domestic demand, household consumption is surpassing industrial production as
the primary driver of carbon emissions’ growth in the country [8].

Carbon footprint inequality arises from differences among individuals and organiza-
tions in production and consumption patterns, energy usage, and technological capabilities.
Compared to income inequality, carbon footprint inequality is more comprehensive, can
be localized to specific areas of consumption, and exhibits greater spatial variation [9,10].
As the largest emitter of carbon and a nation with significant disparities in wealth, China
displays distinct regional differences in resource distribution and economic development.
Carbon footprint inequality often leads to disputes over the allocation of carbon neutrality
responsibilities, with differences in regional carbon emission rights and resource flows
potentially exacerbating economic inequality. For example, disparities in energy, infras-
tructure, and socioeconomic resources lead to variations in carbon emissions between
developed and underdeveloped regions [11], urban and rural areas [12,13], and urban cores
and suburban areas [14]. The significant wealth gap and pronounced spatial disparities
in carbon emissions greatly impact both spatial carbon footprint inequality and the effec-
tiveness of emission-reduction efforts [15,16]. A profound understanding of spatial carbon
emission inequalities can help formulate more targeted and equitable mitigation policies,
ensuring fair climate responsibility among all parties. Ignoring spatial carbon emission
inequality could hinder the achievement of carbon peak and carbon neutrality goals.

Through a comparative analysis of existing research, numerous deficiencies were iden-
tified: (1) A lack of multi-scale spatial patterns of carbon emissions. Most studies analyze
carbon inequality at the national, regional, provincial, or sectoral level, but there is limited
integration of carbon emission data at meso and micro scales, making multi-scale policy
formulation challenging. Additionally, there is a lack of research on finer geographic units,
which hampers an in-depth investigation of intra-regional carbon footprint management
and emission disparities [1,17,18]. (2) Deficiency in the spatial dimension. Current research
on carbon emissions inequality primarily focuses on socio-economic groups and sectoral
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differences, with limited attention to spatial variation [10,19]. (3) Data and modeling limita-
tions. The lack of high-resolution data constrains the accuracy of fine-scale modeling [3,20].
(4) Lack of inter-regional spatial linkages. The spatial spillover effects of carbon emissions
between regions have not been fully revealed. This study aims to address the spatial
dimension of carbon emission inequality, overcome data and modeling limitations, and
deepen the understanding of spatial carbon emission inequalities [21,22].

This research focuses on the spatial analysis of consumption-based carbon footprint
inequality. Therefore, by constructing a high-resolution consumption carbon footprint
model for China, the study aims to create a micro-level carbon footprint grid data map.
The Theil index and Lorenz curve are employed to quantify multi-scale carbon footprint
inequality levels and to analyze the main driving factors of this inequality. This provides
a novel perspective for a more equitable and reasonable allocation of carbon reduction
targets among regions in China, supplementing existing macro-level studies. This is of
significant importance for achieving China’s overall carbon reduction goals.

2. Data and Methods
2.1. Data

The environmentally extended multi-regional input-output (EE-MRIO) model for
China, along with provincial and county-level [23] carbon emission inventories, were
sourced from the China Emission Accounts and Datasets [24] (CEADS, https://www.ceads.
net/, accessed on 16 April 2024). Economic data for cities and counties, as well as urban and
rural disposable income data, were gathered from statistical yearbooks of various districts
and counties, government websites, and statistical bulletins. Population data were obtained
from WorldPop (https://www.worldpop.org/, accessed on 16 April 2024). Data on urban
built-up areas (GLB) were sourced from Tsinghua University (http://data.ess.tsinghua.edu.cn/,
accessed on 16 April 2024).

2.2. Research Methods
2.2.1. Constructing the Consumption-Based Carbon Footprint Grid Model

To accurately estimate China’s consumption-based carbon emissions, it is crucial to
develop a rapid and precise quantitative estimation method applicable at the national,
provincial, county, and grid scales. However, input-output data are only available at
the national level, resulting in a one-dimensional research scale that limits the ability
to conduct multidimensional spatial analysis. This study addresses this limitation by
employing a four-level data model that encompasses national, provincial, county, and
urban-rural scales. By utilizing population density as a key linkage, the model integrates
diverse datasets and enables the construction of a fine-grained, multiscale grid model for
estimating China’s consumption-based carbon emissions. The structure of this model is
depicted in Figure 1.

The construction of China’s fine-grained consumption-based carbon emission grid
model involved four main steps:

(1) Integrating China’s energy consumption carbon emission data for 2015 and 2017 with
the Environmentally Extended Multi-Regional Input-Output (EE-MRIO) model, dis-
aggregating provincial consumption emissions based on sectoral and regional links.

Using the EE-MRIO model, China’s total carbon emissions were calculated and subse-
quently allocated to each province. This study included eight consumption categories, as
detailed in Table 1.

https://www.ceads.net/
https://www.ceads.net/
https://www.worldpop.org/
http://data.ess.tsinghua.edu.cn/
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Table 1. The 42 sectors of the reclassified input-output table.

No. Household Consumption Sector Input-output Table Department

1 Food alcohol and tobacco Food and alcohol and tobacco, Agriculture, forestry and fishing
2 Dress Textile, garment, shoes, hats, leather, eiderdown and their products

3 Housing Non-metallic ores and other mineral products, Manufacture of
Non-metallic Mineral Products

4 Daily necessities and services Wood products and furniture, Electrical machinery and equipment

5 Transportation and Communications Transportation, warehousing and postal services, Information
transmission, software and information technology services

6 Health care Health and social work

7 Education, culture and entertainment Paper printing and cultural and educational sporting goods,
education, Culture, Sports and Entertainment

8 Other Residential services, repairs and other services
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The basic linear equation is expressed as follows:

X = (I − A)−1Y (1)

Using matrix representation, the technical coefficient matrix is as follows:

A =


A11 A12

A21 A22 · · · A1m

A2m

...
. . .

...
An1 An2 · · · Anm

 (2)

I is the identity matrix, (I − A)−1 is the Leontief inverse matrix, and the final demand
is as follows:

F =


F11 F12

F21 F22 · · · F1m

F2m

...
. . .

...
Fn1 Fn2 · · · Fnm

 (3)
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Here, X =


X1

X2

...
Xm

, Anm =
[

anm
ij

]
, and anm

ij =
znm

ij
xm

j
, where ai jnm represents the technical

coefficient for sector i in region n to sector j in region m; znm
ij denotes the intermediate

demand from sector i in region n to sector j in region m; xm
j is the output of sector j in region

m; and Fnm =
[
Fnm

i
]

indicates the final consumption in region m of goods produced by
sector i in region n. To account for environmental impacts, the emission coefficient EEE is
introduced, defined as the CO2 emissions generated per unit of output. The consumption-
based CO2 emissions can then be calculated as follows:

(2) Disaggregation of Provincial Consumption-Based Emissions to Municipalities and Counties

In this study, the decomposition of consumption-based carbon emissions was con-
ducted based on population distribution, urban-rural differences, and residents’ income
levels. Due to data limitations, the consumption proportions for each province were calcu-
lated using the MRIO model. Municipal-level consumption economic data were further
disaggregated to the county level. The proportion of county-level consumption economic
data was determined, and county-level consumption-based carbon emissions were calcu-
lated using the county-level carbon emissions data from CEADs. This dataset was derived
by leveraging the strong correlation between night-time light data and human activities.
Two sets of night-time light data (DMSP/OLS and NPP/VIIRS) were used to estimate the
CO2 emissions of 2735 counties in China from 1997 to 2017.

Cd =
Mcons

Mtotal
×

Gprec

Gpro
× Gd

Gprec
× Cd−total (4)

Here, Cd represents the consumption-based carbon emissions of county d, Mtotal refers
to the overall input-output data for the province, Mcons denotes the provincial consump-
tion data, Gpro indicates the provincial consumption economic data, Gprec represents the
municipal consumption economic data within the province, Gd refers to the consump-
tion economic data for county d within the municipality, and Cd−total represents the total
county-level carbon emissions from CEADs.

(3) Classification of Data Based on Urban and Rural Regions, Disposable Income, and
Population Differences

County-level consumption-based carbon emissions were further disaggregated to
grid units using population grid maps, urban built-up area vector data, and urban-rural
disposable income data. Urban-rural boundaries were first determined using urban built-
up area data, where populations inside built-up areas were classified as urban and those
outside were classified as rural.

The urban and rural consumption footprints were allocated based on the total dis-
posable income of urban and rural populations. The consumption-based carbon footprint
of each grid unit was calculated by multiplying the population of the grid unit by the
disposable income of that area. To ensure data accuracy and comparability, the WorldPop
population data (100 m resolution) were resampled to 250 m resolution.

2.2.2. Multiscale Inequality Assessment Methods

To assess multiscale carbon inequality, this study employed an improved Theil index
model and Lorenz curve to quantitatively evaluate the spatial distribution disparities
of China’s consumption-based carbon footprint. The Theil index [25] is one of the most
common methods for estimating regional carbon emission inequality. It decomposes overall
disparities into within-group and between-group differences, facilitating observation of the
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direction and magnitude of each variability and their contribution to overall disparities.
This makes it widely used for quantifying spatial and social differences.

Accordingly, the total carbon footprint at provincial, municipal, and county scales is
decomposed into between-group and within-group differences, calculated as follows:

Theil =
m

∑
i=1

Ti ln(mTi) = TWR + TBR (5)

TWR =
mn

∑
i=1

Tiln
(

mn
Ti
Tn

)
(6)

TBR =
m

∑
i=1

Tnln
(

Tn
m
mn

)
(7)

Here, TWR and TBR represent within-region and between-region differences, respec-
tively; m denotes the total number of units, mn is the number of units at each scale, Ti is the
ratio of carbon emissions of unit i to the total, and Tn is the ratio of emissions at each scale
to the national level. A larger Theil index indicates greater regional disparities.

Additionally, the Lorenz asymmetry coefficient was used to visualize the inequality
in consumption-based carbon footprints. The Lorenz curve and Gini coefficient [26] are
widely used in economic and geographic research to measure inequality in carbon emissions
and energy use. The traditional Lorenz curve graphically represents income distribution
disparities. The Gini coefficient represents the area between the Lorenz curve and the
horizontal axis as A, and the area between the Lorenz curve and the vertical axis as B. It
is calculated simply as A/(A + B). In the context of carbon emissions, the variables in the
Gini coefficient calculation were further modified: the horizontal axis was replaced by
the cumulative proportion of cities, and the vertical axis was replaced by the cumulative
proportion of carbon emissions in each region. The modified formula is given as follows:

G =
A

A + B
(8)

Here, A represents the area between the Lorenz curve and the horizontal axis, B
represents the area between the Lorenz curve and the vertical axis, and G denotes the
Gini coefficient.

Additionally, spatial patterns and correlations of carbon footprint inequality are ex-
plored using methods such as Moran’s Index, kernel density analysis, and spatial lag anal-
ysis. This study analyzed factors influencing carbon footprints by utilizing 22 indicators
derived from China’s Urban Statistical Yearbook, including carbon intensity, urbanization
rate, municipal industrial structure, energy structure, and per capita GDP.

The structure of this study is as follows: Section 1 provides a comprehensive review of
the relevant literature. Section 2 introduces the data and research methods, including the
processes for calculating the carbon footprint and the Theil index. Section 3 focuses on the
analysis of the consumption carbon footprint and is divided into three parts: first, a spatial
analysis of multi-scale consumption carbon footprint patterns and their differences; second,
a calculation of the Theil index to assess inequality at multiple scales; and third, an in-depth
exploration of regional disparities in carbon footprints. Section 4 presents discussions and
policy recommendations, while Section 5 summarizes the main conclusions. The process
flow of the study is illustrated in Figure 2.
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2.3. Uncertainty Analysis

The results of this study underwent multiple reliability validations, including un-
certainty analyses conducted through data comparison, spatial consistency checks, and
simulation analysis. First, carbon emission data from 21 reference regions for the same
study year were sampled and compared. The error rates were all within 17%, with some
regions showing errors as low as 0.16%. Second, the study data were compared with
globally recognized ODIAC data, which have a spatial resolution of 1 km × 1 km. The
validation results indicated a high degree of spatial trend consistency, with a coefficient of
determination (R2) of 0.7258, and high detail accuracy in hotspot areas with clear directional
precision. Finally, considering the uncertainties arising from regional price consistency in
MRIO data and the estimation of county-level carbon emissions, a Monte Carlo simulation
was conducted. Assuming that both carbon emission and income data followed normal dis-
tributions, the results demonstrated that the uncertainty for all cities was below 10%, within
a reasonable range. These findings suggest that the estimation results of this study are
highly reliable and suitable for fine-grained spatial analyses of carbon emissions. Detailed
reference data and comparative results are provided in the Supplementary Materials.

3. Results
3.1. Spatial Distribution and Multi-Scale Variability of Carbon Footprints

The spatial patterns of carbon footprints are often influenced by scale dependency,
where analyses at larger scales may obscure subtle spatial variations while smaller-scale
analyses can more effectively reveal spatiotemporal heterogeneity within regions. This
study constructed a high-resolution 250 m-grid model of China’s consumption carbon
footprint, uncovering spatial patterns of inequality. Analyses at provincial and county
scales were conducted to explore the spatiotemporal dynamics of carbon footprints.
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3.1.1. Spatial Patterns of Multi-Scale Carbon Footprints

Figure 3 shows the distribution of consumption-based carbon footprints at a high
spatial resolution of 250 m, revealing significant spatial imbalances. Carbon emissions in
the eastern coastal areas were significantly higher than those in the central and western
regions. In the central region, overall carbon emissions were relatively low, with footprints
concentrated in provincial capitals and economic centers such as Chengdu, Chongqing,
and Xi’an. The western region, particularly Inner Mongolia and the northwestern areas
(e.g., Xinjiang and Gansu), exhibited low carbon emission intensity.
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Kernel density analysis based on fine-scale grid data (Figure 3) indicated that carbon
emissions were predominantly concentrated in areas east and south of the Hu Line. The
Beijing–Tianjin–Hebei region, the Yangtze River Delta, and the Pearl River Delta repre-
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sent the most carbon-intensive regions in China. Among these, the Yangtze River Delta
is the most prominent due to its position as one of China’s most developed economic
hubs, characterized by high urbanization and concentrated industrial activity. The Pearl
River Delta follows, serving as a critical manufacturing base with high population density
and economic vitality. The Beijing–Tianjin–Hebei region ranks third, functioning as the
economic hub of northern China, driven by the presence of Beijing and Tianjin. Secondary
hotspots of carbon emissions were primarily distributed around provincial capitals. These
findings highlight the pronounced spatial inequality of carbon emissions in China, with eco-
nomically developed regions exhibiting significantly higher footprints, reflecting a strong
correlation between carbon emissions and economic development.

We analyzed the spatial concentration of carbon footprints by plotting county-level
consumption-based carbon footprints and Lorenz curves (Figure 4). The results indicate
that carbon footprint inequality increased from 2015 to 2017. The Lorenz curve shifted
further toward the bottom-right corner in 2017, indicating a higher degree of inequality.
Carbon footprints were highly concentrated in a small number of major cities: in 2015,
147 cities accounted for 20% of total emissions, while in 2017, this number decreased to
136 cities. Similarly, the number of cities contributing 50% of emissions dropped from
594 in 2015 to 578 in 2017. The distribution of 80% of carbon emissions also became more
concentrated, suggesting widening inequality, as the carbon emission gap between large
and small cities continued to grow annually.
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China’s 2783 county-level cities emitted 3681.19 MtC and 3895.45 MtC in 2015 and
2017, respectively, accounting for 40% and 43% of national carbon emissions. The top 5%
of cities (139 out of 2783) accounted for 19.28% and 19.6% of the total emissions in 2015
and 2017, respectively. In contrast, 51% of cities, representing 38.4% of the population,
contributed only 20% of the carbon footprint. This disproportionate distribution highlights
carbon inequality in most small- and medium-sized cities; despite their large populations
and significant land area, these cities contribute only a small share of national emissions.
Globally, the wealthiest 10% of the population account for nearly 50% of global emissions,
while the poorest population (those in the bottom 50% of income distribution) contribute
only 10–13%. The carbon footprint of the wealthiest 1% is estimated to be 175 times that
of the poorest 10%. In China, however, the proportion of national emissions contributed
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by the wealthiest 10% of cities was significantly lower than the global average, while the
middle-income population’s contribution was relatively larger.

From the analysis of county-level carbon footprint hotspots (Figure 5), it is evident
that the distribution of carbon emissions in China is highly spatially uneven. Hotspot
areas are primarily concentrated in economically developed eastern coastal regions and
resource-intensive cities. For instance, the Yangtze River Delta and the Beijing–Tianjin–
Hebei region exhibit high carbon footprint densities due to their extensive industrialization,
dense populations, and the influence of high-income groups and consumption patterns,
making them major carbon footprint hotspots. Meanwhile, resource-dependent cities
such as Inner Mongolia and Ningxia rely heavily on high-carbon industries like mining
and heavy manufacturing, resulting in elevated carbon intensities. In contrast, low-value
areas form contiguous regions along provincial borders in Guangxi, Guizhou, Jiangxi, and
Hunan, as well as in peripheral areas around the Sichuan Basin and parts of eastern Harbin
and western Xinjiang.
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The per capita carbon footprint hotspot map reveals a more dispersed pattern, with
hotspots concentrated in resource-intensive areas such as Inner Mongolia, Shaanxi, Shanxi,
Xinjiang, and parts of Northeast China. Additionally, hotspots around Shanghai highlight
the role of high consumption levels in economically developed areas in driving carbon
emissions. In contrast, cold spots are predominantly located in less developed border
regions of central and western provinces, particularly at the Anhui–Henan border, where
low levels of industrialization correspond to minimal carbon footprints. Notably, megacities
such as Beijing and Shenzhen do not emerge as per capita carbon footprint hotspots,
as their economies are dominated by low-carbon service industries, leading to lower
carbon intensities.

From a temporal perspective (see Supplementary Materials), China’s carbon footprint
shows a modest upward trend, but its growth is relatively slower compared to economic
and income growth. During the study period, total carbon footprints increased by 9.29%,
while per capita carbon footprints grew by 8.33%. In comparison, per capita disposable in-
come increased by 17.37%. Although total and per capita carbon emissions rise with higher
income levels, the slower growth of carbon footprints indicates that China is gradually
transitioning towards a low-carbon economy, with less reliance on carbon-intensive indus-
tries. Spatially, the overall distribution of total carbon footprint hotspots remains relatively
stable, except for a notable reduction in hotspots in Liaoning. Conversely, cold spots show
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significant changes, with large areas in Sichuan, Yunnan, and Guangxi shifting from 99%
cold spots to 95% cold spots, indicating increased carbon emissions in these regions. Simi-
larly, the spatial changes in cold and hotspot distributions for per capita carbon footprints
reveal consistent patterns. Traditional resource-dependent areas such as Northeast China
and Inner Mongolia show shrinking hotspots, while the extent of cold spots in central and
western provinces expands, though some regions exhibit downgraded significance.

The carbon emissions gap among provinces is substantial, with a predominance
of carbon-intensive consumption structures (Figure 6). From the perspective of carbon
emissions on the consumption end of provincial residents, the structural composition of
consumption-based carbon emissions across China’s provinces was calculated. The results,
as shown in the figure, indicate that the emissions of the highest-emitting province are
20 times greater than those of the lowest. From the consumption-based carbon emissions
per province, there was a slight increase in 2017 compared to 2015, with significant variation
among provinces. The provinces with the highest emissions were Shandong, Guangdong,
and Jiangsu, with consumption-based emissions of 302.83 Mt, 271.39 Mt, and 237.19 Mt,
respectively, in 2015. The provinces with the lowest emissions were Hainan, Qinghai, and
Tianjin, with emissions of 15.75 Mt, 20.36 Mt, and 46.4 Mt, respectively, in 2015. The largest
emissions gap between provinces was 285.18 Mt in 2015 and 303.96 Mt in 2017, indicating
a widening disparity in consumption-based carbon emissions among provinces.
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In terms of the structure of consumption-based carbon emissions, there was little
change between 2015 and 2017. Food-related emissions accounted for the largest share,
exceeding 30%, followed by housing-related emissions, which accounted for more than 25%.
Economically developed provinces such as Beijing, Tianjin, and Shanghai had a food emis-
sions share of approximately 27%, whereas remote provinces like Heilongjiang, Ningxia,
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and Inner Mongolia had shares as high as 40%. Additionally, transportation and education
categories accounted for a significantly higher share in provinces like Beijing and Shanghai,
exceeding 10% compared to other provinces. From 2015 to 2017, the proportion of food-
and housing-related emissions gradually declined, with the largest reduction observed in
Beijing, where the food share decreased by 7%, and in Shanghai and Jiangsu, where the
transportation and education shares increased by 5% and 2%, respectively. Regions such as
Beijing and Guangdong saw a 3% increase in the transportation share and a 2% increase in
the education share. While food and housing—both carbon-intensive sectors—continued
to dominate, their shares decreased, whereas sectors like scientific research and education
saw an increasing share.

3.1.2. Quantifying the Inequality of the Carbon Footprint of Consumption

Through the decomposition analysis of the Theil index (Figure 7), this study reveals
the significant contributions of various administrative levels to carbon inequality. In 2015
and 2017, the Theil indices of carbon inequality at provincial, municipal, county, and urban-
rural levels showed an upward trend from the provincial to the urban-rural scale, reflecting
increasingly pronounced carbon emission disparities with finer administrative granularity.
Specifically, the national interprovincial inequality indices were 0.0838 and 0.0918 in 2015
and 2017, respectively; intermunicipal indices were 0.1774 and 0.1891; intercounty indices
were 0.3304 and 0.3476; and urban-rural inequality indices were 0.3076 and 0.3514. This
trend indicates that carbon footprint inequality intensifies as the scale becomes more
granular, with county-level disparities being particularly pronounced. (The detailed results
of the Theil index calculations are provided in the Supplementary Materials).
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This study highlights that intercounty inequality contributes most to national carbon
inequality, accounting for 55.42% and 54.39% of the total inequality in 2015 and 2017,
respectively—far surpassing the contributions of provincial and municipal levels. This
finding underscores that disparities in carbon footprints among county-level cities are the
primary driver of national carbon inequality. Developed counties are highly dependent on
energy-intensive industries such as steel and chemicals, while less-developed counties are
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dominated by agriculture or services, resulting in lower carbon intensities. The pronounced
inequality at the county level not only exacerbates nationwide carbon inequality but also
poses challenges for achieving carbon reduction targets. Therefore, carbon reduction
policies must consider the differentiated needs and capacities of county-level cities.

Temporally, the Theil indices of most provinces exhibited a downward trend from 2015
to 2017. For example, the indices for Hainan and Qinghai decreased by 4.29% and 3.32%,
respectively. However, some provinces saw an increase in their Theil indices, such as Inner
Mongolia and Sichuan, which rose by 2.53% and 2.18%, respectively. Spatially, carbon foot-
print inequality measured by the Theil index was particularly pronounced in the northwest
and northeast regions. Western provinces such as Sichuan, Xinjiang, Guizhou, and Shaanxi
had intercounty inequality indices exceeding 0.32, while economically developed provinces
such as Jiangsu and Shandong had lower inequality indices below 0.14. By contrast, despite
Guangdong’s overall economic development, significant inequality persists in its northern
regions, driven by the stark contrast between the rapid development of the Pearl River
Delta and the economic underdevelopment of its peripheral areas. Additionally, in 2017,
inequality in western Fujian’s mountainous regions decreased, while inequality in northern
Guangdong intensified.

Socioeconomic factors influence consumption patterns, thereby affecting consumption-
based carbon footprints. This study analyzed 22 driving factors, including carbon intensity,
GDP, built-up area, industrial structure, urbanization rate, per capita GDP, energy structure,
and social electricity consumption. To quantify the contribution of socioeconomic factors to
carbon footprint inequality, spatial regression methods such as the Geodetector, random
forest, and geographically weighted regression (GWR) were employed to conduct a city-
level quantitative analysis of these factors’ relative contributions. Among the key variables,
carbon intensity emerged as the most influential factor, accounting for 31% of total car-
bon inequality, followed by actual GDP (22%) and per capita GDP (21%). These results
indicate a strong correlation between carbon footprint growth and economic development.
Mitigating carbon footprint inequality can be achieved primarily through adjusting indus-
trial structures, promoting a green economy, and reducing carbon intensity. At the same
time, increasing consumer purchasing power to facilitate a shift from carbon-intensive to
low-carbon consumption patterns is essential for promoting sustainable economic growth.

3.2. Analysis of Regional Carbon Footprint Inequality

In the in-depth analysis of regional carbon footprint inequality, several intriguing
characteristics were identified when examining localized details. These include spatial lag
effects between income and carbon footprints, differences in carbon footprints between rural
and urban areas, and disparities between PSC and developed regions. These relationships
reveal the complex interplay between income levels, urban-rural differences, regional
development disparities, and carbon emissions.

3.2.1. Compared to Income, the Spatial Lag of Carbon Footprint Is More Significant

Spatial lag analysis of carbon emissions and disposable income in county-level cities
reveals significant spatial lag effects in economic development and carbon footprints
(Figure 8). Most regions exhibit a lagging development pattern. However, areas such as the
eastern coastal regions, southern Inner Mongolia, and some provincial capitals and their sur-
rounding areas demonstrate a significant positive development trend. These regions have
shown a noticeable decoupling effect between economic growth and carbon footprints.
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In contrast, less developed areas in central and western regions, particularly in the
southwest and northwest, display significant spatial lag effects, indicating that carbon-
intensive economic structures and consumption patterns have yet to undergo effective
transformation. The spatial lag indices for 2015 and 2017 were 0.0723 and 0.062, respectively.
Although spatial lag effects have slightly eased over this period, the overall change remains
limited, and the lag phenomenon is still pronounced. In 2015, 1504 county-level cities
exhibited spatial lag effects, and by 2017, this number decreased to 1436, reflecting the
gradual emergence of decoupling effects between carbon emissions and income growth in
certain areas.

The persistence of high spatial lag effects is primarily attributed to existing carbon-
intensive consumption patterns. While economic development has progressed rapidly,
consumption levels have not kept pace. Therefore, the formulation and implementation
of low-carbon management strategies for county-level regions should not be confined to
individual counties but should account for spatial spillover effects, fostering the further
decoupling of economic growth from carbon emissions.

3.2.2. The Growth Rate of Carbon Footprints in Rural Areas Outpaces That of Urban Areas

Addressing rural carbon inequality is crucial for achieving carbon neutrality. Rural
areas are more susceptible to carbon inequality due to economic disparities, unequal land
use, and spatial dispersion. Figure 9 illustrates the urban-rural per capita carbon footprints
across counties within provinces. Urban residents consistently exhibit higher per capita
carbon footprints than rural residents. However, the gap is more pronounced in poorer
western provinces, such as Ningxia, Shaanxi, and Gansu, where urban per capita carbon
footprints are typically 2–3 times higher than that of rural areas. In contrast, wealthier
regions like Beijing, Shanghai, and Jiangsu exhibit smaller gaps, with urban per capita
carbon footprints only 1.05–1.3 times that of rural residents. This variation stems largely
from economic integration between urban and rural areas and the geographic location of
the cities within each province. Further analysis reveals that carbon footprint inequality is
more pronounced among rural households compared to urban households. For example, in
2015, the highest urban carbon footprint was found in Jungar Banner (41.23 tons of carbon,
TC), and the lowest was in Yanjin County (1.02 TC), a 40-fold difference. For rural areas,
the highest carbon footprint was in Ejin Banner (20.31 TC), and the lowest was in Weixin
County (0.204 TC), a 98-fold difference. By 2017, the lowest urban carbon footprint was
observed in Zhenxiong County (1.03 TC), while the highest was in Beitun City (43.23 TC).
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Similarly, for rural areas, the lowest CF was in Weixin County (0.23 TC), and the highest
was in Shenmu County (21.06 TC). The urban-rural divide has exacerbated household
carbon footprint inequality.
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Notably, affluent regions tend to have smaller urban-rural carbon footprint differences,
while less-developed regions exhibit larger disparities. This suggests that in wealthier
regions, household carbon footprints are converging, whereas in poorer regions, efforts to
bridge urban-rural gaps are increasing carbon emissions. For instance, in underdeveloped
central and western provinces such as Xinjiang, Ningxia, and Guangxi, rural carbon
footprints grew by over 18%, compared to 7.7% for urban areas nationwide and 9.4%
for rural areas nationwide. The growth in rural carbon footprints is primarily driven by
economic lags, inadequate infrastructure, and reliance on carbon-intensive energy sources
such as coal and firewood. While modern energy sources like electricity are becoming more
common, their coverage and usage frequency remain limited. Additionally, rising incomes
and changing consumption patterns in rural areas have led to an increased demand for
energy-intensive goods, further driving carbon footprint growth.

Since the reform and opening-up period, consumption levels of both urban and
rural residents have risen steadily. However, due to urbanization and declining rural
populations, the total rural carbon footprint has shown a downward trend. In contrast,
urban carbon footprints have grown significantly, with their share of total carbon emissions
rising from 56.55% to 58.27%, further widening the urban-rural gap. While carbon footprint
inequality between urban and rural areas remains evident, supportive rural policies such
as the rural revitalization strategy and poverty alleviation programs have promoted rural
economic development and improved living conditions, helping to mitigate urban-rural
inequality trends.

3.2.3. Low-Carbon-Footprint Areas and Poor Counties Have a Large Overlap

Income inequality is one of the primary drivers of the urban-rural carbon footprint
gap. China has identified 832 poverty-stricken counties (PSCs) based on the poverty line
standard of USD 15.4 per person per day, as shown in Figure 10. The analysis reveals
a significant overlap between PSC and low-carbon emission areas. In the county-level
carbon footprint hotspot analysis, 72.6% of PSCs were identified as cold spots. In the
spatial lag analysis, all PSCs exhibited spatial lag effects, with 63% categorized as highly
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lagging and 28% as moderately lagging. This indicates that these regions not only have low
economic development levels but also relatively low carbon emissions. However, with the
implementation of poverty alleviation policies and infrastructure improvements, carbon
emissions in these areas are likely to increase rapidly [27]. Without timely intervention, this
growth could negatively impact overall carbon reduction goals. Therefore, for low-carbon
development in PSC, it is crucial to adopt strategies that integrate economic growth with
carbon reduction, ensuring a balanced and sustainable approach.
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Figure 10. Distribution of national PSCs in China and scatter plot of linear regression between carbon
emissions and income for PSCs and non-PSCs. (The blue line represents the trend of the correlation
between carbon emissions and disposable income, the black dots indicate the disposable income
and carbon emissions of individual county-level cities, the green bar chart shows the distribution of
income data, and the orange bar chart illustrates the distribution of carbon emissions data).

Significant differences in carbon footprints exist between PSCs and non-PSCs. A com-
parative analysis of economic indicators, disposable income, and carbon footprints reveals
that PSCs, due to lower levels of economic development and limited consumer capacity,
exhibit relatively low carbon emission intensities. On average, the carbon emissions of
non-PSCs are 1.2 times higher than those of PSCs. Specifically, the average carbon emissions
in non-PSCs are 1149.53 tons, compared to 566.5 tons in PSCs.

Income disparities between the two groups significantly influence carbon emission
levels. The average annual income in non-PSCs is CNY 34,463, whereas in PSCs, it is only
CNY 24,467. Correlation analysis shows a strong association between income and carbon
emissions in non-PSCs. In contrast, income and carbon emissions in PSCs follow an approx-
imately parallel trend line, indicating that income growth does not lead to a substantial
increase in carbon emissions. This finding aligns with the earlier conclusion that the
economic growth patterns of PSCs are not strongly linked to carbon footprint increases.

3.2.4. Regional Marginality in Economy and Carbon Emissions: Characteristics of Carbon
Emissions in Interprovincial Border Areas

The study highlights the unique characteristics of interprovincial border regions. Car-
bon hotspots and cold spots for total emissions and per capita carbon emissions (Figure 6),
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as well as areas with high spatial lag effects, are often located near provincial boundaries.
Typical regions include the border areas between Qinghai, Shaanxi, and Sichuan; the junc-
tions of Guangxi, Guizhou, and Hunan; and the boundary regions of Jiangxi, Guangdong,
and Fujian. The findings indicate that interprovincial border areas are intersections of
provincial economic policies, often facing policy isolation and coordination challenges.
These areas are also closely associated with impoverished counties, making them critical
regions for coordinated development and poverty alleviation. Interprovincial border re-
gions are frequently situated in ecologically fragile areas, where geographic constraints
hinder large-scale industrialization and infrastructure development. For example, the
border regions of Qinghai, Sichuan, and Shaanxi are characterized by high altitudes; the
Guangxi, Guizhou, and Hunan border areas suffer from severe rocky desertification; and
the Jiangxi, Guangdong, and Fujian borders are located in hilly and mountainous terrain.
Economic activities in these regions are concentrated in agriculture, animal husbandry, and
light industries, leading to lower carbon emission demands and a pattern of “low-carbon
growth”. However, this relative decoupling of economic activity and carbon emissions
presents unique challenges for achieving coordinated low-carbon and economic develop-
ment. Policy efforts should prioritize these regions’ ecological and economic capacities
by formulating targeted low-carbon development strategies. Such policies can simultane-
ously promote economic growth and carbon reduction, addressing the dual objectives of
development and sustainability.

4. Discussion
4.1. Variations in Carbon Footprint Inequality

In this study, we developed a multi-scale consumption-based carbon footprint model,
quantifying carbon footprint inequality at the urban-rural scale for the first time. Compared
to previous research [28,29], the multi-scale analysis enables a more precise identification
of the spatial distribution of carbon footprint inequality, deepening our understanding of
the mechanisms underlying its formation.

The results indicate that carbon footprint inequality increased significantly in 2017
compared to 2015. This trend aligns with existing studies [30,31] and is primarily driven
by the rapid expansion of consumption demand, which has caused the growth rate of
consumption-based carbon footprints to outpace that of total carbon emissions. In devel-
oped regions, consumption capacity has increased rapidly, while in less-developed regions,
industrial transfers from developed areas have led to higher carbon intensity. Although
carbon footprint inequality in China is widening, its level remains significantly lower than
the global average. For instance, the wealthiest 10% of the global population contributes
nearly 50% of global carbon emissions, whereas in China, the top 593 cities (representing
34.6% of the population) account for only 50% of the national total [32]. Similarly, the
lowest 51% of Chinese cities contribute just 20% of the national carbon footprint.

The exacerbation of inequality is evident across multiple dimensions. The Theil indices
at the provincial, municipal, and county levels have all increased, with county-level cities
contributing 55.42% of the national carbon footprint inequality, making them the largest
contributors. This finding is consistent with previous studies [33]. When formulating
carbon reduction policies, it is essential to pay greater attention to disparities at the county
level and implement more targeted measures to address them.

4.2. Urban-Rural Disparities in Carbon Footprint

The results reveal that the proportion of urban carbon footprints continues to grow,
further supporting existing research conclusions that urban areas remain the primary focus
of carbon reduction efforts [21]. However, the growth rate of per capita carbon footprints in
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rural areas has surpassed that of urban areas, and carbon footprint inequality within rural
regions is significantly higher than in urban areas. This disparity is especially pronounced
in rural areas of economically underdeveloped regions such as Xinjiang, Ningxia, and
Guangxi, where carbon footprints are increasing at a faster rate than in other areas. These
rural regions face greater challenges and pressures in carbon reduction due to lagging
living conditions, underdeveloped infrastructure, and slower economic progress. He’s
research highlights that in low-income countries such as those in Africa, urban carbon
emissions are 2–9 times higher than rural emissions, with poorer nations experiencing
greater urban-rural disparities. In contrast, China’s urban-to-rural carbon footprint ratio
is 5.6:4.4, significantly lower than the global average. Against this backdrop, the Chinese
government’s initiatives—including rural revitalization, agricultural support policies, and
targeted poverty alleviation—are gradually promoting rural economic development and
improving living conditions for rural residents. These efforts also provide critical support
for achieving more effective carbon reduction in rural areas.

4.3. Reducing Carbon Footprint Inequality While Eliminating Poverty

This study reveals a significant overlap between low-carbon-footprint regions, lagging
areas, impoverished counties, and interprovincial border regions, underscoring the close
relationship between carbon footprints and regional economic development levels. This
finding provides a critical foundation for formulating regional carbon reduction policies.
In economically underdeveloped areas, industrial structures are often dominated by tradi-
tional high-carbon industries, energy efficiency is low, and carbon emission intensity is high.
Consequently, these regions experience slow carbon footprint growth, forming lagging
areas. Additionally, impoverished counties are often located in mountainous, arid, or semi-
arid regions and border areas with harsh geographical conditions, further constraining
socioeconomic development and exacerbating inequalities in these regions [34].

Existing research shows that poverty alleviation has a minimal impact on total carbon
emissions [35]. Even if 1 billion people globally escape poverty (reaching a daily income of
USD 1.9 per capita), global carbon emissions would increase by only 1.6% to 2.1%. China
has made remarkable progress in poverty alleviation, with extreme rural poverty largely
eradicated by 2020. However, poverty alleviation efforts must be aligned with addressing
regional inequalities, particularly the imbalance between the eastern coastal regions and
inland areas such as the southwest and northwest. By improving living conditions in
impoverished areas, developed regions should take greater responsibility for promoting
economic development in these regions, ensuring that carbon reduction efforts proceed
in tandem. This approach offers valuable insights not only for China but also for other
developing countries facing similar challenges of poverty and ecological constraints [36].
Addressing the dual goals of poverty reduction and carbon mitigation is essential for
achieving sustainable development globally.

4.4. Recommended Measures

Based on the findings, addressing multi-scale carbon inequality and spatial imbal-
ances in carbon footprints requires efforts in monitoring and evaluation, differentiated
policy design, and regional coordinated development. The following recommendations
are proposed.

4.4.1. Strengthening Monitoring and Evaluation

To address regional carbon inequality, a standardized multi-level monitoring system
should be established to enhance a quantitative analysis of carbon emissions at all admin-
istrative levels. At the national level, a unified carbon emission assessment framework
should be developed, integrating indicators such as carbon intensity, economic level, and
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population distribution. Regular national reports on carbon emission inequality should
be published. Regional- and county-level governments should establish dedicated moni-
toring agencies to investigate local carbon emission characteristics comprehensively and
build carbon inequality databases to provide accurate evidence for policymaking. Addi-
tionally, real-time monitoring mechanisms leveraging big data and artificial intelligence
should be introduced to track carbon emission trends and enable timely interventions in
high-emission areas.

4.4.2. Designing Differentiated Regional Policies

To mitigate spatial imbalances in carbon footprints, regional reduction policies should
reflect differentiation, particularly in the consumption sector. Developed cities should pro-
mote low-carbon consumption by incentivizing green products through subsidies, carbon
credit rewards, and encouraging the use of energy-efficient appliances, green building
materials, and low-carbon transportation options such as shared bicycles and electric ve-
hicles. Urban planning should be optimized to foster shared economy models, reducing
high-carbon footprint consumption. In less-developed regions, the focus should be on
accelerating the transition to clean energy and promoting awareness of green consumption.
Strategies could include increasing the supply of green products, advocating low-carbon
lifestyles, and reducing dependence on high-carbon energy sources. Differentiated mea-
sures should also address regional consumption patterns, such as housing and food, by
promoting energy-efficient housing and low-carbon technologies to gradually reduce car-
bon footprint disparities.

4.4.3. Addressing County-Level Carbon Inequality

As the primary contributors to national carbon footprint inequality, county-level cities
should adopt integrated measures, including regional coordination, industrial upgrading,
and consumption transformation, to narrow the carbon footprint gap. Strengthening
regional coordination mechanisms is essential, focusing on optimizing the integration of
transportation, energy, and ecological resources, and advancing shared infrastructure to
enhance resource utilization efficiency. Clean energy adoption and green transportation
systems should be prioritized to achieve synergistic effects.

Additionally, promoting low-carbon lifestyles through policy incentives and market
mechanisms is critical. Expanding the adoption of energy-efficient appliances, green
buildings, and clean energy—particularly in housing and food consumption—can guide
residents toward low-carbon consumption patterns, supporting both county-level carbon
reduction and sustainable development.

4.4.4. Challenges on the Path to Success

The journey toward these goals is fraught with challenges. First, inconsistencies and
gaps in regional and county-level carbon emission data could undermine the reliability of
monitoring and evaluation results. Second, underdeveloped regions may face technical and
financial constraints that hinder the implementation of policies, particularly in developing
low-carbon infrastructure and promoting clean energy. Third, conflicts of interest among
regions and groups may complicate cross-regional cooperation, especially in redistribut-
ing resources and allocating carbon reduction responsibilities. Finally, promoting green
consumption and low-carbon lifestyles may encounter resistance due to cultural habits
and economic burdens, requiring sustained public awareness campaigns and incentives to
enhance public acceptance.
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4.5. Limitations of the Study

This study has several limitations that we hope future research can address. First, due
to data availability, we only had access to MRIO tables for two specific years. Incorporating
more recent and comprehensive MRIO data would enable a more robust and detailed
analysis. Second, the lack of compatibility between data sources prevented the use of higher-
resolution datasets, such as those from social surveys. While the current data may lack
granularity, they still allow for an effective analysis of national carbon inequality patterns.

5. Conclusions
The improvement of carbon footprint inequality in China has significant practi-

cal implications for future sustainable development strategies. This study constructed
a 250 m-high-resolution dataset of consumption-based carbon footprints, revealing the spa-
tial characteristics and patterns of carbon footprint inequality in China from 2015 to 2017.
Using Theil indices and Lorenz curves, the study analyzed multi-scale carbon footprint
inequality and conducted an in-depth exploration of disparities between urban and rural
areas as well as between developed and PSCs. The findings underscore the existence of
significant carbon inequality in China, highlighting the need for a more equitable and
reasonable allocation of carbon reduction responsibilities.

5.1. Carbon Footprint Growth and Intensifying Inequality

From 2015 to 2017, China’s total carbon footprint increased by 214.26 Mt, accompanied
by a notable intensification of carbon inequality. The share of total emissions contributed
by the top 20% of emitters decreased from 147 cities in 2015 to 136 cities in 2017. In 2015,
the top 5% of cities (139 out of 2783) accounted for 19.28% of the national total, which
increased slightly to 19.6% in 2017. In contrast, 51% of cities, representing 48% of the
population, contributed only 20% of the total carbon footprint. Consumption patterns
remain predominantly carbon-intensive, with high carbon intensity and steadily rising
consumption capacity.

5.2. Spatial Trends in Carbon Footprint Inequality

Spatial analysis revealed varying trends of carbon footprint inequality across different
scales. At the provincial scale, Shandong emerged as the largest emitter. At the county
scale, carbon footprints were concentrated in affluent urban regions such as the Yangtze
River Delta, Pearl River Delta, and Beijing–Tianjin–Hebei areas, while many western
regions exhibited faster growth in consumption-based carbon footprints. At the grid scale,
kernel density analysis highlighted the Yangtze River Delta as the largest carbon footprint
region nationwide.

5.3. Scale-Dependent Theil Indices and Regional Disparities

The Theil indices of carbon footprint inequality increased with finer spatial scales,
with county-level disparities contributing over 55% to overall inequality. Significant spatial
imbalances were observed in the northwest and northeast regions, as well as within
Guangdong Province and western Fujian. These imbalances are driven by uneven resource
allocation and lagging industrial structures. Driver analysis identified carbon intensity as
the most influential factor contributing to these disparities.

5.4. Spatial Lag and Urban-Rural Differences

Multi-scale analysis revealed pronounced spatial lag effects in county-level carbon
footprints, with significant positive development trends only in the eastern coastal regions.
Urban carbon footprints grew by 7.7%, while rural footprints increased by 9.4%. Despite
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the faster growth in rural areas, urban carbon footprints continued to dominate, empha-
sizing the importance of urban carbon reduction efforts. Poverty-stricken areas showed
a 72.6% overlap with low-carbon emission zones and a full overlap with spatial lag regions,
highlighting poverty as a critical driver of inequality.
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