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Abstract: Map symbols play a crucial role in cartographic representation. Among these 

symbols, icons are particularly valued for their vivid and intuitive designs, making them 

widely utilized in tourist maps. However, the diversity and complexity of these symbols 

present significant challenges to cartographic workflows. Icon design often relies on man-

ual drawing, which is not only time-consuming but also heavily dependent on specialized 

skills. Automating the extraction of symbols from existing maps could greatly enhance 

the map symbol database, offering a valuable resource to support both symbol design and 

map production. Nevertheless, the intricate shapes and dense distribution of symbols in 

tourist maps complicate the accurate and efficient detection and extraction using existing 

methods. Previous studies have shown that You Only Look Once (YOLO) series models 

demonstrate strong performance in object detection, offering high accuracy and speed. 

However, these models are less effective in fine-grained boundary segmentation. To ad-

dress this limitation, this article proposes integrating YOLO models with the Segment 

Anything Model (SAM) to tackle the challenges of combining efficient detection with pre-

cise segmentation. This article developed a dataset consisting of both paper-based and 

digital tourist maps, with annotations for five main categories of symbols: human land-

scapes, natural sceneries, humans, animals, and cultural elements. The performance of 

various YOLO model variants was systematically evaluated using this dataset. Addition-

ally, a user interaction mechanism was incorporated to review and refine detection re-

sults, which were subsequently used as prompts for the SAM to perform precise symbol 

segmentation. The results indicate that the YOLOv8x model achieved excellent perfor-

mance on the tourist map dataset, with an average detection accuracy of 94.4% across the 

five symbol categories, fully meeting the requirements for symbol detection tasks. The 

inclusion of a user interaction mechanism enhanced the reliability and flexibility of detec-

tion outcomes, while the integration of the SAM significantly improved the precision of 

symbol boundary extraction. In conclusion, the integration of YOLOv8x and SAM pro-

vides a robust and effective solution for automating the extraction of map symbols. This 

approach not only reduces the manual workload involved in dataset annotation, but also 

offers valuable theoretical and practical insights for enhancing cartographic efficiency. 
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1. Introduction 

With the rapid growth of global tourism, tourist cities are captivating visitors from 

around the world with their unique natural landscapes and rich cultural resources [1]. 

However, traditional tourist maps, while functional, often lack artistic charm and cultural 

expression, rendering them insufficient to meet the evolving desires of tourists for leisure 

and cultural immersion [2,3]. In recent years, the incorporation of icon design has revital-

ized hand-drawn tourist maps [4,5]. By blending iconic landmarks, natural scenery, and 

local customs, these icons not only enhance the artistic appeal of maps, but also enrich 

tourists’ cultural experiences, transforming tourist maps into a meaningful emotional con-

nection between travelers and destinations. 

Despite their increasing popularity, the design and production of symbols for tourist 

maps remain challenging [6]. High-quality symbol design demands a combination of 

strong artistic skills and creative vision from designers. However, creating a large collec-

tion of unique symbols from scratch is both time-consuming and labor-intensive, signifi-

cantly impacting efficiency and raising costs. Fortunately, the abundance of tourist map 

resources available online provides an invaluable reference for symbol design. By extract-

ing symbols from existing maps, it becomes possible to expand the symbol database and 

improve mapping efficiency. Therefore, leveraging computer technology to automate the 

extraction of map symbols presents a promising and innovative solution. 

Map symbol extraction has undergone a significant evolution with technological ad-

vancement [7]. Before the widespread application of deep learning, researchers primarily 

relied on traditional computer vision methods for map information extraction [8,9]. Chang 

Ahn [10] developed a topographic map road extraction method based on conditional di-

lation operations in mathematical morphology; Chiang [11,12] achieved road recognition 

in raster maps through road intersection template extraction and subsequently improved 

road recognition accuracy in historical maps through line segment tracking. However, 

these traditional methods exhibited notable limitations when processing artistic symbols 

unique to hand-drawn tourist maps: insufficient symbol feature generalization, low seg-

mentation accuracy, sensitivity to symbol deformation and style variations, and frequent 

requirements for extensive manual parameter adjustments. 

The rapid development of deep learning technologies has brought breakthrough pro-

gress in symbol extraction [13]. Researchers have developed various innovative ap-

proaches: Hao He [14] pioneered use of the Structural Similarity Index (SSIM) as a loss 

function for road extraction, improving the F1 score by 2.6% compared to standard U-net 

methods; Husnul Hidayat [15] employed Mask R-CNN to extract building contours from 

drone imagery; O’Hara Rob [16] utilized convolutional neural networks to extract wetland 

symbols from historical maps; Arnau Garcia-Molsosa [17] applied deep learning segmen-

tation techniques to extract archaeological monument information from historical maps; 

Guo MingQiang [18] addressed geological symbol detection using deep learning-based 

object detection technology. With the deepening integration of interdisciplinary concepts, 

the application scope of symbol extraction has expanded to engineering, music, and 

sketch symbols. Kaiyrbekov Kurmanbek [19] proposed a neural network model for seg-

menting sketch symbols into stroke-level components; Eyad Elyan [20] achieved the pre-

cise extraction of 25 common engineering symbols with 94% accuracy; and Paul Ashis [21] 

realized accurate extraction of handwritten music symbols based on transfer learning. 

These studies demonstrate the significant advantages of deep learning in processing com-

plex spatial objects, yet existing research has primarily focused on extracting regular geo-

graphical features and standardized symbols, lacking effective methods for processing 

artistic symbols in tourist maps characterized by diverse styles, complex boundaries, and 

significant variations in representation. 
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This study innovatively decomposes the map symbol extraction task into two core 

components: symbol detection and symbol segmentation. In the detection phase, we 

adopted the YOLO model as the object detection framework. This model not only signifi-

cantly improves processing efficiency through its single-stage detection strategy, but also 

effectively reduces false detection rates through its global information-based prediction 

mechanism, enabling a more comprehensive understanding of symbol contextual rela-

tionships. In the segmentation phase, we introduce the cutting-edge SAM model to ad-

dress the complex morphology of artistic symbols. SAM brings three major advantages to 

our method [22]: its prompt-driven architecture precisely localizes target symbols in com-

plex map backgrounds; its zero-shot learning capability adapts to diverse symbol styles 

without requiring additional training data; and its excellent boundary detail preservation 

ensures the artistic integrity of extracted symbols. 

Based on this technical framework, we propose an automatic tourist map symbol ex-

traction method combining YOLO and SAM. To address the current absence of special-

ized datasets for tourism maps, we developed a comprehensive tourism map dataset. This 

novel dataset encompasses five distinct categories of symbols: human landscapes, natural 

sceneries, humans, animals, and cultural elements. The dataset was meticulously curated 

by integrating both traditional paper maps and digital cartographic resources. Based on 

this dataset, we trained the YOLOv8x model to achieve high-precision symbol detection 

and introduced an interactive review mechanism to optimize detection results. These re-

fined detection outputs subsequently serve as prompts for SAM, enabling precise symbol 

segmentation and extraction, ultimately achieving full automation of the symbol extrac-

tion and storage process. By integrating YOLO’s efficient detection capabilities with 

SAM’s precise segmentation performance, our method overcomes the limitations of tra-

ditional deep learning methods in processing tourist map symbols characterized by high 

artistic quality and style diversity. Moreover, this model collaboration approach enables 

us to incorporate detection effect review steps in the symbol extraction process, facilitating 

an in-depth analysis of extraction results at various stages and contributing to the contin-

uous optimization of extraction accuracy and efficiency. Experimental results demon-

strate that this method not only meets the requirements for automatic map symbol extrac-

tion and classification, but also provides map designers with a valuable symbol library, 

offering an effective solution for intelligent cartography and the digital management of 

tourist maps. 

2. Materials and Methods 

To fully leverage the strengths of different models, this article adopts a collaborative 

approach integrating YOLO and SAM for automated symbol extraction. Initially, the 

YOLO model was employed to swiftly identify the locations of symbols on tourist maps, 

delineating approximate rectangular regions where these symbols are situated. To miti-

gate the risk of missed detections by the YOLO model, we introduced a user interaction 

mechanism that enables users to manually review and amend the detection results. To 

ensure the precise retention of symbol details, the reviewed detection results were fed into 

the SAM for fine segmentation and category annotation. By combining the strengths of 

YOLO and SAM, YOLO efficiently detected symbol locations and provided rough region 

information, while SAM refined the boundaries within those regions to achieve high-pre-

cision symbol extraction. This multi-model collaboration strategy not only compensates 

for the segmentation limitations of single models, but also significantly improves the sta-

bility and practicality of symbol extraction. As shown in Figure 1, we detail the proposed 

method in this section. First, we collected tourist map information from books and online 

sources, and constructed a tourist map dataset containing various icons through manual 

annotation and data augmentation. This ensures that the model can be generalized 
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effectively in complex scenarios. Second, based on this dataset, we trained various YOLO 

model variants and selected the YOLOv8x model, which demonstrated the highest accu-

racy to detect symbols on maps and achieve high-precision detection results. Third, to 

further enhance detection accuracy, we implemented an improved a user interaction 

mechanism that allows users to manually adjust prediction boxes when detection results 

are unsatisfactory, thereby bolstering the accuracy and practicality of symbol extraction. 

Once symbol detection and manual adjustments are completed, the pre-trained SAM was 

applied to the detected symbol regions for fine segmentation, enabling high-precision 

symbol extraction. 

The following sections describe the complete implementation steps of this method. 

 

Figure 1. Workflow of the methodology. 

2.1. Dataset Construction 

2.1.1. Data Collection and Preprocessing 

The construction of a tourism map dataset serves as the foundational task for symbol 

recognition using the YOLO model and significantly impacts the model’s ability to effec-

tively identify symbols. Given the absence of directly usable tourism map datasets in the 

current research, we developed the dataset by leveraging OCR scanning on mobile de-

vices and employing web scraping techniques to extract data from physical map collec-

tions and online sources (Table 1). This approach ensures the dataset’s diversity and sci-

entific rigor, accommodating various regional characteristics, symbol categories, and map 

styles. 

Table 1. Data sources. 

Source Method Example Feature 

Physical Books 

 

OCR 

  

Consistency 

Authenticity 

Authority 

Online Websites 

https://www.zcool.com 

https://images.baidu.com 

Web Crawler 

 

High Resolution 

Diversity 

Accessibility 

By integrating OCR technology for scanning paper maps with web scraping tech-

niques for retrieving digital maps, we collected a total of 1239 diverse tourist maps. To 

further ensure the scientific rigor of the dataset, we applied four selection criteria: the 
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completeness of symbol organization, the richness of symbol categories, the clarity of 

symbol details, and the minimal background interference (Table 2). 

Table 2. Principles of data cleaning. 

Principle Description 

Complete organization 
Symbols must be complete to ensure the model captures full information for accurate 

recognition and extraction. 

Diverse types 
Include diverse types of tourist map symbols to improve the model’s learning ability and 

adaptability. 

Clear structure 
Symbols should feature clear boundaries and shapes to enhance recognition and extraction 

accuracy. 

Minimal interference Keep the background simple to reduce interference and ensure stable and precise detection. 

Following an initial quality assessment of the collected map images, we excluded 

those that were low-resolution, severely damaged, or failed to meet the selection criteria. 

This refinement process yielded a final initial dataset comprising 772 high-quality tourist 

map images. 

2.1.2. Data Annotation 

Manual annotation is a crucial step in constructing high-quality training datasets, as 

it directly influences the model’s detection accuracy and generalization performance. In 

this article, we employed the LabelImg tool to annotate the collected tourist map images, 

ensuring both the accuracy and consistency of the annotations. LabelImg is an open-

source image annotation tool that supports various annotation formats, including XML 

and YOLO formats, which makes it highly compatible with YOLO models. Additionally, 

it provides a user-friendly graphical interface and an efficient annotation workflow. 

The selection of symbol categories was guided by their operational significance, rel-

evance to tourist cartography, and a comprehensive analysis of symbol utilization pat-

terns observed across 772 collected tourist maps. The objective was to systematically iden-

tify and categorize elements that enhance user comprehension and interaction in tourist 

map design. Based on this analysis, five distinct symbol categories were established for 

manual annotation, which are described and exemplified in Table 3. 

Table 3. Examples of five symbol categories. 

Category Description Example 

Human Landscape Symbol 

These represent cultural and historical edifices, 

including monuments, architectural heritage sites, 

significant built environments, etc. 
 

Natural Scenery Symbol 

These denote natural topographic features, 

encompassing orographic elements, hydrological 

features, vegetative cover, etc. 
 

Human Symbol 
Represent tourism activities or travel status, hikers, 

group travelers, silhouettes of local residents' lives, etc.  

Animal Symbol 

These represent indigenous wildlife populations and 

species distribution, including pandas, elephants, 

tigers, etc. 
 

Cultural Symbol 

These illustrate distinctive regional characteristics, 

incorporating traditional festivals, cultural practices, 

intangible heritage elements, etc.  
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To enhance the quality and reliability of the annotated data, a double-review mech-

anism was implemented. Each image was independently annotated and reviewed by at 

least two annotators to minimize human errors and subjective biases. This approach ef-

fectively reduces potential inaccuracies in the annotation process, thereby ensuring a 

higher level of data consistency and reliability. 

2.1.3. Data Augmentation 

Data augmentation applies a series of transformations and processing techniques to 

the original data to generate additional samples. This process not only increases the size 

of the training set, but also mitigates the risk of overfitting and enhances the model’s gen-

eralization ability. In this article, various image augmentation techniques were employed 

to expand the original dataset. The specific methods utilized and their application ranges 

are detailed in Table 4 and illustrated in Figure 2. 

Table 4. Data Augmentation Methods and Target Effects. 

Number Method Description Target Effects 

1 Horizontal Flip 
Randomly flip the image horizontally and adjust 

the bounding box labels. 

Enhance the model’s adaptability to 

horizontal directional changes. 

2 Vertical Flip 
Randomly flip the image vertically and adjust 

the bounding box labels. 

Enhance the model’s adaptability to 

vertical directional changes. 

3 Center Crop 
Crop a fixed-size region from the center of the 

image and adjust the bounding box labels. 

Focus the model on core regions to 

reduce edge interference. 

4 
Brightness 

Adjustment 

Randomly change the image brightness within 

the range [−120/255, +120/255]. 

Enhance the model’s stability under 

varying brightness conditions. 

5 
Contrast 

Adjustment 

Randomly adjust the image contrast within the 

range [0.5, 1.5]. 

Enhance robustness to both high- and 

low-contrast images. 

6 
 Saturation 

Adjustment 

Randomly change the image saturation within 

the range [0.5, 1.5]. 

Enhance the model’s adaptability to 

richly colored or monochromatic images. 

7 
Gaussian Noise 

Addition 

Add Gaussian noise with a mean of 0 and a 

standard deviation of 0.1. 

Enhance the model’s robustness against 

noise interference. 

8 
Salt Noise 

Addition 

Randomly add high-brightness spots (pixel 

values set to 1.0). 

Enhance the model’s detection 

performance in noisy environments. 

9 
Pepper Noise 

Addition 

Randomly add low-brightness spots (pixel 

values set to 1.0). 

Enhance the model’s detection 

performance in noisy environments. 
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Figure 2. Examples of data augmentation. 

Using the nine data augmentation techniques outlined above, we expanded the orig-

inal dataset from 772 images to 4709 images. This substantial increase in dataset size not 

only significantly augmented the number of training samples, but also improved the 

model’s adaptability and robustness to various transformation conditions by introducing 

a diverse range of image variations. Furthermore, to ensure the accuracy of label infor-

mation during data augmentation, the bounding box labels were adjusted and updated in 

tandem with the image transformations. 

2.2. Collaborative Model Method for Symbol Extraction 

2.2.1. YOLOv8 

YOLOv8 [23], developed by Ultralytics, is one of the most recent object detection 

models in the YOLO series and is widely utilized for object detection tasks [24]. The net-

work architecture of YOLOv8, as illustrated in Figure 3, consists of three primary mod-

ules: backbone—responsible for extracting features from the input image; neck—inte-

grates features from the backbone to enhance the model’s ability to detect objects at dif-

ferent scales; and head—outputs predictions, including object classes and bounding box 

locations. 
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Figure 3. Yolov8 model architecture diagram [23]. 

Compared to earlier versions, YOLOv8 offers significant improvements in detection 

accuracy, processing speed, and sensitivity to small objects [25,26]. These enhancements 

make it particularly effective in environments with complex tasks and diverse symbol 

types. Leveraging these strengths, YOLOv8 excels at accurately locating target symbols 

and providing approximate boundaries, even amidst complex backgrounds. As a result, 

it is an ideal choice for initial symbol localization and target region marking. 

Although YOLOv8 performs exceptionally well in object detection, its bounding box 

output is limited to providing rectangular box information, which poses certain limita-

tions for detecting symbols with complex and irregular boundaries. This limitation is par-

ticularly evident in the detection of symbols on tourist maps, where landmarks and scenic 

elements often feature intricate and irregular edges. The rectangular boxes produced by 

YOLOv8 cannot accurately capture the actual contours of these symbols. Studies have in-

dicated that such bounding boxes are primarily suitable for rough target detection, lack-

ing the detailed contour precision required for tasks that demand highly refined extrac-

tions. 

To address this limitation, this article proposes integrating YOLOv8 with the SAM, 

which specializes in fine-grained segmentation, to enhance YOLOv8’s boundary segmen-

tation capabilities. In this collaborative framework, YOLOv8’s initial detection results 

serve as precise bounding box prompts for the segmentation model. This integration en-

ables the segmentation model to concentrate on target regions and perform accurate 

boundary extraction, significantly improving the precision of symbol detection and seg-

mentation.  
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2.2.2. SAM 

SAM is an advanced image segmentation model with flexible capabilities for accu-

rately segmenting target regions, even in complex backgrounds. The model primarily 

takes two inputs: an image and prompt information. Using the provided prompts, SAM 

generates segmentation masks to achieve precise cutting. Furthermore, SAM supports 

zero-shot segmentation tasks using its pre-trained model, significantly reducing many of 

the challenges associated with training. 

SAM [27] is built on the Vision Transformer (ViT), a cutting-edge algorithm in com-

puter vision, as its backbone pre-trained model. ViT has three variants (Table 5): ViT_h, 

ViT_l, and ViT_b, each offering varying levels of segmentation accuracy and efficiency 

[28]. Generally, models with larger parameter sizes provide finer segmentation results but 

at the cost of reduced efficiency. Since our task focuses on symbol extraction from static 

maps, where segmentation accuracy is prioritized over efficiency, we selected ViT_h, the 

largest model variant, as the pre-trained model. 

Table 5. Parameters of the ViT model series [27]. 

Model Patch Embedding Dimension Transformer Head Count Transformer Block Layers 

vit_h 1280 16 32 

vit_l 1024 16 24 

vit_b 768 12 12 

SAM provides three interaction modes (Figure 4): Click, Box, and Everything. The 

Click and Box modes require human–machine interaction, while the Everything mode en-

ables automatic image segmentation across the entire detection area. 

 

Figure 4. Examples of the three segmentation modes in the SAM model. 

2.2.3. Model Collaboration and User Interaction 

In the task of symbol extraction, the collaborative mechanism between YOLOv8 and 

SAM leverages their respective strengths to achieve efficient and precise symbol detection 

and segmentation. This mechanism is implemented in two steps: YOLOv8 performs the 

initial detection of symbols, and SAM refines the segmentation of the detected regions. In 

our previous research, the YOLOv8x model was employed to detect symbols on tourist 

maps, generating preliminary bounding boxes and label information. To balance the rela-

tionship between false positives and false negatives in detection results, detections with 

confidence scores greater than 0.5 and IoU thresholds greater than 0.5 were retained for 

subsequent symbol extraction work. 
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While the YOLOv8x symbol detection model, trained on the aforementioned tourist 

map datasets, demonstrates high-precision performance in symbol detection, and we 

have integrated additional visualization capabilities using the OpenCV library along with 

optional interactive functionality to address dataset limitations and accommodate the dy-

namic evolution of tourist map typologies. The system enables users to monitor detection 

results in real time during the symbol detection phase and evaluate whether the outcomes 

align with their intended objectives. If the results meet expectations, users can directly 

input the detection results into the SAM model for symbol extraction. Conversely, users 

can optimize detection results according to their specific requirements, thereby facilitating 

a user-centric automated symbol extraction process. 

This interactive mechanism encompasses three modes: Add, Adjust, and Delete (Ta-

ble 6). Users can manually intervene in the bounding boxes generated by the YOLO model 

to improve the accuracy and completeness of the predictions. Specifically, the Add mode 

allows users to introduce missing bounding boxes for undetected symbols; the Adjust 

mode enables users to modify the position and size of existing bounding boxes; and the 

Delete mode permits users to remove incorrect bounding boxes. This user intervention 

significantly improves the accuracy and reliability of symbol detection by complementing 

the automated detection process. 

Table 6. Three modes of user interaction. 

Interactive Operation Description Example 

Add 

Users can hold down the left mouse button and drag to 

draw a new detection box, which is automatically saved 

upon completion.  

Adjust 
Users can select the corner points or midpoints of the box 

edges to adjust its size and position by dragging. 
 

Delete 

By clicking inside the detection box, users can delete it, 

which is useful for removing false positives or redundant 

boxes.  

After the detection phase, refined bounding boxes are processed by SAM for precise 

segmentation. Since SAM is a pre-trained model based on “prompt” technology, it only 

requires ensuring that YOLO detection results and user interaction results can be success-

fully read by SAM. This involves the following steps: 1) to ensure compatibility with 

SAM’s input requirements, we preprocessed the detected images, including resizing them 

to uniform resolution and converting color spaces uniformly to RGB; 2) iterating through 

all prediction boxes and converting them to numpy array format; and 3) passing predic-

tion boxes as prompts to SAM, which performs the fine-grained segmentation of symbols 

in box mode and generates binary segmentation masks. Subsequently, post-processing is 

performed on the segmentation results, including removing small area noise and smooth-

ing symbol edges to ensure clear and accurate final symbol regions. The segmented sym-

bols are then saved as independent image files with transparent backgrounds to facilitate 

further symbol classification and provide convenience for the intelligent management ap-

plications of tourist maps. The complete workflow for this step is illustrated in Figure 5. 
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Figure 5. Symbol detection and extraction workflow. 

This collaborative process addresses the limitations of YOLOv8 in precise boundary 

extraction by incorporating SAM for refined segmentation. As a result, the extracted sym-

bols feature consistent boundaries and high fidelity, making this approach particularly 

well-suited for symbols on tourist maps that have complex shapes and irregular contours. 

The key advantage of this collaborative mechanism lies in combining YOLOv8’s speed 

and accuracy in detection with SAM’s ability to preserve fine boundary details. By inte-

grating the strengths of both models, the overall extraction process achieves rapid initial 

detection while ensuring segmentation results are both detailed and consistent. This 

multi-model collaboration not only enhances the efficiency of automated symbol extrac-

tion, but also significantly improves the quality of symbol detail, providing robust tech-

nical support for symbol design and its practical applications. 

3. Experiment Design 

3.1. Experimental Environment 

The hardware configuration for model training consists of an Intel® Core™ i5-

12600KF CPU @ 4.90GHz, 32GB of RAM, and an NVIDIA GeForce RTX 4070 Super GPU 

with 12 GB of memory. The software environment is based on the Windows 11 (x64) op-

erating system, using the Python programming language and the PyTorch deep learning 

framework. The detailed software specifications are as follows: Python 3.8.19, PyTorch 

2.4.0+cu118, Torchvision 0.19.0+cu118, Torchaudio 2.4.0+cu118, CUDA 12.6.65, and 

cuDNN 8.9.2. 

The specific training parameters are illustrated in Table 7. The decision to train the 

model for 200 epochs is based on both empirical observations and experimental results, 

striking a balance to avoid underfitting and overfitting. The batch size is set to 16, making 

efficient use of the GPU’s parallel computing capabilities. The image dimensions are nor-

malized to 640 × 640, ensuring that the model can be deployed on edge devices. The opti-

mizer used was Stochastic Gradient Descent (SGD) with an initial learning rate of 0.01, as 

experiments with learning rates of 0.001, 0.01, and 0.1 showed that 0.01 balanced conver-

gence speed and stability. Smaller learning rates resulted in slow convergence, while 

larger ones led to divergence. Additionally, the momentum was set to 0.937 based on tests 

with values between 0.9 and 0.99, where 0.937 accelerated convergence while maintaining 

stability. The weight decay coefficient was set to 0.005, as smaller values (0.001) caused 

slight overfitting and larger values (0.01) hindered convergence. A Cosine Annealing 

Scheduler was employed for learning rate adjustment, as it was experimentally validated 

to outperform fixed learning rates and step-based decays. This strategy allowed the learn-

ing rate to gradually decay following a cosine curve, improving convergence during later 

stages and enhancing generalization. The momentum, commonly set between 0.9 and 

0.99, was adjusted to 0.937 based on experiments and validation to achieve optimal train-

ing performance. Additionally, the weight decay coefficient is set to 0.005 to constrain 
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parameter updates and introduce regularization effects. The combination of these param-

eters resulted in a model that achieved strong performance on the validation set while 

minimizing overfitting. The final hyperparameter choices were therefore validated both 

experimentally and empirically. 

Table 7. Model training parameters. 

Parameter Value 

Epochs 200 

Batch Size 16 

Image Size 640 × 640 

Initial Learning Rate 0.01 

Learning Rate Momentum 0.937 

Weight Decay Coefficient  0.0005 

Optimizer SDG 

work 8 

3.2. Dataset 

In this experiment, a custom-built tourist map dataset was utilized, comprising a to-

tal of 772 original images before augmentation, with varying resolutions. To ensure the 

reliability and scientific validity of the experimental results, the dataset was first divided 

into training, testing, and validation sets in an 8:1:1 ratio, resulting in 618 training images, 

77 testing images, and 77 validation images. This initial split ensured that there was no 

overlap between the training, testing, and validation sets, avoiding data leakage and en-

suring the independence of the evaluation process. 

After the split, a series of data augmentation techniques were applied exclusively to 

the training set to increase its diversity and size. These augmentation techniques included 

random cropping, horizontal and vertical flipping, rotation, brightness and contrast ad-

justment, and scaling, resulting in a total of 3769 training images with a uniform resolution 

of 640 × 640 pixels. The testing and validation sets remained unchanged to maintain their 

integrity and ensure consistent evaluation. 

As illustrated in Figure 6, the dataset includes five label categories: human landscape, 

natural scenery, human, animal, and cultural elements, with a total of 35,593 annotations. 

The human landscape category accounts for the largest proportion of labels, while the 

cultural elements contain the fewest. 

 

Figure 6. Percentage of the five label types. 

3.3. Selection of YOLO Variants 

As a leading model for object detection, the YOLO framework has undergone con-

tinuous development, resulting in nearly a dozen variants since its inception [24]. In this 

experiment, we compared the performance of several mainstream YOLO variants, includ-

ing YOLOv5 [29], YOLOv7 [30], YOLOv8 [23], YOLOv10 [31], and YOLOv11 [31]. The 

performance of each YOLO variant in symbol detection was evaluated based on five key 
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metrics: precision, recall, F1-score, mean average precision (mAP), and intersection over 

union (IoU). The experimental results were used to select the most suitable YOLO variant 

according to these metrics. The formulas and descriptions of each evaluation metric are 

detailed in Table 8. 

Table 8. Evaluation metrics for the YOLO model. 

Metric Formula Description 

Precision Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 Measures the accuracy of the model in predicting positive samples. 

Recall Recall =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 Evaluates the model’s ability to identify true positive samples. 

F1-Score 
𝐹1-score 

= 2 ×
 Precision ×  Recall 

 Precision +  Recall 
 

The harmonic mean of precision and recall is used to assess the model’s 

overall performance. 

mAP 𝑚𝐴𝑃 =
1

𝐶
∑  

𝐶

𝑖=1

𝐴𝑃𝑖 Reflects the detection performance across different thresholds. 

IoU 𝐼𝑜𝑈 =
 Area intersection 

 Area union 
 

Measures the overlap between predicted and ground truth bounding 

boxes in object detection. 

TP (True positive): correctly predicted positive samples; FP (false positive): incorrectly predicted 

positive samples; FN (false negative): incorrectly predicted negative samples; C: total number of 

categories; APi: average precision of the i-th category. 

Following model training, the training curves are presented in Figure 7. In terms of 

mAP@0.5 and mAP@0.5:0.95, YOLOv8 achieved values of 0.951 and 0.874, respectively, 

demonstrating high detection accuracy. Notably, YOLOv8 excelled in mAP@0.5:0.95, sig-

nificantly outperforming other models and highlighting its superior stability. While 

YOLOv7 achieved a slightly higher mAP@0.5 of 0.986, its mAP@0.5:0.95 was lower than 

YOLOv8. Additionally, YOLOv7’s training curves exhibited relatively larger fluctuations, 

indicating less consistency during training. In contrast, YOLOv8 displayed smoother and 

more stable accuracy curves, further validating its robustness across different IoU thresh-

olds. 

 

Figure 7. Variation of metrics during YOLO model training. 

After confirming that the YOLOv8 model is the most suitable for the tourism map 

dataset, we proceeded to compare the performance of YOLOv8 models with different 
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parameter sizes on this dataset. The recognition accuracy for each symbol category is il-

lustrated in Figure 8. 

 

Figure 8. Symbol recognition accuracy by category. 

The recognition accuracy for each symbol category further validates the selection of 

YOLOv8x. This model demonstrated exceptional performance in the categories of “natu-

ral scenery”, “human landscape”, and “cultural symbols”, underscoring its consistent 

ability to achieve high-precision recognition across diverse symbol types. In contrast, 

smaller parameter models such as YOLOv8n exhibited lower recognition accuracy in 

these categories, indicating that increasing the parameter size significantly enhances the 

model’s detection performance across different symbol types. 

We further evaluated the IoU performance of the YOLOv8x model to provide a de-

tailed analysis of its detection performance. The IoU distribution for all predicted objects 

is illustrated in Figure 9, highlighting the overall detection performance of the model. A 

majority of IoU values were concentrated above 0.9, indicating a high degree of overlap 

between the predicted and ground truth bounding boxes, which reflects the model’s 

strong object recognition capabilities. A small proportion of predictions with IoU values 

of 0 were observed, which typically indicates that the model failed to correctly classify 

certain symbol categories or encountered issues such as class confusion or annotation er-

rors. Figure 10 presents the IoU distribution across five specific symbol categories as well 

as the overall IoU distribution. The median IoU values for all categories consistently fell 

between 0.85 and 0.9, demonstrating balanced and stable performance across various 

symbol detection tasks. Notably, the “Human Landscape” and “Animal” categories ex-

hibited smaller interquartile ranges, suggesting more consistent predictions, whereas the 

“Natural Scenery” and “Culture” categories displayed a higher number of low IoU outli-

ers. These outliers may stem from challenges such as complex backgrounds, small object 

sizes, or indistinct category features. Despite these challenges, the majority of IoU values 

exceeded 0.8, indicating that the model maintained strong overall performance, particu-

larly excelling in the detection of “Human Landscape” and “Animal” symbols. 
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Figure 9. IoU distribution of all predicted objects. 

 

Figure 10. IoU boxplot across different categories. 

In summary, the YOLOv8 series, and especially the YOLOv8x variant, stands out in 

terms of accuracy, stability, and adaptability to various symbol categories, meeting the 

high-precision demands of tourist map symbol detection tasks. Accordingly, this article 

identifies YOLOv8x as the optimal model for symbol detection. 

4. Results 

This study evaluated the proposed method using a diverse set of tourist maps, in-

cluding route-based and hand-drawn maps with varying symbol complexity. As illus-

trated in Figure 11, we selected four representative tourist maps encompassing all five 

symbol categories identified in this research. To assess the model’s generalization capa-

bility, we deliberately selected maps excluded from the training dataset for experimental 

validation. 

The symbol extraction process comprised two primary stages. In the first stage, we 

employed a YOLOv8x model, trained on a tourist map dataset, for symbol detection, clas-

sification, and confidence scoring. The model exhibited moderate generalization capabil-

ities, successfully detecting and classifying symbols across various map styles and artistic 

representations with consistently high confidence scores. For symbols with complex mor-

phological variations or regional characteristics that might be missed during detection, 

our designed visualization and user interaction features effectively addressed potential 

detection omissions, ensuring accurate and reliable results. In the second stage, the vali-

dated detection results served as prompts for the SAM. The SAM utilized these inputs to 

generate precise segmentation masks, delineating symbol regions. These segmented 
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symbols were then automatically extracted and systematically organized into separate 

files by category, effectively expanding our symbol library. 

The extraction results demonstrate that our method not only preserves fundamental 

symbol characteristics, but also exhibits robust performance across diverse tourist map 

styles. To further validate the method’s versatility, we conducted extensive experiments 

across various maps. Figure 12 showcases exemplar extracted symbols from all five cate-

gories, illustrating the method’s consistent performance and fine-grained extraction capa-

bilities across different map styles and symbol complexities. 

 

Figure 11. Symbol detection process. 

 

Figure 12. Examples of five symbol extracting categories. 
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5. Discussion 

To effectively demonstrate the efficacy of the proposed collaborative model method 

for detecting and extracting map symbols, we independently designed a tourist map of 

Dengfeng City along with its associated geographic symbols. This map served as a bench-

mark image for comparing the symbol extraction performance of various models, with 

the results illustrated in Figure 13. We compare the proposed method against the symbol 

extraction results obtained using only the YOLO model and only the SAM. The observa-

tions are as follows: 

1. The YOLO model, when used in isolation, can detect and label symbols; however, its 

segmentation accuracy is insufficient. The extracted symbols retain significant 

amounts of background color, rendering them unsuitable for direct application as 

map symbol elements. 

2. The SAM achieves precise segmentation of symbols; however, without prior symbol 

detection, it performs segmentation based on a global grid. This approach results in 

the extraction of numerous unnecessary map details and fails to classify or label sym-

bols. Additionally, when applied to individual symbols, the SAM frequently decom-

poses them into smaller parts, leading to substantial data redundancy. 

Figure 13. Visualization of comparison experiments. 

To evaluate model performance, we conducted comparative experiments using 

mainstream detection models on five symbol categories from a custom tourist map da-

taset. The experimental results were benchmarked against our proposed model (Table 9). 

Quantitatively, the YOLOv8-X model surpassed other state-of-the-art architectures with 

notable performance gains: 16.27% higher AP than Faster R-CNN [32], 15.98% higher than 

SSD [33], and 9.21% higher than Retinanet [34]. Additionally, YOLOv8-X exhibited a bal-

anced trade-off between precision and recall, resulting in the F1 Score of 0.87, which out-

performed Faster R-CNN by 22.29%, SSD by 37.93%, and Retinanet by 3.18%. The empir-

ical evidence underscores the fact that our proposed methodology offers significant ad-

vantages in terms of robustness and accuracy for tourist map symbol detection tasks. This 

advancement highlights the potential of YOLOv8-X as a practical solution for geographic 

and cartographic applications requiring precise and efficient symbol recognition.  
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Table 9. Comparison with the mainstream algorithms. 

Model AP (%)  Recall (%) Precision (%) F1 Score 

Faster R-CNN 74.11 80.05 55.09 0.65 

Retinanet 81.17 80.41 89.3 0.84 

SSD 74.4 34.99 95.34 0.5 

YOLOv8-X 90.38 81.23 94.4 0.87 

To validate the model’s generalization capability, we conducted symbol detection 

experiments on a test set of 77 images. The results are presented through confusion ma-

trices (Figure 14). The model demonstrated strong performance across different catego-

ries, with particularly robust results for human landscape detection. Natural scenery and 

animal categories both achieved 77% accuracy, while cultural elements were detected 

with 74% accuracy. The human category showed a moderate performance of 68% accu-

racy. From the confusion matrix, we can also observe that there are relatively few misclas-

sifications between the five symbol categories, with the more common issue being sym-

bols not being detected at all. These results indicate strong overall performance but high-

light areas for improvement. Misclassifications with the background suggest the need for 

more diverse training data and enhanced feature extraction to improve separation. Lower 

performance for smaller categories, such as humans and animals, suggests addressing 

class imbalance. Enhancing fine-grained feature extraction can further reduce inter-cate-

gory confusion. Overall, the model demonstrated good generalization with room for op-

timization in specific areas. 

 

Figure 14. Confusion matrix. 

In contrast, the proposed collaborative method, which integrates YOLO and SAM, 

effectively detected map symbols and performed precise segmentation. This approach re-

duces computational overhead while outputting specific, complete map symbols that can 

be directly used as materials in a symbol library. 

Compared to using YOLO or SAM independently, the collaborative method offers 

several advantages: 

3. Efficiency in Annotation and Detection: Although the YOLOv8 model includes seg-

mentation functionality, it requires highly detailed annotations, necessitating manual 

labeling of each target’s fine boundaries. For paper maps or small symbols with lim-

ited resolution, this manual annotation process is highly labor-intensive, as 
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illustrated in Figure 15. In this article, YOLO is employed solely as a detection model 

to locate symbols and generate bounding box annotations. This strategy minimizes 

the need for detailed annotations and significantly enhances the efficiency of dataset 

construction. 

 

Figure 15. Annotation examples for the segmentation and detection models ((A–C) for segmentation 

models; (a–c) for detection models). 

4. Overcoming SAM’s Segmentation Limitations: While the SAM supports three seg-

mentation modes—Click, Box, and Everything—the first two require manual input 

for segmenting specific geographic features. The Everything mode allows for auto-

mated segmentation but often produces overly fragmented results, such as disaggre-

gating individual symbols into smaller components and including excessive back-

ground details (as shown in Figure 16). If only symbol elements are needed, manual 

classification of the segmentation results remains necessary. To address this, we in-

troduced the YOLO model as a preprocessing step, where its detection results serve 

as prompts for the SAM. This confines segmentation to the predicted bounding 

boxes, reducing irrelevant details and memory consumption. Since the bounding 

boxes already classify the symbols, the segmented outputs retain their category at-

tributes, simplifying their subsequent management and use in symbol libraries. 
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Figure 16. Comparison of the symbol extraction results (left: SAM model; right: synergistic ap-

proach). 

While the collaborative method effectively achieves specific symbol segmentation, it 

has limitations regarding segmentation accuracy. The SAM’s reliance on pre-training with 

large datasets complicates the quantitative evaluation of symbol extraction precision. 

Consequently, we applied this method to the designed map for comparative analysis. As 

shown in Figure 17, the proposed automated symbol extraction method successfully ex-

tracts complete symbol information while preserving the core characteristics of the sym-

bols. However, several issues persist: 

5. The extracted symbol boundaries are generally smoother than the originals; 

6. Some fine details along the symbol edges are lost; 

7. Hollow areas within symbols are occasionally affected by background colors. 

 

Figure 17. Comparison of the symbol prototype and extraction results. 

To address these limitations, several potential solutions are being explored. We are 

investigating the integration of edge enhancement algorithms to improve boundary pre-

cision, which can better preserve the original contour characteristics during the extraction 

process. To tackle the challenge of hollow areas, we are exploring advanced color separa-

tion techniques and developing specialized post-processing methods to better distinguish 

between symbol features and background elements. Additionally, we are working on im-

plementing an adaptive threshold mechanism that can dynamically adjust segmentation 

parameters based on local image characteristics, potentially leading to more accurate sym-

bol extraction results. 

In summary, this method achieves a fully automated workflow from map input to 

symbol extraction, effectively addressing the challenges of extracting complex structures 

in icons and simplifying the symbol design process for general cartographers. Neverthe-

less, certain limitations persist, such as the imprecise handling of symbol boundaries and 

the loss of fine edge details. 

6. Conclusions 

This article integrates data from books and digital maps to construct a tourist map 

dataset containing icons, providing a comprehensive foundation for training symbol de-

tection and segmentation models. The methodology employs a two-stage framework that 

leverages both detection and segmentation capabilities. Based on an analysis of various 

YOLO model variants, the YOLOv8x model was selected for symbol detection. The 
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detection results were then fed into the SAM, effectively enabling the extraction of icons. 

Through model collaboration, intermediate results can be observed between detection 

and segmentation stages, enhancing systematic understanding of the symbol extraction 

process and establishing a foundation for symbol extraction in complex environments. 

The experimental results demonstrate that the combination of YOLOv8 and SAM for 

the automated extraction of icons in tourist maps successfully merges the strengths of de-

tection and segmentation. This achieves a fully automated workflow from symbol detec-

tion to precise segmentation. Additionally, this article introduces an improved user inter-

action mechanism that allows users to manually adjust prediction boxes when detection 

results are imperfect, thereby enhancing the accuracy and practicality of symbol extrac-

tion. Testing shows that this method can accurately and efficiently extract various symbols 

from hand-drawn maps with different illustrative styles and demonstrates robust perfor-

mance across different map types. 

Building upon these technical achievements, the methodology demonstrates sub-

stantial practical value across multiple domains. In the field of tourism applications, the 

method enables the efficient digitization of traditional paper tourism maps and facilitates 

the creation of interactive digital tour guides and navigation systems. In GIS, automatic 

extraction of map symbols accelerates the process of map vectorization and updating, and 

improves the efficiency of spatial data management. In addition, the method can handle 

different illustration styles, making it applicable to standardized symbols from different 

map sources and supporting the development of consistent cartographic systems. 

Despite these promising results, the study has certain limitations. The limited size of 

the dataset leads to variability in detection performance across different symbol catego-

ries, and symbol extraction is subject to specific constraints. Furthermore, segmentation 

accuracy is significantly influenced by resolution, particularly for low-resolution maps 

and those with complex backgrounds, where the extraction results require further im-

provement. 

Future research will focus on the following three areas: 

8. Expanding the dataset: To enhance the model’s adaptability and generalization ca-

pabilities, future efforts will focus on collecting tourist maps from diverse cultural 

backgrounds and regional styles. This will enrich and refine the training dataset, en-

suring the model can accommodate a broader range of application scenarios. 

9. Exploring advanced models: Emerging deep learning models, such as Transformers 

and Vision Permutators, will be evaluated and tested to improve the precision and 

accuracy of symbol extraction. 

10. Real-time extraction capabilities: The development of mobile applications for real-

time interactive map analysis will be investigated, enabling users to analyze tourist 

maps on the go and providing a more interactive and personalized travel experience. 
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