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Abstract: Combining blockchain technology with digital watermarking presents an
efficient solution for safeguarding vector map files. However, the large data volume
and stringent confidentiality requirements of vector maps pose significant challenges for
direct registration on blockchain platforms. To overcome these limitations, this paper
proposes a blockchain-based copyright protection model utilizing unique identifiers
(BCPM-UI). The model employs a distance ratio-based quantization watermarking
algorithm to embed watermark information into vector maps and then generates unique
identifiers based on their topological and geometric parameters. These identifiers,
rather than the vector maps themselves, are securely registered on the blockchain. To
ensure reliable copyright verification, a bit error rate (BER)-based matching algorithm is
introduced, enabling accurate comparison between the unique identifiers of suspected
infringing data and those stored on the blockchain. Experimental results validate the
model’s effectiveness, demonstrating the high uniqueness and robustness of the identifiers
generated. Additionally, the proposed approach reduces blockchain storage requirements
for map data by a factor of 200, thereby meeting confidentiality standards while maintaining
practical applicability in terms of copyright protection for vector maps.

Keywords: vector map copyright protection; blockchain; unique identification; geometric
feature; topological feature

1. Introduction
Vector map data form a cornerstone of geographic information systems (GISs) and

various mapping applications, serving as a fundamental component for advancing geospa-
tial technologies and their diverse societal applications [1]. As a critical foundation for
geospatial data sharing and urban planning, vector maps facilitate efficient data exchange,
integration, and decision-making in domains such as transportation management, envi-
ronmental monitoring, and land-use planning. Given their importance, safeguarding the
copyright of vector maps is paramount.

Digital watermarking technology plays a pivotal role in the copyright protection of
vector maps by embedding watermark information into the data without altering its appear-
ance or quality [2–4]. When map data are leaked or unlawfully replicated, the embedded
watermark can be extracted and verified using decoding algorithms, enabling the identi-
fication of the source and legitimacy of the data [5]. However, conventional watermark
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verification systems often rely on centralized servers or third-party institutions, which
introduce vulnerabilities. Centralized systems are susceptible to failures and cyberattacks
that can compromise the entire verification process [6,7]. Furthermore, the inclusion of
personal or sensitive information in watermarks [8] raises concerns about potential misuse
or unauthorized access by third-party institutions.

The emergence of blockchain technology offers a transformative solution for the secure
and reliable verification of digital watermarks [9]. Blockchain’s distributed and decen-
tralized architecture ensures data integrity and trustworthiness by storing watermark
information on multiple nodes across the network [10]. As an immutable distributed
ledger, blockchain encrypts and hashes data records, making them resistant to tampering or
deletion once registered [11]. Additionally, blockchain facilitates the tracing of watermark
propagation paths, recording every instance of data copying or dissemination. This trace-
ability enables copyright holders to quickly identify infringements and take legal action to
protect their rights [12].

Despite these advantages, the unique characteristics of vector map data introduce
challenges for blockchain-based copyright protection. Vector maps comprise extensive
geographic information [13], including coordinates, line segments, and polygons. These
data demand substantial storage capacity when registered on blockchain nodes. Moreover,
the high confidentiality requirements of vector maps render direct registration impractical.
Therefore, a mathematical approach is urgently needed to construct unique identifiers from
vector maps, allowing these identifiers—rather than the full maps—to be registered on
the blockchain. This approach not only reduces storage demands but also facilitates the
efficient verification and traceability of map data origins and integrity.

Currently, unique identifiers for vector maps are often generated using hash algo-
rithms, which ensure strong differentiation between datasets [14,15]. However, hash
algorithms are inherently sensitive to data tampering, with even minor modifications
leading to significant changes in the hash value. This lack of robustness poses challenges
in reconstructing unique identifiers for disrupted data. There is a critical need for a new
method to generate unique identifiers that combine strong uniqueness with exceptional
robustness, enabling them to reliably represent vector maps on blockchain platforms.

To address these issues, this paper proposes a blockchain-based copyright protection
model using unique identifiers (BCPM-UI). This model embeds watermark information into
vector maps using a distance ratio-based quantization watermarking algorithm. Unique
feature identifiers are subsequently constructed based on both the geometric and topo-
logical characteristics of the watermarked vector maps. Geometric features are extracted
by calculating angles between geographic entities using techniques such as Delaunay
triangulation, forming a geometric feature vector that represents the map. Topological
features are derived by analyzing spatial relationships—such as proximity, connectivity,
and containment—between geographic elements. The Hausdorff distance is employed to
evaluate the spatial configuration and closeness of features, ensuring robust topological
representation. The combined geometric and topological features are used to generate
a unique identifier for each vector map. This identifier, along with watermark informa-
tion, timestamps, and user details, is recorded on the blockchain instead of the full vector
map. This approach reduces blockchain storage requirements by a factor of 200 while
maintaining the confidentiality of vector maps. The unique identifiers are robust against
common geometric transformations, such as rotation, scaling, and translation, ensuring
their reliability. In cases of suspected infringement, unique identifiers are constructed
from the infringing data and matched with those stored on the blockchain to identify the
corresponding original map. Watermark information is extracted and compared between
the suspected infringing data and the original map files to verify their correlation. This com-
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bined use of unique identifiers and watermark information provides definitive evidence
for determining infringement and supports subsequent legal arbitration.

The structure of this paper is as follows: Section 2 reviews related work, while Section 3
introduces the preliminaries. The proposed BCPM-UI model is detailed in Section 4.
Experimental results and discussions are presented in Sections 5 and 6, respectively, and
Section 7 concludes the paper.

2. Related Work
2.1. Research on Copyright Protection Technology for Vector Maps Combining Blockchain and
Digital Watermark

With the rapid development of the internet, the widespread dissemination of digitized
content over networks has exacerbated the issue of digital piracy. In terms of addressing
the challenges of copyright protection for digital works, the integration of blockchain
technology with digital watermarking has emerged as a promising solution [16,17]. Unlike
conventional methods, blockchain offers inherent advantages such as tamper-resistant on-
chain records and irrefutability. On-chain records refer to data entries that are permanently
stored within a blockchain network, ensuring their immutability and verifiability. These
records are instrumental in securely storing watermark-related information, including
timestamps, copyright details, and transaction histories, thereby providing a decentralized
and transparent framework for copyright protection [18,19].

While blockchain-based copyright protection methods have been extensively explored
for common data formats, like images and videos, research focusing on vector maps remains
relatively nascent. Ren et al. pioneered the integration of vector map watermarking with
blockchain by proposing a framework that constructs zero-watermark information based on
the angular features of vector maps. This framework stores both the zero-watermark infor-
mation and associated copyright details on the blockchain, enabling secure and immutable
copyright registration [12]. Zhu et al. advanced this field by introducing a geographic data
trading and copyright protection model that combines zero-watermarking, InterPlanetary
File System (IPFS), and smart contract technologies. This model eliminates dependence
on third-party intermediaries and ensures permanent proof of transaction information
on the blockchain through smart contract design, thereby facilitating timestamp authen-
tication for watermark registration [20]. These studies indicate that the combination of
digital watermarking and blockchain technology can effectively protect the copyright of
vector maps. However, vector map data have a large scale and high confidentiality require-
ments [21], making them unsuitable for direct deployment on blockchain platforms. Further
research is needed to design blockchain-based copyright protection methods tailored to the
characteristics of vector map data.

2.2. Research on Methods for Constructing Vector Map Unique Identifiers

Currently, methods for constructing unique feature identifiers in vector maps can
be broadly categorized into approaches based on fragile hashing, approaches based on
frequency domain coefficient analysis, approaches based on geometric feature extraction,
and approaches based on topological feature extraction. The fragile hashing approach
generates unique and irreversible identifiers for map features by utilizing hash functions,
effectively verifying the integrity and authenticity of map data while preventing unau-
thorized modifications or tampering [14,22]. This method is versatile as it does not rely
on specific geometric or semantic features [15]. However, its robustness is limited, as
even minor edits or geometric transformations in the data can invalidate the hash. In
contrast, methods based on frequency domain coefficient analysis involve transforming
vector maps into the frequency domain to extract features using techniques such as Fourier
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transform and wavelet transform [23]. These methods excel at capturing periodicity and
frequency-related characteristics in map data, making them particularly effective for han-
dling periodic changes [24]. However, they exhibit limitations in sensitivity to non-periodic
features and face high computational complexity when applied to large-scale or intricate
vector maps [25].

Geometric feature extraction, a fundamental technique, focuses on identifying and
leveraging essential geometric attributes from spatial data, such as vertex counts [26],
angles [27], and distances [28,29]. This approach provides an intuitive representation of
spatial information, effectively capturing the shape and directional characteristics of geo-
graphic entities. Geometric features exhibit strong robustness against transformations, such
as scaling, rotation, and translation. Nevertheless, methods that rely solely on individual ge-
ometric features may be susceptible to specific attacks, such as feature distortion, which can
compromise their robustness. Therefore, combining geometric features with other attributes
could enhance the robustness of unique identifier construction. Topological feature extrac-
tion, on the other hand, emphasizes the relational properties between geographic entities,
such as adjacency, intersection, and containment [30]. By constructing unique identifiers
based on these topological relationships, this approach effectively captures the connectivity
and relational structure of vector data [31]. Such methods are particularly resilient to data
cropping and merging attacks and remain unaffected by format conversions [32].

From the existing research, it is evident that geometric feature extraction and topo-
logical feature extraction possess distinct advantages in robustness, effectively addressing
various attack patterns. Future research will likely focus on integrating these two ap-
proaches to construct unique identifiers for vector maps, aiming to achieve enhanced
robustness and applicability in diverse scenarios.

3. Basic Idea and Preliminaries
3.1. Basic Idea

In this paper, a novel model for vector map copyright protection is proposed, where
the core innovation lies in replacing traditional methods of storing entire datasets into the
blockchain with the use of unique identifiers (UIDs), as shown in Figure 1. These UIDs are
constructed based on the geometric and topological features of vector maps, capturing the
essential characteristics of the data in a compact and robust manner. Instead of registering
large map files on the blockchain, this model only registers the UIDs and relevant metadata,
significantly reducing the storage overhead on the blockchain.

The UIDs are derived through a process that analyzes the geometric and topological
relationships inherent in the vector map dataset. By leveraging geometric relationships and
topological relationships, a unique and robust identifier is created for each vector map. This
identifier not only ensures uniqueness but also maintains robustness against changes in the
map’s structure due to transformations such as rotation, scaling, and translation. The UID
construction process is computationally efficient, which makes it suitable for large-scale
datasets.

Once constructed, these UIDs, along with associated metadata, including water-
mark information, user information, and timestamps, are independently registered on the
blockchain. The blockchain serves as a decentralized and immutable ledger that ensures the
traceability and verifiability of each map’s copyright status, while the map data are stored
off-chain using the InterPlanetary File System (IPFS). This approach provides a scalable
solution for map copyright management, where only essential identifiers and metadata are
stored on-chain, thus enhancing both efficiency and security.
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Figure 1. Copyright registration process in the BCPM-UI model: feature identifier construction,
watermark embedding, and blockchain registration.

3.2. AntChain Combined with IPFS for Vector Map Copyright Protection

In the realm of vector map copyright protection, leveraging blockchain technology
offers a promising solution to secure ownership, verify authenticity, and enable the effi-
cient management of copyright information. The model proposed in this paper combines
AntChain, a private blockchain platform, with the InterPlanetary File System (IPFS) to
form an integrated framework for securing vector map datasets while maintaining sys-
tem scalability and confidentiality, as shown in Figure 2. The primary advantage of this
integration lies in the ability to store essential metadata and unique identifiers on-chain,
while off-chain storage solutions like IPFS are utilized for managing large-scale data such
as complete vector map files [33].
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Figure 2. Antchain combined with IPFS for vector map copyright protection.

AntChain, a consortium blockchain, is selected as the blockchain platform due to its
support for high throughput, low latency, and flexibility, features which are critical for the ef-
fective management of vector map copyrights. A blockchain is fundamentally a distributed
ledger that consists of a sequence of blocks, each containing a set of transactions [34].
These blocks are cryptographically linked, ensuring the immutability and traceability of
the recorded data. In a consortium blockchain like AntChain, the network is permis-
sioned, meaning only pre-authorized entities can participate in transaction validation and
block creation. AntChain’s modular architecture allows for tailored consensus mecha-
nisms, such as PBFT (Practical Byzantine Fault Tolerance), which optimize transaction
processing for specific application requirements. This ensures that the transaction load
is distributed efficiently, with strong privacy and security guarantees provided by the
permissioned framework. Within this blockchain structure, important data such as unique
identifiers, watermark information, timestamps, and user details are recorded directly on
the blockchain [35]. This on-chain information serves as a secure and immutable reference
for map ownership, ensuring the traceability of vector map data from creation to use while
minimizing the risk of data tampering [36].

In contrast to public blockchains, which suffer from scalability issues due to high
transaction costs and slow processing speeds when handling large datasets, AntChain
facilitates faster transaction processing by utilizing optimized consensus protocols and
parallel transaction execution. This makes it well suited for applications such as vector map
copyright protection, where the efficiency of blockchain transactions is crucial for real-time
verification. Additionally, the modular nature of AntChain allows for seamless integration
with off-chain storage systems such as IPFS, which handles the large-scale storage of vector
map files.

IPFS, a decentralized file storage system, is integrated to complement the blockchain
by providing a robust and scalable solution for storing complete vector map datasets. IPFS
operates on a peer-to-peer (P2P) network, where files are distributed across various nodes,
and data are retrieved using content hashes rather than specific node addresses. This
method ensures the integrity and uniqueness of map data while alleviating the storage
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burden on the blockchain. Using IPFS allows for efficient and fast data retrieval, which is
critical for handling large vector map files. In the proposed model, vector map files are
stored off-chain in IPFS, and only their corresponding unique identifiers and associated
metadata are recorded on AntChain, preserving both security and privacy.

Upon receipt of a transaction request, data providers generate unique identifiers for
vector maps, embedding watermark information and registering these identifiers on the
AntChain blockchain [37]. The blockchain records the relevant metadata, including the
unique identifiers, watermark details, user information, and timestamps, ensuring that
these data are securely stored in a tamper-proof ledger. Meanwhile, the complete vector
map files are uploaded to IPFS. In the event of a copyright infringement, the process in-
volves constructing the unique identifiers from the alleged infringing data and performing
a similarity check against the identifiers stored on AntChain. If a match is found, the water-
mark information is compared to verify infringement. This decentralized model allows for
efficient copyright enforcement while significantly reducing the storage requirements on
the blockchain, ensuring both scalability and confidentiality.

This integration of AntChain and IPFS offers a balanced approach to vector map
copyright protection, combining the strengths of both technologies to address the chal-
lenges posed by large-scale geographic data management. By leveraging AntChain’s high
performance and secure on-chain data storage capabilities, along with IPFS’s scalable off-
chain storage, the proposed model ensures the efficient, secure, and transparent copyright
management of vector maps.

3.3. Vector Map Unique Identification Based on Geometric and Topological Relationships

As the ID number of a map, unique identification is obtained by computing the
unique characteristic values of a vector map. The purpose of this is to replace the cum-
bersome map files registered on the blockchain platform while ensuring uniqueness and
robustness, thereby replacing the traditional deployment method of map files on the
blockchain platform. The construction approach of unique identification in this paper
is as follows: utilizing geometric relationships [38], such as angles between geographical
features, a quantitative description of the map structure is obtained through mathematical
calculations and geometric measurements. Simultaneously, based on the topological feature
relationships [39] of the vector map dataset, an analysis of proximity, connectivity, and
containment relationships between geographic entity features is conducted to abstract
the mathematical expressions of topological relationships [40]. Ultimately, by combining
geometric and topological features, unique feature identification is performed for the map,
ensuring not only the uniqueness of the identification but also resistance to changes in
geographic features and geometric attributes.

Firstly, all coordinate points of the vector map dataset are obtained, after which a
Delaunay triangulation T is constructed. Subsequently, all circles inscribed in triangles
adjacent to each coordinate point Pi are identified. The minimum radius of these inscribed
circles corresponds to the angle θ, as illustrated in Figure 3.
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Working according to the aforementioned approach, it is necessary to obtain the
angular value θ for each geographical feature, forming the geometric feature vectors of the
vector map.

ANi = [θ1, θ2, . . . , θlength] (1)

where length denotes the number of geographical features in the vector map dataset.
As depicted in Equation (2), by mapping the angle values, a quantitative expression of

geometric features is achieved, thereby obtaining the geometric feature parameter Hijk.

Hijk = f loor[(ANi)
1
p × (n − 1)] + 1 (2)

where p serves as an adjustable parameter that modulates the weighting effect, with smaller
values of p amplifying the weighting effect, while larger values diminish it. n denotes the
length of subsequent unique identification sequences. The floor(x) function is utilized to
obtain the largest integer less than or equal to x.

Subsequently, each geographical feature in the vector map dataset is traversed. It is
necessary to consider the entire vector dataset S, which includes a set of points P, a set
of polylines L, and a set of polygons A. Using the R-tree index R, it is necessary to per-
form nearest non-intersecting heterogeneous feature queries for each feature i, leveraging
spatial indexing to accelerate distance computations. The algorithm for nearest neighbor
non-intersecting heterogeneous feature queries across diverse feature types is outlined
as follows:

NN(i) = arg min
j∈S,j ̸=i,type(i) ̸=type(j)

d(i, j) (3)

where type(i) denotes the type of feature i. The distance d(i, j) is measured by using the
Hausdorff distance as the metric for different types of features. Assuming that feature i
and feature j belong to different subsets of S (i.e., i ∈ P and j ∈ L or A, or i ∈ L and j ∈ P or
A, or i ∈ A and j ∈ P or L), the distance computation formula is as follows:

d(i, j) = max

{
sup
x∈i

inf
y∈j

∥x − y∥, sup
y∈j

inf
x∈i

∥x − y∥
}

(4)

where ∥·∥ denotes the Euclidean distance. To facilitate understanding, we illustrate the
distance measurement using Figure 4. Let us suppose that, in the dataset, the similar
features to feature A are Points 1 and 2, while the dissimilar features are Polyline 1,
Polyline 2, and Polygon 1. Among these, only Polyline 1 and Polygon 1 are disjointed
and do not intersect with A. By calculating the Hausdorff distance between feature A and
Polyline 1, as well as between feature A and Polygon 1, and then taking the minimum
value, we obtain the nearest non-intersecting heterogeneous feature, NN(A).

It is necessary to utilize the R-tree spatial index to find the nearest candidate features;
this should be followed by an exact Hausdorff distance calculation for the candidate set.
Assuming the candidate set for feature i is Ci, the precise calculation process is as follows:

∀j ∈ Ci, i f d(i, j) = min
k∈Ci

d(i, k), then record d(i, j) (5)

For each feature I, it is necessary to record the nearest non-intersecting heterogeneous
feature d(i,NN(i)) into the result sequence D. The sequence is formatted as follows:

D = {d(i, NN(i))| i ∈ S} (6)
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Figure 4. Schematic of nearest neighbor non-intersecting heterogeneous feature query based on
Hausdorff distance.

After obtaining the distance sequence D, we need to calculate the mean value of the
sequence D. Let D contain n distance values, denoted as D = {d1, d2, . . . dn}. The formula for
calculating the mean d is as follows:

d =
1
n∑n

i=1 di (7)

In the formula, di is the i-th distance value in the sequence D, and n is the length of the
sequence D (i.e., the total number of features).

Ultimately, by comparing the specific distance of each geographical feature with the
global mean, the correlation between geographical features is quantified in a binary manner
to obtain the topological feature parameters of the vector map dataset.

Ti =


1 i f

di

d
> 1

0 i f
di

d
≤ 1

(8)

where Ti represents the topological feature parameter in the i-th position of the unique identifier.
Finally, by using the geometric feature parameter Hijk as the index and the topological

feature parameter Ti as the feature value, the unique identifier of the vector map can
be constructed.

Continuing with the example of rotational transformation, we focus on analyzing the
stability of geometric and topological feature parameters amidst geometric transformations
like rotation, scaling, and translation (RST). For the geometric feature parameter Hijk, the
calculation of the angle after rotation is independent of the rotation itself. According
to Equation (9), the geometric feature parameter Hijk remains unchanged after rotation.
According to Equation (10), distance calculation only involves positional information and
is unaffected by rotation. Therefore, the topological feature parameter Ti also remains
unchanged after rotation transformation.

Hijkr = f (θ1r, θ2r, . . . , θlenr) = f (θ1, θ2, . . . , θlen) = Hijk (9)
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Ti (r) = dir/dr = di/d = Ti (10)

where Hijkr and Ti(r) represent the geometric and topological feature parameters, respec-
tively, after rotation transformation. θ1r, θ2r, and θlenr denote the angle values of each
geographical feature in the vector map dataset after rotation, while dir indicates the distance
between each geographical feature after rotation and the nearest dissimilar feature. dr

represents the global mean distance of the vector map dataset after rotation.
Similarly, under scaling and translation transformations, geometric and topological

feature parameters retain their integrity, ensuring robust and consistent representations
across diverse geometric transformations of vector map data.

4. Blockchain Copyright Protection Model Based on Vector Map
Unique Identification

The BCPM-UI model is a blockchain-based framework designed to ensure secure
registration and the reliable verification of vector map copyrights. At its core, the model
integrates digital watermarking and unique identifier construction with blockchain tech-
nology to provide a robust solution for copyright protection. Watermark information is
embedded into the vector map in a manner that ensures imperceptibility and robustness.
Simultaneously, unique feature identifiers are derived from the geometric and topolog-
ical characteristics of the watermarked map. These identifiers, along with associated
metadata, are securely recorded on the blockchain. By combining the immutability of
blockchain with the resilience of watermarks and identifiers, the model achieves traceabil-
ity, confidentiality, and accountability, offering a comprehensive solution for vector map
copyright management.

The implementation of the model is divided into two primary processes: the copyright
registration process and the copyright verification process. During registration, watermark
information is embedded into the vector map and unique identifiers are constructed. Both
of these are securely registered on the blockchain, along with relevant metadata. The verifi-
cation process focuses on identifying potential copyright infringements by constructing
unique identifiers and watermark data from suspected infringing datasets and comparing
them with blockchain records. This ensures the precise and reliable validation of ownership
and infringement detection, providing robust evidence for arbitration and accountability in
vector map transactions.

4.1. Copyright Registration Process

As the ID number of a map, unique identification is obtained by computing the unique
characteristic values of vector maps. Its purpose is to replace the cumbersome map files
registered on the blockchain platform while ensuring uniqueness and robustness, thereby
replacing the traditional deployment method of map files on the blockchain platform. The
construction approach of unique identification used in this paper is as follows: utilizing
geometric relationships, such as angles between geographical features, a quantitative
description of the map structure is obtained.

The copyright registration process comprises two parts: watermark embedding and
unique identification construction.

4.1.1. Watermark Embedding

The basic steps for watermark embedding are as follows:
Step 1: Generate a binary watermark sequence W from the copyright binary im-

age, where W = {wj, j = 0, 1, 2, ..., M − 1}. M represents the length of the transformed
watermark information.
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Step 2: Read the coordinate points Vi (i = 1, 2, ..., n) in the vector map according to
the order of the coordinate points in line and polygon features. Coordinate points of point
features are read based on the order stored in the file. Calculate the corresponding distance
ratio Di according to Equation (11), as shown in Figure 5.

Di =
|CD|
|BC| =

√
(Dx − Cx)

2 + (Dy − Cy)
2√

(Cx − Bx)
2 + (Cy − By)

2
(11)

where Bx, Cx, and Dx represent the abscissa of the coordinate point Vi, and By, Cy, and Dy

denote the ordinate of the coordinate point Vi.
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Step 3: Establish the mapping relationship between the watermark values and the
watermark indices based on the mapping mechanism. Taking the distance ratio Di as an
example, stable numerical IDi values are obtained by taking the first n digits of Di.

IDi = Di × 10n (12)

The watermark synchronization mechanism is established as follows:

Watermarkindex = Hash(IDi)%MN (13)

where Watermarkindex represents the watermark position to be embedded, MN is the number
of watermark bits, and Hash denotes the hash function, such as the logistic chaotic function.

Step 4: Currently, prevalent methods for embedding and extracting watermarks in
vector maps encompass classical techniques such as LSB (least significant bit), additive
multiplicative methods, and spreadspectrum methods, among others. To meet the re-
quirements for blind watermark extraction and robustness, a quantization mechanism is
embraced for watermark embedding and extraction. Let the quantization step be denoted
as l, and the watermark information to be embedded denoted as W = 0 or 1. Consequently,
the watermark embedding process based on the distance ratio D unfolds as follows:

D′ = D i f x%2l < l and w = 0

D′ = D − l i f x%2l ≥ l and w = 0

D′ = D + l i f x%2l < l and w = 1

D′ = D i f x%2l ≥ l and w = 1

(14)

where % denotes the modulo operation. The watermark embedding process is illustrated
in Figure 6.

The index of the watermark value to be embedded is derived from the mapping
mechanism in Step 3. Based on the change in the distance ratio, it is necessary to calculate
the coordinates of Vi’ after embedding the watermark.
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Step 5: Update the coordinates of Vi’ to the set of coordinates Vi (i = 1, 2, ..., n), and
repeat Step 4 iteratively until all coordinates complete watermark embedding.
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4.1.2. Unique Identification Construction

In this paper, we define the unique identifier as a fixed-length binary sequence com-
posed of information values represented by 0 and 1. Utilizing the quantized index of
geometric features from the vector map dataset and information values obtained through
topological feature quantization identifiers, the precise procedure for constructing the
unique identification unfolds as follows:

Step 1: Retrieve the vector map file containing the watermark and iterate through all
geographical features within the dataset. Employ the Douglas–Peucker (DP) algorithm
to extract feature points of vector maps, thereby improving the robustness of subsequent
unique identification construction processes.

Step 2: For each geographical feature, construct the Delaunay triangulation T and
obtain all circumcircles of triangles adjacent to the coordinate point Pi. Record the small-
est radius of the circumcircle corresponding to the angle θ of the triangle and map this
angle value to a hash value, thereby achieving a quantitative representation of geometric
relationships. Consequently, abstract the relationships between features into indices of
unique identifiers.

FIi = Hash(key × AFi)%FIlen (15)

where Hash() is the normalized hash function, key is the encryption key, AFi represents the
most significant bit of the angle feature parameter of the i-th feature, FIlen is the length of
the identification sequence, and FIi is the unique identification mapping index obtained
from quantizing the i-th feature.

Step 3: For every geographical feature, determine the distance to the nearest dissimilar
feature based on Equation (4), and establish a distance matrix accordingly. Compute the
average of the distance matrix using Equation (7) to attain a comprehensive assessment of
spatial correlation.

Step 4: By contrasting the distance from each geographical feature to the closest
dissimilar counterpart with the mean of the distance matrix, encode the correlation between
geographical features in binary format as per Equation (8). Distances exceeding the mean
value are denoted as 1, whereas those falling below the mean value are denoted as 0,
thereby finalizing the generation of unique identifiers.

Step 5: Leverage the unique identifiers, watermark information, user details, times-
tamps, and additional data as transaction inputs. Utilize smart contracts to record the
information into the unique identification repository on the blockchain, thereby finalizing
the copyright registration procedure.

4.2. Copyright Verification Process

The copyright verification process comprises two parts: unique identification matching
and watermark extraction.
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4.2.1. Unique Identification Matching

The unique identification matching process ensures reliable copyright verification
by sequentially comparing the constructed unique identifications from suspicious data
with the records stored in the blockchain. Initially, the identifications are constructed
from suspicious data based on topological and geometric characteristics, as described
in Section 4.1. These constructed identifications are then compared against the unique
identification repository recorded on the blockchain. The comparison is performed by
calculating the similarity between each constructed identification and every blockchain-
stored identification using the bit error rate (BER), defined as the proportion of differing bits
between two standardized bit strings. For each constructed identification, the blockchain-
stored identification with the highest similarity (i.e., the lowest BER) is selected as the most
probable match. This approach not only ensures accurate matching but also enhances the
robustness of the system against potential alterations in suspicious data, as the identification
process prioritizes the closest match, reducing the risk of false negatives in cases of the
partial distortion or modification of the embedded identifiers.

Step 1: Convert the constructed unique identifications and blockchain identifications
into bit string representations. Let ui and bj be bit strings of length k. Assume ui and bj are
standardized to bit strings of the same length.

Step 2: For each pair of identifications (ui, bj), calculate the bit error rate (BER). The
BER is defined as the proportion of differing bits between two bit strings. The specific
formula is as follows:

BER(ui, bj) =
1
k

k

∑
l=1

δ(ui
l , bj

l) (16)

Step 3: Calculate BER(ui, bj) for each pair of identifications (ui, bj). If BER(ui, bj) < BERthreshold,
consider it a successful match and add the pair (ui, bj) to the result set M.

Step 4: Traverse all combinations of constructed identifications ui and stored identi-
fications bj, and record the matching pairs (ui, bj) for all successful matches. Output the
matching result set M.

M =
{
(ui, bj)

∣∣BER(ui, bj) < BERthreshold, ∀ui ∈ U, bj ∈ B
}

(17)

4.2.2. Watermark Extraction

Watermark extraction is the inverse process of watermark embedding used to extract
the hidden watermark information from the suspicious data, as detailed below:

Step 1: Read the coordinate points Vi (i = 1, 2, ..., n) in the vector map according to
the order of the coordinate points in line and polygon features. Coordinate points of point
features are read based on the order stored in the file. Calculate the corresponding distance
ratio Di according to Equation (14).

Step 2: In the geometric feature domain for extraction, apply Step 3 of the watermark
embedding algorithm to establish a synchronization relationship between the watermark
values and indices.

Step 3: For the distance ratio Di, extract the watermark according to Equation (18). The
index of the watermark value to be extracted is determined by the mapping mechanism
in Step 3. Then, record the extracted watermark value and index.

The watermark extraction process based on the distance ratio D is as follows:w′ = 0 i f D′%2l < l

w′ = 1 i f D′%2l ≥ l
(18)
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Step 4: Employ the majority rule to derive the watermark sequence from the extracted
watermark information. Convert this sequence into a binary format and utilize it to
authenticate the copyright information linked with the identifier.

Given that a watermark bit might be extracted multiple times, the majority rule is
utilized to ascertain the watermark information for each individual watermark bit. The
majority decision rule is outlined as follows:

W ′
i =

{
1, i f Fi(w1) > Fi(w0)

0, i f Fi(w1) ≤ Fi(w0)
(19)

where Fi(w0) denotes the number of times the watermark information “0” is extracted
for the i-th bit, and Fi(w1) denotes the number of times the watermark information “1” is
extracted for the i-th bit. Using this method, the extracted watermark information Wi’ is
obtained. Based on the size of the original watermark image, the one-dimensional sequence
Wi’ is reconstructed into a two-dimensional watermark image Wimage.

5. Experiment Results and Analysis
5.1. Experimental Dataset

To comprehensively assess the effectiveness of the proposed BCPM-UI model, we
selected six shapefile datasets representing vector maps from key urban areas—Shanghai,
Beijing, Chengdu, Jiangsu Province, Hangzhou, and Nanjing. These datasets exhibit
diverse characteristics in terms of coordinate systems, layer complexities, and geographic
feature densities, providing a robust evaluation framework. The experimental setup
operates on a Windows 10 platform equipped with an Intel i7-9700 CPU and 16 GB RAM,
ensuring reliable execution. The unique identification construction was implemented
using MATLAB R2023a, leveraging robust computational and visualization capabilities.
The blockchain infrastructure employed was the Ant Open Alliance Chain, a consortium
blockchain platform that supports high throughput and secure data recording. Integration
with MATLAB involved the generation of unique identifiers, which were exported and
recorded in the blockchain through API calls facilitated by Python scripts. The development
of blockchain smart contracts was carried out within the Cloud IDE provided by Ant Open
Alliance Chain. Solidity 0.8.18 was used for contract design and deployment, ensuring
compatibility with the platform’s virtual machine. The Cloud IDE’s integrated environment
streamlined the process, from contract development and testing to deployment. This setup
ensures reproducibility, as all tools and configurations are well documented and accessible.

The data in the proposed model were utilized in multiple critical stages. This included
constructing unique identifiers based on the geometric and topological characteristics of
vector maps, embedding watermark information into the datasets, and recording these
identifiers and watermarks on the blockchain. The dataset’s diverse attributes allowed
us to test the model’s adaptability and robustness across different map structures and
complexities. Furthermore, the experimental datasets were used to evaluate the integrity
and resilience of watermark extraction and identifier matching under various levels of
distortion or modification, ensuring comprehensive performance validation.

In evaluating the adaptability of the model to diverse and complex vector map datasets,
this paper selected datasets with varying numbers of layers, geographic feature counts,
and coordinate systems, as shown in Figure 7. Table 1 provides detailed information on the
experimental datasets, including the vector map names, coordinate systems, layer numbers,
and geographic feature counts. Furthermore, to optimize the practical application of
watermark information, this paper utilized meaningful binary information, sized at 64 × 64,
as watermark data. This ensures substantive watermark information while providing a
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benchmark closer to real-world applications for subsequent model evaluations, as depicted
in Figure 8. Through systematic dataset selection and watermark information settings, the
relevance of the model’s performance can be more accurately tested, thereby enhancing the
practicality and generalizability of the research.
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Table 1. Detailed information about the experimental dataset.

Name of Vector Map
Quantity of Map Layers

Quantity of Features Coordinate System
Point Layer Line Layer Polygon Layer

Shanghai dataset 1 1 1 6214 WGS 1984 Albers

Beijing dataset 2 1 1 16,343 GCS Beijing 1954

Chengdu dataset 3 1 1 18,769 WGS 1984 Albers

Jiangsu dataset 2 2 1 22,168 GCS WGS 1984

Hangzhou dataset 9 4 2 64,810 WGS 1984 Albers

Nanjing dataset 10 6 3 53,660 WGS 1984 Albers
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5.2. Evaluation Index
5.2.1. Evaluation Index for Vector Map Imperceptibility

Evaluation metrics for the imperceptibility of vector maps include the average distance,
maximum distance, and standard deviation. Among these, the average distance and
maximum distance provide quantitative evaluations of the shape changes in the map
after embedding the watermark, while the standard deviation can measure the stability of
the map after watermark embedding. Therefore, this paper evaluates the error between
the original vector map and the vector map containing the watermark using the average
distance Dmean, the maximum distance Dmax, and the standard deviation σ. It is assumed
that the original data points of the vector map are (xi, yi), and the data points of the vector
map containing the watermark are (xi’, yi’).
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The maximum distance error Dmax represents the maximum distance between the data
points with watermark and the original data points, calculated using Equation (20).

Dmax = max
√
(xi − x′i)

2 + (yi − y′i)
2 (20)

The average distance error Dmean is the average distance between the data points with
watermark and the original data points, as shown in Equation (21).

Dmean =
1
n∑n

i=1

√
(xi − x′i)

2 + (yi − y′i)
2 (21)

where n represents the number of data points.
The standard deviation σ, calculated as the standard deviation of errors between the

data points with watermark and the original data points, represents the dispersion of errors,
as derived from Equation (22).

σ =

√
1
n∑n

i=1 (
√
(xi − x′i)

2 + (yi − y′i)
2 − Dmean)2 (22)

5.2.2. Evaluation Index for Watermark Correlation

When authenticating map data, it is imperative to compare the extracted watermark
with the original watermark stored in the blockchain to validate its authenticity. The
evaluation of watermark similarity primarily encompasses metrics such as the Normalized
Correlation Coefficient (NC), Structural Similarity Index (SSIM), Signal-to-Noise Ratio
(SNR), among others. Notably, the NC index holds significant relevance in the domain
of digital watermarking [41]. Hence, this paper adopts NC as the metric for assessing
watermark correlation, with its calculation formula presented as Equation (23).

NC =

M
∑

i=1

N
∑

j=1
XNOR(W(i, j), W ′(i, j))

M × N
(23)

In the equation, W(i,j) and W′(i,j) respectively, represent the original watermark
information stored in the blockchain and the extracted watermark information from the
infringing data, while M × N denotes the size of the copyright information. The XNOR
operation involves performing a logical XOR operation on two pixels and then inverting
the result.

The Normalized Correlation Coefficient (NC) serves as a metric for assessing similarity,
ranging from 0 to 1. A higher NC value, approaching 1, signifies greater similarity between
the extracted watermark and the original watermark. Following a comprehensive analysis
of extensive datasets and referencing established practices in digital watermarking, this
paper sets 0.75 as the optimal NC threshold for watermark extraction. This threshold effec-
tively balances robustness and imperceptibility, ensuring reliable detection of watermarks
under various conditions while maintaining minimal visual distortion, consistent with
benchmarks reported in related studies [42].

5.2.3. Evaluation Index for Unique Identification Similarity

When assessing whether map data have been infringed upon, it is crucial to compare
the similarity between the identifiers of the potentially infringing data and the original data
to accurately match the unique identifiers. The assessment of unique identifier similarity
primarily incorporates metrics such as Hamming distance (HD), signal-to-noise ratio
(SNR), and bit error rate (BER). Among these, the bit error rate directly quantifies the
error rate of unique identifiers during transmission or processing, offering an intuitive and
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straightforward measure of the similarity between unique identifiers. Consequently, this
paper opts to use the bit error rate (BER) as the metric for evaluating similarity between
two unique identifiers. Specifically, the bit error rate (BER) denotes the ratio of unequal
values between the unique identifier in the blockchain identifier library and the constructed
unique identifier to the total number of values, as depicted in Equation (16).

The bit error rate (BER) is a critical metric in evaluating the similarity between unique
identifiers, with values ranging from 0 to 1. A higher BER signifies lower similarity between
two unique identifiers, thereby reflecting the model’s stronger uniqueness but potentially
weaker robustness. Drawing on extensive experimental data, as well as insights from
related studies such as those by Lu [43] and Num et al. [44], this paper determines a
threshold of 0.1 for BER. Through initial experiments and benchmarking against other
approaches, a threshold of 0.1 was established to strike an optimal balance between robust-
ness and accuracy. When the BER remains below 0.1, the blockchain system can reliably
and efficiently match unique identifiers, ensuring both effective copyright protection and
practical applicability. This selection ensures a solid practical performance across diverse
scenarios while aligning with theoretical considerations in digital watermarking and data
integrity applications.

5.3. Experiment

This section is dedicated to comprehensively evaluating the performance of the BCPM-
UI model through various experiments. Simultaneously, this paper selects a blockchain-
based vector map copyright protection model [42] and three vector map unique identifica-
tion construction methods [15,32,45] for comparison to underscore the advantages of this
research. In particular, our blockchain storage experiments are compared with Ren’s model,
while the experiments related to unique identifier construction are compared with the
methods proposed by Lee, Li, and Zhou. Among these, Ren’s proposed blockchain-based
vector map copyright protection model involves deploying vector maps entirely on the
blockchain platform without utilizing the approach of replacing on-chain data with unique
identifiers. Additionally, the unique identification construction methods differ significantly
in their approach. Lee employs GMM clustering to derive multi-line curvature hashes
from vector maps, generating final binary hashes through binarization. In contrast, Li
integrates the spatial autocorrelation index (SAI) to combine spatial topology and geometric
information for unique identification construction. Zhou, on the other hand, utilizes the
neighborhood features of vector maps to construct unique identifiers. In this paper, the
length of the unique identifiers was carefully selected as 1500 bits to balance uniqueness,
computational efficiency, and storage requirements. This length is sufficient to ensure
minimal collision probability while maintaining practicality in real-world applications.
The choice was further informed by experimental data and theoretical considerations,
highlighting its suitability for achieving precise and robust matching in diverse vector
map datasets. Table 2 provides detailed experimental arrangements, including the selected
vector map datasets and corresponding attack scenarios, to systematically validate the
model’s adaptability and robustness.

Table 2. Detailed summary of experiments.

Experiments Name Attack Type Vector Map Data

Vector map storage experiment - Chengdu dataset, Jiangsu dataset, Hangzhou dataset,
Nanjing dataset

Uniqueness experiment - Shanghai dataset, Beijing dataset, Chengdu dataset,
Jiangsu dataset, Hangzhou dataset
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Table 2. Cont.

Experiments Name Attack Type Vector Map Data

Imperceptibility experiment - All datasets

Geometric attacks
Rotation

Shanghai dataset, Jiangsu datasetScaling
Translation

Cropping and merge attacks Cropping

Jiangsu dataset

Merging

Object attacks Object addition
Object deletion

Layer attacks Layer addition
Layer deletion

Format conversion attack
Dwg

Chengdu dataset, Nanjing dataset, Shanghai datasetE00
Gdb

Reordering attack Reordering Nanjing dataset

5.3.1. Storage Space of Vector Maps

This experiment aims to assess the space-saving effectiveness of unique identification
compared to full map data in blockchain storage, ensuring the practical applicability of the
model. Four map files are selected to ensure applicability across different maps, from which
corresponding unique identifications are constructed. Initially, following Ren’s comparative
algorithm, full map data are deployed onto the blockchain. Subsequently, according to
the proposed BCPM-UI model, unique identifications of vector maps are constructed and
deployed onto the blockchain, recording the respective storage space requirements. A
comparison of the storage space utilization between the two methods is conducted, and the
experimental results are presented in Figure 9. Figure 9 shows that unique identifications
with small data volumes exhibit significant space-saving effects compared to the use
of full map data in blockchain storage. Using this method, for smaller-scale datasets,
approximately 200 times more storage space can be saved, while for larger-scale datasets,
around 5000 times more storage space can be conserved. The experiments demonstrate that
the proposed BCPM-UI model effectively reduces the storage of map data in the blockchain.
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5.3.2. Uniqueness Experiment of Unique Identification

In this experiment, different data should result in entirely different unique identifi-
cations in order to prevent mutual denial between trading parties. Vector map unique
identifications are constructed from six datasets using the method outlined in Section 4,
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and the correlation between every pair of data identifications is compared. We evaluate the
correlation between two identifications using the bit error rate (BER). Generally, if the BER
between two identifications is greater than 0.2, it indicates significant differences between
them, implying substantial disparities in unique identifications at certain positions.

As shown in Table 3, the lowest BER is 0.34, suggesting considerable differences
between the unique identifications. This could be attributed to variations in geographical
features, changes in feature distribution, or other factors influencing unique identification.
Moreover, it indicates that the unique identifications constructed through the BCPM-UI
model possess strong uniqueness, enabling the differentiation of unique identifications
constructed from different vector map datasets. This helps to prevent the erroneous
matching of unique identification information in the blockchain.

Table 3. Uniqueness experiment results (BER).

Dataset Shanghai Beijing Chengdu Jiangsu Hangzhou Nanjing

Shanghai 0.00 0.42 0.39 0.42 0.38 0.39
Beijing 0.42 0.00 0.36 0.44 0.38 0.37

Chengdu 0.39 0.36 0.00 0.50 0.34 0.45
Jiangsu 0.42 0.44 0.50 0.00 0.50 0.42

Hangzhou 0.38 0.38 0.34 0.50 0.00 0.41
Nanjing 0.39 0.37 0.45 0.42 0.41 0.00

5.3.3. Imperceptibility Experiment of Vector Maps

In this experiment, imperceptibility refers to the embedding of watermark information
not having an impact on the accuracy of the original vector map. Watermark embedding
is conducted on various map datasets to obtain watermarked data. The coordinate errors
between the watermarked data and the original data are statistically analyzed, including
metrics such as maximum distance, mean value, and standard deviation. Figure 10 presents
the maps after watermark embedding, while Table 4 presents the statistical results of the
errors. From the error statistics, it is evident that the proposed BCPM-UI model ensures
that the error introduced by watermark embedding remains well below the spatial accuracy
requirement of the data (0.1 m). Moreover, the stable standard deviation values indicate
that the errors are consistently maintained at a stable level without significant fluctuations.
Therefore, the proposed BCPM-UI model exhibits excellent imperceptibility.
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Table 4. Error statistics of data.

Watermarked Vector Map Data Accuracy
Error Index

Maximum Distance Mean Distance Standard Deviation

Shanghai dataset 0.1 m 3.20 × 10−4 m 1.61 × 10−5 m 6.54 × 10−6 m
Beijing dataset 0.1 m 4.00 × 10−4 m 2.94 × 10−5 m 2.28 × 10−5 m

Chengdu dataset 0.1 m 3.70 × 10−4 m 2.03 × 10−5 m 1.42 × 10−5 m
Jiangsu dataset 0.1 m 2.75 × 10−4 m 1.35 × 10−5 m 5.80 × 10−6 m

Hangzhou dataset 0.1 m 2.85 × 10−4 m 1.69 × 10−5 m 7.34 × 10−6 m
Nanjing dataset 0.1 m 4.02 × 10−4 m 2.67 × 10−5 m 2.02 × 10−5 m

5.3.4. Robustness Experiment

Robustness is a critical property that measures a model’s ability to maintain the
integrity of both the unique identifiers and the embedded copyright information under
intentional or accidental tampering. To comprehensively evaluate the robustness of the
proposed BCPM-UI model, extensive experiments were conducted across six diverse vector
map datasets: the Shanghai dataset, Beijing dataset, Chengdu dataset, Jiangsu dataset,
Hangzhou dataset, and Nanjing dataset. These datasets encompass varying geographic
features and complexities, providing a rigorous validation of the model’s robustness.
The experiments systematically assessed the model’s performance under various attack
scenarios, including geometric transformations [46], object addition or deletion, layer
modification, cropping and merging, format conversion, and reordering attacks. Both the
robustness of the unique identifiers and the accurate extraction of copyright information
were evaluated to ensure comprehensive protection.

To test robustness against geometric transformations, experiments were designed to
evaluate the effects of rotation, scaling, and translation (RST). These transformations are
common in GIS applications, such as coordinate system adjustments or data visualization.
The rotation experiment applied increments of 30◦, ranging from 30◦ to 150◦. Translation
experiments shifted data in 100 m intervals up to 300 m, while scaling experiments adjusted
data from 60% to 140% of the original size in 20% increments. The results, presented
in Figure 11a–c, demonstrate that the BCPM-UI model achieved a bit error rate (BER) of 0
and a normalized correlation (NC) value of 1 across all transformations. These findings
confirm that the model is invariant to geometric manipulation, ensuring robustness in
practical GIS scenarios that involve frequent RST operations.

Object addition or deletion simulates the dynamic evolution of geographic data, where
features such as points, lines, and polygons may be modified [47]. To emulate real-world
changes, the experiments incrementally added or deleted 10% to 50% of objects in the map.
Figure 11d,e and Table 5 show that as the proportion of objects added or deleted increased,
the BER rose across all models. However, the BCPM-UI model exhibited the slowest
increase in BER. This was attributable to its use of geometric feature parameters, which
quantify angular relationships among spatial features, and topological feature parameters,
which calculate overall correlations. These features remain largely unaffected by object-level
modifications, ensuring resilience against such tampering.

Layer attacks, which involve adding or removing one to five layers, assess the model’s
sensitivity to structural changes in GIS data. These modifications are common in GIS work-
flows and involve events such as merging datasets or updating map layers. Figure 11f,g
and Table 5 reveal that while the BER increased with the addition or removal of more layers,
the BCPM-UI model demonstrated the most gradual increase. Even after the removal of five
layers, the BCPM-UI model maintained a BER below 0.1, meeting robustness requirements
for unique identification. This resilience stems from the geometric and topological parame-
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ters, which are designed to handle the global relationships between layers, mitigating the
impact of layer-level changes.

Table 5. Experimental results of layer addition and deletion attacks.

Dataset Degree of Attack BER NC Unique Identification
Match Result
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is altered [49], a frequent occurrence during data processing or transmission. The BCPM-
UI model embeds watermarks and constructs unique identifiers based on index positions 
and values, rendering it immune to such alterations. The experimental results confirmed 
that reordering geographic features had no impact on the constructed identifiers or wa-
termarks, with NC values consistently at 1. 
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lence and relevance to real-world GIS applications. Geometric transformations, object and 
layer modifications, cropping, merging, format conversions, and reordering represent 
common operations and potential attack vectors in GIS workflows. By addressing these 
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Add 50% 0.09 0.93 Match
Delete 50% 0.09 0.90 Match

Add 5 layers 0.10 0.96 Match
Delete 5 layers 0.10 0.88 Match
Cropping 50% 0.06 0.91 Match

Merge 50% 0.05 0.91 Match

Cropping and merging operations are frequently performed in GIS when focusing
on specific regions or integrating datasets [48]. Experiments incrementally applied these
operations at 10% intervals, ranging from 10% to 50%. The results, shown in Figure 11h,i
and Table 5, indicate that although BER increased with higher cropping and merging ratios,
the BCPM-UI and Lee’s models exhibited the slowest growth. This robustness is due to
the model’s reliance on geometric and topological invariants, which remain stable under
partial data modifications.

Format conversion is a practical consideration for GIS platforms, where data inter-
operability often requires conversion between formats. Watermarked maps were con-
verted into DWG, E00, and GDB formats and reverted to Shapefile format for extraction.
Table 6 summarizes the results, showing that unique identifiers and watermark informa-
tion were successfully retrieved in all cases. The NC values consistently remained at 1, and
BER values stood at 0, demonstrating robustness across diverse formats.
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Figure 11. Robustness experiment results: (a) rotation attack; (b) scaling attack; (c) translation attack;
(d) object-add attack; (e) object-delete attack; (f) layer-add attack; (g) layer-delete attack; (h) cropping
attack; (i) merge attack.

Table 6. The robustness results of format conversion attacks.

Data Format
NC BER

Chengdu
Dataset

Nanjing
Dataset

Shanghai
Dataset

Chengdu
Dataset

Nanjing
Dataset

Shanghai
Dataset

dwg 1.00 1.00 1.00 0.00 0.00 0.00
e00 1.00 1.00 1.00 0.00 0.00 0.00
gdb 1.00 1.00 1.00 0.00 0.00 0.00

Reordering attacks simulate scenarios where the storage order of geographic features
is altered [49], a frequent occurrence during data processing or transmission. The BCPM-UI
model embeds watermarks and constructs unique identifiers based on index positions and
values, rendering it immune to such alterations. The experimental results confirmed that
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reordering geographic features had no impact on the constructed identifiers or watermarks,
with NC values consistently at 1.

The rationale behind selecting these specific tampering scenarios lies in their preva-
lence and relevance to real-world GIS applications. Geometric transformations, object
and layer modifications, cropping, merging, format conversions, and reordering represent
common operations and potential attack vectors in GIS workflows. By addressing these
challenges, the BCPM-UI model demonstrates its robustness and adaptability, making it
suitable for reliable unique identification and copyright protection in complex and dynamic
GIS environments.

5.3.5. Computational Complexity Analysis

The computational complexity of the proposed BCPM-UI model is a critical aspect
of its evaluation, particularly when processing vector maps with intricate structures and
large numbers of elements. This section examines the model’s performance through an
analysis of copyright registration and verification times across six datasets, as summarized
in Table 7.

Table 7. The results of efficiency comparison experiments.

Name of Vector Map
Quantity of Map Layers Quantity of

Features
Registration

Time (s)
Verification

Time (s)Point Layer Line Layer Polygon Layer

Shanghai dataset 1 1 1 6214 66.9 65.7
Beijing dataset 2 1 1 16,343 80.4 80.2

Chengdu dataset 3 1 1 18,769 101.7 105.1
Jiangsu dataset 2 2 1 22,168 112.4 108.0

Hangzhou dataset 9 4 2 64,810 166.0 157.6
Nanjing dataset 10 6 3 53,660 188.0 180.9

The experimental results reveal that the time required for registration and verification
tasks increases with the complexity of the vector map, as indicated by the number of
layers and features. For relatively simple datasets, such as the Shanghai dataset, with
6214 features distributed across one point layer, one line layer, and one polygon layer, the
registration and verification times are 66.9 s and 65.7 s, respectively. In contrast, for the
more complex Nanjing dataset, which contains 10 point layers, 6 line layers, and 3 polygon
layers encompassing 53,660 features, these tasks take 188.0 s and 180.9 s, respectively.

The scalability of the model is further evidenced by the near-linear growth of pro-
cessing times with the increase in the number of features. This suggests that the proposed
algorithm is capable of accommodating datasets of varying sizes and complexities with-
out significant performance degradation. Nevertheless, further efforts to optimize the
model are warranted. Future work will explore the use of parallel processing techniques to
accelerate feature extraction and watermark embedding.

To further clarify the distinctions between the proposed method (BCPM-UI) and ex-
isting approaches, Table 8 provides a detailed comparison in terms of blockchain storage
capacity and the robustness of feature identifiers against various attack scenarios. As
shown in the table, the proposed model achieves minimal blockchain storage usage while
exhibiting robust resistance to geometric attacks, feature addition/deletion, layer addi-
tion/deletion, and cropping and merging attacks. In contrast, Ren’s blockchain-based
model incurs significant storage requirements due to the lack of an off-chain mechanism
for data management. Among the identifier construction methods, Lee, Li, and Zhou’s
approaches demonstrate resilience to geometric attacks, but only BCPM-UI effectively ad-
dresses the challenges posed by feature and layer modifications. These results underscore
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the comprehensive adaptability and efficiency of the proposed model for real-world vector
map copyright protection.

Table 8. Comparison between the BCPM-UI model and the contrast model.

Model Blockchain
Storage Capacity

Robustness to
Geometric Attacks

Robustness to
Feature Addi-
tion/Deletion

Robustness to
Layer Addi-
tion/Deletion

Robustness to
Cropping and
Merging Attacks

BCPM-UI Minimal Yes Yes Yes Yes
Ren Significant N/A N/A N/A N/A
Lee N/A Yes No No Yes
Li N/A Yes No No No
Zhou N/A Yes No No Yes

6. Discussion
6.1. Impact of Character Length on the Uniqueness and Robustness of Unique Identification

In Section 5, a unique identifier length of 1500 is selected. However, different lengths
of unique identifiers demonstrate varying degrees of uniqueness and robustness. This
section delves into the impact of character length on the uniqueness and robustness of
unique identifiers to ascertain the appropriate range for constructing such identifiers.

Initially, uniqueness experiments are conducted, wherein unique identifiers of different
lengths are generated for six datasets, encompassing character lengths of 500, 1000, 1500,
2000, 2500, and 3000. Subsequently, the bit error rate (BER) between unique identifiers of
varying lengths for each dataset is computed to assess the uniqueness. The experimental
findings, illustrated in Figure 12, reveal that as the length of unique identifiers increases,
the BER values between pairs of identifiers gradually rise. This indicates that the identifiers
become increasingly dissimilar, reflecting stronger uniqueness and distinctiveness, which
are essential for ensuring reliable copyright protection and differentiation.

Similarly, robustness experiments are conducted. This involves unique identifiers of
various character lengths, ranging from 500 to 3000 characters, across the same datasets.
Various degrees of attacks, such as cropping, feature deletion, and layer deletion, are
applied to these identifiers. The BER values between the constructed unique identifiers
from the disrupted data and the original unique identifiers are then calculated to evaluate
robustness. As depicted in Figure 13, the results indicate that as the character length of
unique identifiers increases, the BER values also escalate, implying diminished robustness.

Analysis derived from the uniqueness and robustness experiments suggests that
overly short character sequences may result in identical sequences across different map
areas, thus compromising uniqueness. This occurs because identical feature sequences
might manifest in diverse map areas, posing challenges in accurately distinguishing be-
tween geographical locations. Additionally, short sequences may fail to encapsulate the
intricate structures and features of vector maps adequately, potentially leading to critical
information loss during unique identifier generation. Conversely, longer sequences are
more susceptible to noise, deformation, and environmental changes, thereby reducing
robustness. Prolonged sequences may excessively react to minor variations, deeming slight
differences in geographical locations as significant.

Therefore, to strike a balance between uniqueness and robustness, it is imperative to
select a moderately sized character sequence length. This ensures the precise identification
of distinct map areas while maintaining the requisite level of robustness against noise and
variations. Based on a comprehensive analysis of the experimental outcomes, performed
from Figures 12 and 13, it is concluded that unique identifiers spanning a character length
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of 1500–2000 meet the criteria for both uniqueness and robustness. Hence, they are deemed
suitable for deployment on blockchain platforms.
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Figure 12. Experimental results of uniqueness between datasets with different unique identifica-
tion lengths: (a) Shanghai dataset; (b) Beijing dataset; (c) Chengdu dataset; (d) Jiangsu dataset;
(e) Hangzhou dataset; (f) Nanjing dataset.
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Figure 13. Experimental results of robustness with different unique identification length: (a) cropping
attack; (b) layer-delete attack; (c) object-delete attack.

6.2. Applicability of the BCPM-UI Model to Small-Scale Vector Maps

In small-scale vector map datasets, typically comprising limited data such as essential
geographic features like roads, water bodies, and buildings, the representation tends to be
less detailed [50]. These datasets are commonly utilized in straightforward applications like
route planning and location positioning. In this paper, we discovered that the BCPM-UI
model not only suits large-scale vector map datasets with high precision but also proves
effective for small-scale ones.

In this section, we conducted experiments using local vector map datasets from
Chongqing and Xi’an to showcase the algorithm’s adaptability to small-scale datasets. The
Chongqing dataset encompasses 450 features, while the Xi’an dataset includes 1012 features,
as depicted in Figure 14. The constructed unique identifiers have a length of 1500.
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Figure 14. Vector map dataset with small data volume: (a) Chongqing dataset; (b) Xi’an dataset.

Figure 15 exhibits the BER of the model under various types of attacks. Notably, even
in the face of varying degrees of RST, object deletion, and cropping attacks, the BER values
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remain below the 0.10 threshold. These experimental findings underscore the significant
applicability of the BCPM-UI model in handling small-scale vector map datasets. This
offers valuable insights into exploring and researching watermark algorithms tailored for
such datasets and lays a theoretical groundwork for developing more sophisticated and
efficient copyright protection models for small-scale vector map datasets in the future.
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7. Conclusions
This paper introduces a blockchain-based copyright protection model for vector maps,

termed BCPM-UI. In this model, copyright information is embedded into vector maps
through a distance ratio quantization-based watermark embedding algorithm, and unique
identifiers are constructed using topological and geometric feature parameters. These
unique identifiers, along with watermark information, timestamps, and user details, are
securely registered on a blockchain platform. To address potential infringement, a bit error
rate-based unique identification matching algorithm is proposed to compare the unique
identifiers of suspected infringing data with those stored on the blockchain. Experimental
results validate the proposed model’s strong uniqueness and robustness, fulfilling data pri-
vacy protection requirements. Beyond technical robustness, the BCPM-UI model provides
significant societal and environmental benefits by enhancing the security and traceabil-
ity of geospatial data, which is critical in applications such as urban planning, disaster
management, and environmental monitoring. By ensuring reliable copyright protection
and data integrity, the model contributes to fostering trust in geospatial data sharing, thus
promoting the sustainable and ethical utilization of geospatial resources.

Future research will address the challenge of blockchain’s high storage costs by further
reducing the data volume of watermark information. As watermark information often
necessitates network-wide validation and traceability, future work will focus on develop-
ing lightweight watermarking algorithms that minimize computational complexity and
on-chain data, enhancing the overall efficiency and scalability of the proposed system.
Furthermore, integrating advanced privacy-preserving techniques, such as homomorphic
encryption and zero-knowledge proofs, will be explored to reinforce the confidentiality of
geospatial data in collaborative environments.
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