Investigating Within-Field Variability of Rice from High Resolution Satellite Imagery in Qixing Farm County, Northeast China
Abstract
:1. Introduction
2. Study Area
3. Data
3.1. Satellite RS Images and GIS Data
3.2. Ground Truth Data Collection
Field | Number of Sample Sites | Variety | Number of Foliage | Transplanting Date | Quantity of N Topdressing (kg/ha) | Plant Density (plants/m2) | Soil Properties | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
pH | K (mg/kg) | P (mg/kg) | N (mg/kg) | SOM (g/kg) | |||||||
Field 1 | 4 | Longjing 21 | 12 | May 10 | 104, 104, 104, 104 | 109 | 6.05 | 75.7 | 26.7 | 181.1 | 37.98 |
3 | Kongyu 131 | 11 | May 17 | 0, 94, 141 | |||||||
1 | Xixuan 1 | 13 | May 15 | 132 | 101 | 6.22 | 134.5 | 36.6 | 177.4 | 35.47 | |
1 | Longdun 104 | 12 | May 16 | 118 | 6.07 | 142.5 | 30.1 | 173.6 | 46.85 | ||
1 | Longjing 21 | 12 | May 17 | 118 | 133 | 6.08 | 82.4 | 28.3 | 175.8 | 37.78 | |
Field 2 | 4 | Longjing 21 | 12 | May 13 | 84, 84, 84, 84 | 115 | 5.59 | 103.8 | 33.2 | 259.9 | 41.83 |
3 | Longjing 21 | 12 | May 13 | 0, 67, 101 | 115 | ||||||
Field 3 | 4 | Longjing 21 | 12 | May 12 | 67, 67, 67, 67 | 117 | 6.13 | 126.5 | 24.0 | 209.0 | 49.52 |
4 | Longjing 21 | 12 | May 12 | 0, 54, 81, 67 | 117 | ||||||
Field 4 | 4 | Kendao 6 | 11 | May 20 | 83, 83, 83, 83 | 158 | 6.29 | 372.5 | 21.5 | 249.8 | 66.03 |
Field 5 | 4 | Longjing 24 | 11 | May 16 | 95, 95, 95, 95 | 166 | 5.84 | 73.4 | 37.8 | 176.2 | 35.76 |
1 | Longjing 24 | 11 | May 16 | 0 | 166 | ||||||
Field 6 | 1 | Longdun 249 | 12 | May 20 | 102 | 5.78 | 126.5 | 30.6 | 169.7 | 37.08 | |
1 | Chaoyou 949 | 11 | May 18 | 106 | 144 | 6.08 | 98.4 | 32.0 | 187.5 | 39.91 | |
3 | Jinxuan 1 | 11 | May 20 | 0, 86, 129 | |||||||
Field 7 | 3 | Kongyu 131 | 11 | May 17 | 0, 82, 123 | 122 |
4. Methods
4.1. Satellite Image Pre-Processing
Date | Visibility (km) | Zenith Angle | Azimuth Angle |
---|---|---|---|
June 24 | 50 | 146°10′0.84″ | −115°13′19.56″ |
July 6 | 50 | 152°15′58.34″ | −45°34′58.34″ |
August 9 | 50 | 155°12′2.90″ | −83°58′22.08″ |
Image Capture Date | Number of Control Points | Number of Check Points | PE of Control Points (m) | PE of Check Points (m) |
---|---|---|---|---|
June 24 | 100 | 20 | 2.991 | 5.901 |
July 6 | 104 | 20 | 4.143 | 5.032 |
August 9 | 101 | 20 | 3.353 | 5.666 |
4.2. Mapping Rice Cultivation Areas
4.3. Ground Truth Data Interpolation
4.4. Development of Regression Models for Deriving Agronomic Variables
4.5. Validation of the Regression Models
5. Results
5.1. Accuracy of Rice Area Classification
Data Source | User’s Accuracy of Rice | Producer’s Accuracy of Rice | Kappa Coefficient | Overall Accuracy |
---|---|---|---|---|
RS single date (August 9) | 94.1% | 82.6% | 0.733 | 80.8% |
RS multiple dates (3 dates) | 89.4% | 91.7% | 0.781 | 85.0% |
RS and GIS data combined | 94.2% | 92.7% | 0.881 | 91.6% |
5.2. Empirical Regression Models
5.2.1. Model Development
Agronomic Variable | Phenological Stage | Number of Model Construction Sites | Regression Model Parameters | ||||||
---|---|---|---|---|---|---|---|---|---|
Model Coefficient | R2 | ||||||||
Biomass (kg/ha) | Tillering | 17 | −316.063 | 52,440 | −25,250 | 0.551 ** | |||
Booting | 23 | 7280.379 | 13,480 | 51,620 | −121,530 | 21,270 | −12,113.182 | 0.765 ** | |
Heading | 23 | 5791.901 | −148,910 | 31,710 | 0.519 ** | ||||
LAI | Tillering | 17 | −1.04 | 140 | −50 | 0.458 * | |||
Booting | 23 | −0.451 | 4.378 | 0.431 ** | |||||
Heading | 23 | −5.463 | −50 | −270 | 380 | 30 | 0.650 ** | ||
N Concentration (%) | Tillering | 17 | 4.371 | −101.548 | 71.492 | 0.401# | |||
Booting | 23 | 4.895 | 50.798 | −22.079 | −23.972 | −4.718 | 0.269 # | ||
Heading | 23 | 0.193 | −35.742 | −44.725 | 105.14 | 3.459 | 0.075 # | ||
N Uptake (kg N/ha) | Tillering | 17 | −21.022 | −370 | 290 | 260 | 140 | 0.273 # | |
Booting | 23 | −18.834 | 810 | 690 | −1420 | 280 | 0.460 * | ||
Heading | 23 | 167.251 | −4270 | 550 | 0.483 ** |
5.2.2. Validation of the Regression Models
Agronomic variable | Phenological Stage | Number of Validation Sites | Model Validation Parameter | |
---|---|---|---|---|
RE (%) | IA | |||
Biomass (kg/ha) | Tillering | 12 | 39.4 | 0.38 |
Booting | 19 | 27.0 | 0.32 | |
Heading | 19 | 8.9 | 0.68 | |
LAI | Tillering | 12 | 31.4 | 0.38 |
Booting | 17 | 15.1 | 0.60 | |
Heading | 17 | 13.6 | 0.85 | |
N Concentration (%) | Tillering | 12 | 17.7 | 0.41 |
Booting | 19 | 15.3 | 0.48 | |
Heading | 19 | 27.7 | 0.48 | |
N uptake (kg N/ha) | Tillering | 12 | 39.9 | 0.39 |
Booting | 19 | 32.5 | 0.37 | |
Heading | 19 | 11.0 | 0.77 |
5.3. Regional Application of the Regression Models
6. Discussion
6.1. Band Selection for Different Growth Stages
6.2. Background Effects in the Early Stage
7. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Food and Agriculture Organization of the United Nations. FAO Statistical Database. Available online: http://www.fao.org/docrep/015/i2490e/i2490e03d.pdf (accessed on 13 June 2014).
- Yan, X.; Ohara, T.; Akimoto, H. Development of region-specific emission factors and estimation of methane emission from rice fields in the East, Southeast and South Asian countries. Glob. Change Biol. 2003, 9, 237–254. [Google Scholar] [CrossRef]
- Smith, P.; Martino, D.; Cai, Z.; Gwary, D.; Janzen, H.; Kumar, P.; McCarl, B.; Ogle, S.; O’Mara, F.; Rice, C.; et al. Greenhouse gas mitigation in agriculture. Philos. Trans. R. Soc. B 2008, 363, 789–813. [Google Scholar] [CrossRef]
- Global Methane Initiative. Global Methane Emissions and Mitigation Opportunities. Available online: http://www.globalmethane.org (accessed on 26 August 2014).
- Tan, Z.X.; Lal, R.; Wiebe, K.D. Global soil nutrient depletion and yield reduction. J. Sustain. Agr. 2005, 26, 123–146. [Google Scholar] [CrossRef]
- Kumar, M.; Monteith, J.L. Remote sensing of crop growth. In Plants and the Daylight Spectrum; Smith, H., Ed.; Academic Press: London, UK, 1981; pp. 133–144. [Google Scholar]
- Moulin, S.; Bondeau, A.; Delecolle, R. Combining agricultural crop models and satellite observations: From field to regional scales. Int. J. Remote Sens. 1998, 19, 1021–1036. [Google Scholar] [CrossRef]
- Hatfield, J.L.; Gitelson, A.A.; Schepers, J.S.; Walthall, C.L. Application of spectral remote sensing for agronomic decisions. Agron. J. 2008, 100, S117–S131. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Peng, Y.; Arkebauer, T.J.; Schepers, J. Relationships between gross primary production, green LAI, and canopy chlorophyll content in maize: Implications for remote sensing of primary production. Remote Sens. Environ. 2014, 144, 65–72. [Google Scholar] [CrossRef]
- Frolking, S.; Qiu, J.; Boles, S.; Xiao, X.; Liu, J.; Zhuang, Y.; Li, C.; Qin, X. Combining remote sensing and ground census data to develop new maps of the distribution of rice agriculture in China. Glob. Biogeochem. Cycle 2002, 16. [Google Scholar] [CrossRef]
- Xiao, X.; Boles, S.; Liu, J.; Zhuang, D.; Frolking, S.; Li, C.; Salas, W.; Moore, B., III. Mapping paddy rice agriculture in southern China using multi-temporal MODIS images. Remote Sens. Environ. 2005, 95, 480–492. [Google Scholar] [CrossRef]
- Kuenzer, C.; Knauer, K. Remote sensing of rice crop areas. Int. J. Remote Sens. 2013, 34, 2101–2139. [Google Scholar] [CrossRef]
- Waldhoff, G.; Curdt, C.; Hoffmeister, D.; Bareth, G. Analysis of multitemporal and multisensor remote sensing data for crop rotation mapping. In Proceedings of the 2012 International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Melbourne, Australia, 25 August–1 September 2012; pp. 177–182.
- Rozenstein, O.; Karnieli, A. Comparison of methods for land-use classification incorporating remote sensing and GIS inputs. Appl. Geogr. 2011, 31, 533–544. [Google Scholar] [CrossRef]
- Chang, K.; Shen, Y.; Lo, J. Predicting rice yield using canopy reflectance measured at booting stage. Agron. J. 2005, 97, 872–878. [Google Scholar] [CrossRef]
- Wang, Y.; Chang, K.; Chen, R.; Lo, J.; Shen, Y. Large-area rice yield forecasting using satellite imageries. Int. J. Appl. Earth Obs. 2010, 12, 27–35. [Google Scholar] [CrossRef]
- Van Niel, T.G.; McVicar, T.R. Current and potential uses of optical remote sensing in rice-based irrigation systems: A review. Crop Pasture Sci. 2004, 55, 155–185. [Google Scholar] [CrossRef]
- Duggin, M.J.; Piwinski, D. Recorded radiance indices for vegetation monitoring using NOAA AVHRR data; atmospheric and other effects in multitemporal data sets. Appl. Opt. 1984, 23, 2620–2623. [Google Scholar] [CrossRef] [PubMed]
- McCloy, K.R.; Smith, F.R.; Robinson, M.R. Monitoring rice areas using LANDSAT MSS data. Int. J. Remote Sens. 1987, 8, 741–749. [Google Scholar] [CrossRef]
- Okamoto, K.; Yamakawa, S.; Kawashima, H. Estimation of flood damage to rice production in North Korea in 1995. Int. J. Remote Sens. 1998, 19, 365–371. [Google Scholar] [CrossRef]
- Che, N.; Price, J.C. Survey of radiometric calibration results and methods for visible and near infrared channels of NOAA-7, -9, and -11 AVHRRs. Remote Sens. Environ. 1992, 41, 19–27. [Google Scholar] [CrossRef]
- Fang, H.; Wu, B.; Liu, H.; Huang, X. Using NOAA AVHRR and Landsat TM to estimate rice area year-by-year. Int. J. Remote Sens. 1998, 19, 521–525. [Google Scholar] [CrossRef]
- Kim, H.O.; Yeom, J.M. Multi-temporal spectral analysis of rice fields in South Korea using MODIS and RapidEye satellite imagery. J. Astron. Space Sci. 2012, 29, 407–411. [Google Scholar] [CrossRef]
- Son, N.T.; Chen, C.F.; Chen, C.R.; Chang, L.Y.; Duc, H.C.; Nguyen, L.D. Prediction of rice crop yield using MODIS EVI-LAI data in the Mekong Delta, Vietnam. Int. J. Remote Sens. 2013, 34, 7275–7292. [Google Scholar] [CrossRef]
- Huang, J.; Wang, X.; Li, X.; Tian, H.; Pan, Z. Remotely sensed rice yield prediction using multi-temporal NDVI data derived from NOAA’s-AVHRR. PLoS One 2013, 8, e70816. [Google Scholar] [CrossRef] [PubMed]
- Peng, D.; Huang, J.; Li, C.; Liu, L.; Huang, W.; Wang, F.; Yang, X. Modelling paddy rice yield using MODIS data. Agric. For. Meteorol. 2014, 184, 107–116. [Google Scholar] [CrossRef]
- Chang, C.H.; Liu, C.C.; Tseng, P.Y. Emissions inventory for rice straw open burning in Taiwan based on burned area classification and mapping using FORMOSAT-2 satellite imagery. Aerosol Air Qual. Res. 2013, 13, 474–487. [Google Scholar]
- Kim, H.O.; Yeom, J.M. Effect of red-edge and texture features for object-based paddy rice crop classification using RapidEye multi-spectral satellite image data. Int. J. Remote Sens. 2014, 35, 7046–7068. [Google Scholar]
- MacDonald, R.B.; Hall, F.G. Global crop forecasting. Science 1980, 208, 670–679. [Google Scholar] [CrossRef] [PubMed]
- Xiao, X.; Boles, S.; Frolking, S.; Li, C.; Babu, J.Y.; Salas, W.; Moore, B. Mapping paddy rice agriculture in South and Southeast Asia using multi-temporal MODIS images. Remote Sens. Environ. 2006, 100, 95–113. [Google Scholar] [CrossRef]
- Duveiller, G.; López-Lozano, R.; Seguini, L.; Bojanowski, J.S.; Baruth, B. Optical remote sensing requirements for operational crop monitoring and yield forecasting in Europe. In Proceedings of 2012 nel-3 OLCI/SLSTR and MERIS/(A) ATSR Workshop, Frascati, Italy, 15–19 October 2012.
- Xie, Y.; Sha, Z.; Yu, M. Remote sensing imagery in vegetation mapping: A review. J. Plant Ecol. 2008, 1, 9–23. [Google Scholar] [CrossRef]
- Mulla, D.J. Twenty five years of remote sensing in precision agriculture: Key advances and remaining knowledge gaps. Biosyst. Eng. 2013, 114, 358–371. [Google Scholar] [CrossRef]
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef]
- Bannari, A.; Morin, D.; Bonn, F.; Huett, A.R. A review of vegetation indices. Remote Sens. Rev. 1995, 13, 95–120. [Google Scholar] [CrossRef]
- Jackson, R.D.; Slater, P.N.; Pinter, P.J., Jr. Discrimination of growth and water stress in wheat by various vegetation indices through clear and turbid atmospheres. Remote Sens. Environ. 1983, 13, 187–208. [Google Scholar] [CrossRef]
- Hansen, P.M.; Schjoerring, J.K. Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized difference vegetation indices and partial least squares regression. Remote Sens. Environ. 2003, 86, 542–553. [Google Scholar] [CrossRef]
- Yao, Y.; Miao, Y.; Huang, S.; Gao, L.; Ma, X.; Zhao, G.; Jiang, R.; Chen, X.; Zhang, F.; Yu, K.; et al. Active canopy sensor-based precision N management strategy for rice. Agron. Sustain. Dev. 2012, 32, 925–933. [Google Scholar] [CrossRef]
- Yu, K.; Li, F.; Gnyp, M.L.; Miao, Y.; Bareth, G.; Chen, X. Remotely detecting canopy nitrogen concentration and uptake of paddy rice in the Northeast China Plain. ISPRS J. Photogramm. Remote Sens. 2013, 78, 102–115. [Google Scholar] [CrossRef]
- Hall, F.G.; Huemmrich, K.F.; Goward, S.N. Use of narrow-band spectra to estimate the fraction of absorbed photosynthetically active radiation. Remote Sens. Environ. 1990, 32, 47–54. [Google Scholar] [CrossRef]
- Baret, F.; Hagolle, O.; Geiger, B.; Bicheron, P.; Miras, B.; Huc, M.; Berthelot, B.; Niño, F.; Weiss, M.; Samain, O.; et al. LAI, fAPAR and fCover CYCLOPES global products derived from VEGETATION: Part 1: Principles of the algorithm. Remote Sens. Environ. 2007, 110, 275–286. [Google Scholar] [CrossRef] [Green Version]
- Bouman, B.A.M. Linking physical remote sensing models with crop growth simulation models, applied for sugar beet. Int. J. Remote Sens. 1992, 13, 2565–2581. [Google Scholar] [CrossRef]
- Prasad, A.K.; Chai, L.; Singh, R.P.; Kafatos, M. Crop yield estimation model for Iowa using remote sensing and surface parameters. Int. J. Appl. Earth Obs. 2006, 8, 26–33. [Google Scholar] [CrossRef]
- Bhatti, A.U.; Mulla, D.J.; Frazier, B.E. Estimation of soil properties and wheat yields on complex eroded hills using geostatistics and thematic mapper images. Remote Sens. Environ. 1991, 37, 181–191. [Google Scholar] [CrossRef]
- Zhang, N.; Wang, M.; Wang, N. Precision agriculture—A worldwide overview. Comput. Electron. Agr. 2002, 36, 113–132. [Google Scholar] [CrossRef]
- Thenkabail, P.S. Biophysical and yield information for precision farming from near-real-time and historical Landsat TM images. Int. J. Remote Sens. 2003, 24, 2879–2904. [Google Scholar] [CrossRef]
- Donlon, C.; Berruti, B.; Buongiorno, A.; Ferreira, M.H.; Féménias, P.; Frerick, J.; Goryl, P.; Klein, U.; Laur, H.; Mavrocordatos, C.; et al. The global monitoring for environment and security (GMES) sentinel-3 mission. Remote Sens. Environ. 2012, 120, 37–57. [Google Scholar] [CrossRef]
- Duveiller, G.; Baret, F.; Defourny, P. Remotely sensed green area index for winter wheat crop monitoring: 10-Year assessment at regional scale over a fragmented landscape. Agr. For. Meteorol. 2012, 166, 156–168. [Google Scholar] [CrossRef]
- Duveiller, G.; Defourny, P. A conceptual framework to define the spatial resolution requirements for agricultural monitoring using remote sensing. Remote Sens. Environ. 2010, 114, 2637–2650. [Google Scholar] [CrossRef]
- Ouyang, W.; Xu, Y.; Hao, F.; Wang, X.; Chen, S.; Lin, C. Effect of long-term agricultural cultivation and land use conversion on soil nutrient contents in the Sanjiang Plain. Catena 2013, 104, 243–250. [Google Scholar] [CrossRef]
- Dhaliwal, J.S.; Benbasat, I. The use and effects of knowledge-based system explanations: Theoretical foundations and a framework for empirical evaluation. Inf. Syst. Res. 1996, 7, 342–362. [Google Scholar] [CrossRef]
- Saastamoinen, J. Atmospheric correction for the troposphere and stratosphere in radio ranging satellites. In The Use of Artificial Satellites for Geodesy; Henriksen, S.W., Chovitz, B.H., Mancini, A., Eds.; American Geophysical Union: Washington D.C., WA, USA, 1972; pp. 247–251. [Google Scholar]
- Kaufman, Y.J.; Sendra, C. Algorithm for automatic atmospheric corrections to visible and near-IR satellite imagery. Int. J. Remote Sens. 1988, 9, 1357–1381. [Google Scholar] [CrossRef]
- Courault, D.; Seguin, B.; Olioso, A. Review to estimate evapotranspiration from remote sensing data: Some examples from the simplified relationship to the use of mesoscale atmospheric models. In Proceedings of the 2003 Workshop on Remote Sensing of ET for Large Regions, Montpellier, France, 17 September 2003; pp. 1–18.
- Hadjimitsis, D.G.; Papadavid, G.; Agapiou, A.; Themistocleous, K.; Hadjimitsis, M.G.; Retalis, A.; Michaelides, S.; Chrysoulakis, N.; Toulios, L.; Clayton, C.R.I. Atmospheric correction for satellite remotely sensed data intended for agricultural applications: Impact on vegetation indices. Nat. Hazard Earth Syst. 2010, 10, 89–95. [Google Scholar] [CrossRef]
- Dai, X.; Khorram, S. The effects of image misregistration on the accuracy of remotely sensed change detection. IEEE Trans. Geosci. Remote Sens. 1998, 36, 1566–1577. [Google Scholar] [CrossRef]
- Moré, J.; Pons, X. Preliminary considerations about the assessment and visualisation of the quality on geometric corrections of satellite imagery depending on the number of ground control points. In Proceedings of the 7th International Symposium on Spatial Data Quality, Coimbra, Portugal, 12–14 October 2011; pp. 12–14.
- Zhao, Q.; Hütt, C.; Lenz-Wiedemann, V.I.S.; Miao, Y.; Yuan, F.; Zhang, F.; Bareth, G. Georeferencing multi-source geospatial data using multi-temporal TerraSAR-X imagery: A case study in Qixing Farm, northeast China. Photogramm. Fernerkun. 2015. accepted. [Google Scholar]
- Chen, J.; Huang, J.; Hu, J. Mapping rice planting areas in southern China using the China Environment Satellite data. Math. Comput. Model. 2011, 54, 1037–1043. [Google Scholar] [CrossRef]
- Tanaka, A. Studies on characteristics of physiological function of leaf at definite position on stem of rice plant (Part 3). Relation between nitrogen metabolism and physiological function of leaf at definite position. J. Sci. Soil Manure Jpn. 1956, 26, 413–418. [Google Scholar]
- Mae, T.; Ohira, K. The remobilization of nitrogen related to leaf growth and senescence in rice plants (Oryza sativa L.). Plant Cell Physiol. 1981, 22, 1067–1074. [Google Scholar]
- Willmott, C.J. On the validation of models. Phys. Geogr. 1981, 2, 184–194. [Google Scholar]
- Legates, D.R.; McCabe, G.J. Evaluating the use of “goodness-of-fit” measures in hydrologic and hydroclimatic model validation. Water Resour. Res. 1999, 35, 233–241. [Google Scholar] [CrossRef]
- Shrestha, D.P.; Zinck, J.A. Land use classification in mountainous areas: Integration of image processing, digital elevation data and field knowledge (application to Nepal). Int. J. Appl. Earth Obs. 2001, 3, 78–85. [Google Scholar] [CrossRef]
- O’Neill, A.L.; Kupiec, J.A.; Curran, P.J. Biochemical and reflectance variation throughout a Sitka spruce canopy. Remote Sens. Environ. 2002, 80, 134–142. [Google Scholar] [CrossRef]
- Blackburn, G.A. Hyperspectral remote sensing of plant pigments. J. Exp. Bot. 2007, 58, 855–867. [Google Scholar] [CrossRef] [PubMed]
- Filella, I.; Serrano, L.; Serra, J.; Peñuelas, J. Evaluating wheat nitrogen status with canopy reflectance indices and discriminant analysis. Crop Sci. 1995, 35, 1400–1405. [Google Scholar] [CrossRef]
- Moran, J.A.; Mitchell, A.K.; Goodmanson, G.; Stockburger, K.A. Differentiation among effects of nitrogen fertilization treatments on conifer seedlings by foliar reflectance: A comparison of methods. Tree Physiol. 2000, 20, 1113–1120. [Google Scholar] [CrossRef] [PubMed]
- Yu, K.; Leufen, G.; Hunsche, M.; Noga, G.; Chen, X.; Bareth, G. Investigation of leaf diseases and estimation of chlorophyll concentration in seven barley varieties using fluorescence and hyperspectral indices. Remote Sens. 2013, 5, 64–86. [Google Scholar] [CrossRef]
- Chen, X.; Chen, C.; Zhou, L. Measurements and relationship analyses of chlorophyll contents and phenological growing stages in rice. Mod. Agricu. Sci. Technol. 2010, 17, 42–44. [Google Scholar]
- Cao, S.; Lu, W.; Zhai, H.; Sheng, S.; Gong, H.; Yang, T.; Zhang, R. Research on the method to estimating flag leaf photosynthesis function duration at rice seedling stage by relative steady phase of chlorophyll content. Chin. J. Rice Sci. 2001, 15, 309–313. (In Chinese) [Google Scholar]
- Gnyp, M.L.; Miao, Y.; Yuan, F.; Ustin, S.L.; Yu, K.; Yao, Y.; Huang, S.; Bareth, G. Non-destructive estimation of paddy rice aboveground biomass at different growth stages with hyperspectral canopy remote sensing. Field Crop Res. 2014, 155, 42–55. [Google Scholar] [CrossRef]
- Myneni, R.B.; Maggion, S.; Iaquinta, J.; Privette, J.L.; Gobron, N.; Pinty, B.; Kimes, D.S.; Verstraete, M.M.; Williams, D.L. Optical remote sensing of vegetation: Modeling, caveats, and algorithms. Remote Sens. Environ. 1995, 51, 169–188. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Q.; Lenz-Wiedemann, V.I.S.; Yuan, F.; Jiang, R.; Miao, Y.; Zhang, F.; Bareth, G. Investigating Within-Field Variability of Rice from High Resolution Satellite Imagery in Qixing Farm County, Northeast China. ISPRS Int. J. Geo-Inf. 2015, 4, 236-261. https://doi.org/10.3390/ijgi4010236
Zhao Q, Lenz-Wiedemann VIS, Yuan F, Jiang R, Miao Y, Zhang F, Bareth G. Investigating Within-Field Variability of Rice from High Resolution Satellite Imagery in Qixing Farm County, Northeast China. ISPRS International Journal of Geo-Information. 2015; 4(1):236-261. https://doi.org/10.3390/ijgi4010236
Chicago/Turabian StyleZhao, Quanying, Victoria I.S. Lenz-Wiedemann, Fei Yuan, Rongfeng Jiang, Yuxin Miao, Fusuo Zhang, and Georg Bareth. 2015. "Investigating Within-Field Variability of Rice from High Resolution Satellite Imagery in Qixing Farm County, Northeast China" ISPRS International Journal of Geo-Information 4, no. 1: 236-261. https://doi.org/10.3390/ijgi4010236
APA StyleZhao, Q., Lenz-Wiedemann, V. I. S., Yuan, F., Jiang, R., Miao, Y., Zhang, F., & Bareth, G. (2015). Investigating Within-Field Variability of Rice from High Resolution Satellite Imagery in Qixing Farm County, Northeast China. ISPRS International Journal of Geo-Information, 4(1), 236-261. https://doi.org/10.3390/ijgi4010236