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Abstract:



Route planning is a key technology for an unmanned aerial vehicle (UAV) to fly reliably and safely in the presence of a threat environment. Existing route planning methods are mainly based on the simulation scene, whereas approaches based on the virtual globe platform have rarely been reported. In this paper, a new planning space for the virtual globe and the planner is proposed and a common threat model is constructed for threats including a no-fly zone, hazardous weather, radar coverage area, missile killing zone and dynamic threats. Additionally, an improved ant colony optimization (ACO) algorithm is developed to enhance route planning efficiency and terrain masking ability. Our route planning methods are optimized on the virtual globe platform for practicability. A route planning system and six types of planners were developed and implemented on the virtual globe platform. Finally, our evaluation results demonstrate that our optimum planner has better performance in terms of fuel consumption, terrain masking, and risk avoidance. Experiments also demonstrate that the method and system described in this paper can be used to perform global route planning and mission operations.
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1. Introduction


A UAV is an aircraft without a pilot on board that can be remotely controlled or flown automatically based on a pre-planned route or automation system [1]. With the development of the aviation electronics industry, UAVs play increasingly important roles in military and civil fields [2,3].



Generally, route planning for a UAV is an optimization problem that aims to generate a feasible route based on the tasks. The problem is an NP-hard problem [3].



For different types of tasks, scholars have selected different route planning methods. The vector field method is used in static or dynamic target tracking [4,5]. The rapidly-exploring random-tree (RRT) method has been applied to the path planning problem of indoor robots and mini UAVs [6,7,8]. Genetic algorithms (GA) are used to solve the travelling salesman problems related to UAVs, such as maximum information collection [9]. The evolutionary algorithm (EA) is used for multi-constraint route planning in a simulation scenario [10,11,12]. The particle swarm optimizer (PSO) is used to solve the path planning problem of UAVs on the sea [13]. Improved ACO [14,15], A* and Theta* [16] algorithms are used for route planning in three-dimensional environments. To improve the investigation efficiency of unmanned bombs, scholars have proposed the Quantum Wind Driven [17] algorithm.



Scholars have proposed a variety of optimization and improvement methods for the route planning problem under different conditions and have solved these problems relatively well. For different scenarios, each algorithm also has its own limitations: the ability of RRT to avoid obstacles is unsatisfactory; the processing time of the A* algorithm will increase explosively as the planning scene enlarges; and the computational complexity of GA and EA algorithms is high [18]. Scholars tend to optimize the selected algorithm according to their own simulation scenarios but the results of the experiments seem to not be very objective. For example, the results obtained by PSO were much better than GA in [13], whereas the results of PSO were inferior to GA in [18].



The virtual globe platform has the great advantages of low cost and ease-of-use in data collection, browsing, visualization and other aspects [19]. For the path planning problem for a high-endurance UAV, the virtual globe platform is a good choice to realize the modelling and visualization of a very large environment. There are many common virtual globe platforms such as Skyline, Google Earth, Virtual Earth, World Wind, and ArcGlobe.



Moreover, UAVs work in dangerous enemy territory in military penetration tasks. Avoiding threats from an enemy is a key factor in the success of tasks. Route planning for penetration finds a feasible route between the start point and end point in the presence of a threat environment. The defence of medium and high altitude areas in air defence systems is improving because of the development of the Radar Netting Technique [20]. There is no opportunity to penetrate without stealth aircraft. However, there are many radar blind zones in low-altitude areas because of topography and the curvature of the earth, and low-level flight becomes an important way to penetrate. On the virtual globe platform, threat modelling and route planning are more real and effective and mission operations can be performed [21]. Using the interactive capabilities of the virtual globe platform, operations such as parameter adjustment, route editing and storage, and flight simulation can be realized and successfully applied to industrial fields.



On the virtual globe platform, the method of model construction, planning space partitions and the realization of the algorithm will be different from the previous studies in the following ways:

	
When modelling the radar threat areas, the maximum coverage range of early-warning radar can be up to hundreds, even thousands of kilometres, with larger signal coverage in high-altitude areas than at low-altitudes. By using the virtual globe platform, we can construct a more reasonable radar threat model according to the radar equation and fully consider the influences of earth curvature and terrain masking.



	
The scale of the terrain data is large on the virtual globe platform. In view of this problem, this paper proposes a multi-granularity planning space to achieve a balance between accuracy and efficiency.



	
In low-altitude penetration, a good valley-following ability can effectively avoid a radar threat, including unknown radar threats. We propose a strengthened local valley-following algorithm for route planning.



	
The planning space needs to be transformed between Cartesian systems and Geodetic systems. Because of the overhead problem generated by large-scale data and space transformation, we optimize some of the algorithm’s implementation details.



	
Because there are certain errors in a UAV's navigation system and control system, this paper refers to industry standards, such as the performance based navigation (PBN) standard [22], to optimize and improve the robustness of the route to avoid collisions because of flight errors.








Section 2 describes the route planning problem and evaluation indexes in the risk environment. In Section 3 we propose a multi-granularity planning space on the virtual globe platform for route planning and consider multiple types of threats. In Section 4, we propose an improved ACO algorithm with valley-following and threat avoidance for route planning and some route optimization algorithms to make the route more effective and robust. Section 5 shows the practicability of the proposed methods through experiments. Section 6 presents conclusions and proposes future research work.




2. Route Planning Problem Descriptions


The location of a point [image: there is no content] in geodetic space [image: there is no content] is described by longitude [image: there is no content], latitude [image: there is no content], and altitude [image: there is no content]. A UAV flies along the designated route point sequence [image: there is no content], where [image: there is no content] is the start point and [image: there is no content] is the end point. The goal of penetration routing is to obtain a feasible route with minimal fuel consumption, maximum terrain masking, and minimum risk.



Both the navigation systems and the control systems of UAVs contain certain deviations. The international civil aviation organization proposed the concept of the required navigation performance (RNP). RNP [22] describes the precision that can be attained during at least 95% of the flight time; the precision unit is the nautical mile (nmi). In Figure 1, the segment width of the route is defined as 4 × RNP. The planned route may not satisfy the performance constraints of UAVs.


Figure 1. Plan view for RNP segment width.



[image: Ijgi 05 00184 g001]






We evaluate the planning route on four dimensions: minimal fuel consumption, maximum terrain masking, minimum risk and performance safety. Additionally, we evaluate the efficiency of the planner:

	
[image: there is no content]: Route length. Connect the points in [image: there is no content] successively and obtain a series of line segments, then calculate the total length of the segments to obtain the route length. To evaluate the result, we introduce the theoretically shortest length of the route, [image: there is no content]. Then, we connect the [image: there is no content] and [image: there is no content] of [image: there is no content] to obtain the straight line segment [image: there is no content]. [image: there is no content] is the length of [image: there is no content].



	
[image: there is no content]: Average terrain altitude passed by the route. [image: there is no content] is calculated as follows: Obtain the interpolation points [image: there is no content] with interval [image: there is no content] of [image: there is no content]. We can then obtain points on the terrain [image: there is no content], and [image: there is no content]. To evaluate the result, we introduce a reference [image: there is no content], the average terrain altitude passed by [image: there is no content]. We can understand the terrain masking ability of the planner by contrasting the result with [image: there is no content].



	
[image: there is no content]: Route length that passes through the threat zones.



	
[image: there is no content]: Route length that does not meet the flight performance safety requirements.



	
Processing time.









3. Build the Planning Space


3.1. Virtual Globe Space


For the penetration tasks on the virtual globe, the planning space needs to be converted between Geodetic space [image: there is no content] and Cartesian space [image: there is no content]. [image: there is no content] treats the earth as a reference ellipsoid. [image: there is no content] can be converted into [image: there is no content] as follows:


[image: there is no content]



(1)




where [image: there is no content] represents the radius of curvature of the reference ellipsoid, computed as follows:


[image: there is no content]



(2)




where [image: there is no content] and [image: there is no content] represent the length of the major axis and the minor axis of the reference ellipsoid, respectively.



[image: there is no content] can be converted into [image: there is no content] as follows:


[image: there is no content]



(3)







The reference ellipsoid used by the Global Positioning System and virtual globe platforms is the World Geodetic System of 1984 ellipsoid (WGS-84 ellipsoid) [22].



The lengths of the same longitude interval in different latitudes and the same latitude interval in different longitudes are not fixed in [image: there is no content]. For example, the distance between (90°, 29°, 4000 m) and (91°, 29°, 4000 m) is 97,422.04 m, whereas the distance between (90°, 26°, 4000 m) and (91°, 26°, 4000 m) is 100,114.77 m. In the later sections, the planning space is in [image: there is no content], but the distance measure, interpolation algorithm, equation calculation and other operations are carried out in [image: there is no content].



The terrain is usually described by digital elevation model (DEM) data, whereas terrain texture is described by digital orthophoto map (DOM) data. The data of DEM and DOM can be represented as [image: there is no content], where [image: there is no content] is longitude and [image: there is no content] is latitude. In DEM data, [image: there is no content] is the altitude value of the corresponding position, whereas [image: there is no content] is the pixel value for DOM data, as Figure 2a,b illustrate.


Figure 2. (a) Description of regular grid DEM; (b) DOM data; (c) DEM and DOM data visualization; (d) Virtual globe platform.
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DEM and DOM describe discrete space, whereas the real world belongs to contiguous space. The information of any position can be obtained by using a spatial interpolation method through the adjacent points, and the bicubic interpolation algorithm is described as follows:


[image: there is no content]



(4)







We can use the adjacent 4 × 4 points of point [image: there is no content] in Figure 2a to calculate the coefficients of the interpolation function to determine the altitude value of point [image: there is no content].



In Figure 2c, we can realize the visualization of 3D terrain by superimposing the DOM data on the DEM data. In this study, we used the improved NASA-WorldWind platform; the data source was the SRTM DEM data at 90-m resolution and the Landsat DOM data at 60-m resolution provided publicly by NASA, as shown in Figure 2d.




3.2. Threat Modelling


3.2.1. General Types of Threats


No-fly zones, hazardous weather, high-rise buildings and low-altitude control zones need to be considered when planning routes.



No-fly zones are regions that a UAV cannot fly into. A no-fly zone can be described as the enclosed area defined by the point set [image: there is no content], m > 2, as shown in Figure 3a.


Figure 3. (a) 2D No-fly zone; (b) 3D slowly hazardous weather model; (c) 3D threat model of a 500-m high TV tower described as {(114.655225, 23.269952), (114.658225, 23.269952), (114.658225, 23.272952), (114.655225, 23.272952), 500}.



[image: Ijgi 05 00184 g003]






High buildings, slowly hazardous weather and low-altitude control zones are low-altitude regions that UAVs cannot fly into. Such threats can be described as [image: there is no content], m > 2, where [image: there is no content] is the upper bound. This type of threat is modelled as observed in Figure 3b,c. These threats can be dealt with as terrain data; we transform this type of threat area into terrain before route planning.




3.2.2. Killing Zone of an Air Defense Missile


The killing zone [23,24] is an important guideline for judging the campaign performance of Air Defense Missile Weapon Systems. A killing zone describes an area of space in which a missile can destroy a target at no less than a certain probability once the target enters the area. The mathematical model of a vertical killing zone is shown in Figure 4a. Horizontal lines define the high and low boundaries with heights of [image: there is no content] and [image: there is no content], respectively. [image: there is no content] is the minimum slant range of the far boundary of the killing zone and [image: there is no content] is the maximum slant range. The minimum slant range and the maximum height angle of the near boundary of the killing zone are [image: there is no content] and [image: there is no content], respectively. The near boundary and far boundary are the arcs with [image: there is no content] as the centre. Figure 4b shows the 3D visualization model of the missile killing zone.


Figure 4. (a) Model of a missile killing zone; (b) 3D visualization of a missile killing zone.



[image: Ijgi 05 00184 g004]







3.2.3. Radar Threat Space


Radar plays a very important role in modern air defence systems; it is a key threat to the penetration of UAVs that needs to be avoided by route planning. Affected by the terrain masking and the earth curvature, it is difficult for radar to find a target in low-altitude flight.



The radar threat model should refer to the radar detection probability threshold that a UAV can maximally tolerate. Given the detection probability threshold and radar performance parameters, the maximum range of radar [image: there is no content] can be estimated by the radar equation [25]. Assuming that the radar is deployed at [image: there is no content] in [image: there is no content], we transform it into [image: there is no content] as [image: there is no content], with the direction of pitch angle [image: there is no content] and azimuth angle [image: there is no content], and we can describe [image: there is no content] on the boundary of the radar coverage as:


[image: there is no content]



(5)




where [image: there is no content] describes the beam pattern of the radar antenna in the direction of the pitch angle.



We use the Gaussian function to approximate the beam pattern as:


[image: there is no content]



(6)




where [image: there is no content] is the signal beam width.



The radar threat curved surface can thus be obtained. The probability of radar detection on this surface is constant. Outside the curved surface, the radar detection probability is less than the probability threshold and the UAV is regarded as safe. Within the curved surface, the radar detection probability is higher than the probability threshold and the UAV is not safe.



In low-altitude areas, radar signals may be masked by terrain. In Figure 5a, radar beams are partly masked by terrain and the shaded area represents the area that signals can reach. The visualization of the radar beam can be constructed as follows:

	
Calculate the detection range of the radar with different sampled pitch angles by using Equations (5) and (6); this produces a series of sampling points such as [image: there is no content], as shown in Figure 5a.



	
Connect the radar centre [image: there is no content] to the sampling point and obtain a series of sampling points on this straight line by sampling with short intervals. Then, we transform these sampling points to [image: there is no content] and compare the altitudes of the sampling points with the terrain. Once the sampling point is below the terrain, we can determine that the subsequent region cannot be reached by the radar signal. In Figure 5a, according to the terrain visibility analysis of [image: there is no content], the boundary point [image: there is no content] is moved to [image: there is no content].







Figure 5. (a) Radar signal propagation; (b) Earth curvature's influence.
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If we calculate the radar coverage directly, the earth curvature will introduce considerable error. As shown in Figure 5b, [image: there is no content] is the earth centre, [image: there is no content] is the horizontal plane, the circular arc [image: there is no content] is the geoid, and point [image: there is no content] is in the same horizontal plane as point [image: there is no content]. When [image: there is no content] is very near to [image: there is no content], the altitudes of [image: there is no content] and [image: there is no content] are approximately the same and may be ignored. However, when [image: there is no content] is far from [image: there is no content], the elevation difference between [image: there is no content] and [image: there is no content] due to the influence of the earth curvature, [image: there is no content] in Figure 5b, cannot be ignored. [image: there is no content] represents the length of [image: there is no content], [image: there is no content] is the average curvature radius of the earth, and [image: there is no content] can be calculated by:


[image: there is no content]



(7)







When the distance between two points is 100 km, the elevation difference is approximately 785 m because of the influence of the curvature. First, we need to convert from [image: there is no content] to [image: there is no content] when calculating the boundary of the radar coverage. Then, we can calculate the radar coverage and perform visibility analysis. Finally, the results are converted back to [image: there is no content] and the errors caused by the curvature of the earth have been eliminated.



Figure 6 shows the 3D visualization of the radar network coverage under the influence of the earth’s curvature.


Figure 6. Visualization of the radar networking coverage on the virtual globe.



[image: Ijgi 05 00184 g006]








3.3. Dynamic Threat


The models presented in Section 3.2 can simulate most of the threats in normal circumstances. Sometimes the threat movement needs to be considered, for example, the forecast of hazardous weather such as a typhoon (hurricane) and other predictable dynamic threat areas. At this time, we need to introduce the dynamic threat model. Based on the general threat model, a time stamp [image: there is no content] is introduced, the property of a dynamic threat at [image: there is no content] is described by [image: there is no content]. A full path dynamic threat can be described by [image: there is no content], where the threat begins at [image: there is no content] and disappears at [image: there is no content]. As shown in Figure 7a,b, if we want to know the state of a threat at any time [image: there is no content], we can calculate it as follows:

	
Search the interval [[image: there is no content] that satisfies [image: there is no content] to find the [image: there is no content] and [image: there is no content]. If not found, then there is no threat area at this time.



	
Given the threat [image: there is no content] shown in Figure 7b, use linear interpolation for [image: there is no content] and [image: there is no content] to obtain [image: there is no content]. As shown in Figure 7b, we can use linear interpolation for the four vertices of [image: there is no content] and [image: there is no content] to obtain [image: there is no content].







Figure 7. Dynamic threat model. (a) There is a dynamic threat described as {{(99.94497, 27.60066), (99.859, 27.38197), (99.68604, 27.47941), (99.77718, 27.68262), 3000, 0 s}, {(99.54497, 27.40066), (99.459, 27.18197), (99.28604, 27.27941), (99.37718, 27.48262), (99.54497, 27.40066), 3000, 3600 s}, {(99.34497, 27.00066), (99.259, 26.78197), (99.08604, 26.87941), (99.17718, 27.08262), (99.34497, 27.00066), 3000, 7200 s}}; (b) Perform linear interpolation for the dynamic threat to obtain the threat status at any time.



[image: Ijgi 05 00184 g007]







3.4. Build the Grid Planning Space


Route planning on the virtual globe platform in this study is based on a graph search algorithm. We define a planning graph composed of nodes and edges. The graph needs to effectively express threats and terrain features.



In low-altitude penetration missions, threat models need to be marked. However, real-time sampling of a threat body at any point in the planning space will dramatically increase the delay time of the planner. This paper introduces a type of grid space with location information, elevation information, and other attribute information.



In Figure 8, the space is divided into a two-dimensional grid by equal intervals of latitude and longitude; each node in the grid has eight extension nodes. However, the actual distance represented by the equal intervals of latitude and longitude is different. In the virtual globe platform, the planning space is actually an irregular eight-connected grid space.


Figure 8. Space division.



[image: Ijgi 05 00184 g008]






A UAV flies at the safe height [image: there is no content] by default in this space. Each node stores the information including [image: there is no content], where [image: there is no content] and [image: there is no content] represent the longitude and latitude of the node, respectively, [image: there is no content] represents the terrain altitude superposed by the high buildings and low-altitude control zones, and [image: there is no content] is the lowest bound of the radar coverage area or the missile killing zone in this area. If the node [image: there is no content] that needs to be extended is higher than [image: there is no content], the node will be eliminated. As the figure shows, nodes [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content] are in a radar coverage area. However, because of the terrain masking effect, points [image: there is no content] and [image: there is no content] can be used as planning candidate nodes with higher [image: there is no content], whereas nodes [image: there is no content] and [image: there is no content] with low [image: there is no content] will be directly eliminated. As the figure shows, node [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content] are in a missile threat area and will be eliminated because of their low [image: there is no content]. If the current point is located in the no-fly zone, [image: there is no content] is set to 0 and the point will be eliminated by the planner. Because of the planning space generated beforehand, the planner can quickly eliminate some infeasible nodes.



3.4.1. Threat Area Expansion


Considering the navigation error and the route optimization error, as shown in Figure 9a, the planned route in grid space may intersect the threatened area. We expand the boundary of the threat models when mapped to the planning space. The low boundary of the radar area and the missile killing zone are also reduced. Figure 9b shows that the route is safe after expanding the threat area.


Figure 9. (a) Route planning with threat; (b) Route planning with threat area expansion.
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3.4.2. Multi-Granularity Planning Space


The finer granularity of the grid space is because the more nodes in planning space, the more precise the planning results will be, although the planning will take more time. To obtain a balance between performance and precision for different application scenarios and navigation performance parameters of a UAV, different grid sizes need to be used.



We need resampling to construct different sizes of the grid using DEM data. Common resampling methods are Box Splines [26], interpolation [27] and the discrete wavelet transform [28]. This paper uses the bicubic interpolation method of Equation (4) to resample. We generate grid space with multi-granularity beforehand and choose different grid sizes according to the requirements of different tasks.






4. Route Planning Method


We propose an improved ACO-based planner that considers the local terrain environment to obtain the initial route. An ACO algorithm simulates the foraging process of ants in principle, and its developer used it to efficiently solve the Travelling Salesman Problem [29,30]. The pheromone model and the probability model are the core of this algorithm [31]. ACO algorithms have been widely used for pattern classification [32], cloud computing [33], network coding [34], robot path planning [35] and in other fields. We propose some optimizations to improve the ACO algorithm for the study of the virtual globe platform and penetration route planning.



4.1. Basic ACO Algorithm [29,30]


The ant colony begins searching for food without being told where the food is. In the process of moving, ants release pheromones into the environment. When there is no pheromone in the environment, the ants perform a random walk, and when the pheromone concentration is high, the ants will move along the pheromone path with a greater probability. If the ant finds food, it will move along its pheromone path to return to its nest. Along the shorter path, the ants make the roundtrip more quickly, which is more likely to attract more ants to walk along this path. The pheromone concentration will thus be further enhanced and eventually the ant colony will walk along the shortest path. The basic ACO algorithm simulates the pathfinding and feedback processes of the ant colony.



4.1.1. Roulette Wheel Selection Model


The ACO algorithm uses a roulette wheel selection model to simulate the walk choice of ants in nature. This model has a larger probability to choose adjacent nodes with higher pheromone concentration; it allows ants to make mistakes that have a small probability and retain the chance to find a better path. In the model, the ant colony has [image: there is no content] ants. The transfer probability [image: there is no content] of an ant [image: there is no content] moving from node [image: there is no content] to an adjacent node [image: there is no content] in the [image: there is no content] round of iteration is expressed as:


[image: there is no content]



(8)




where [image: there is no content] is the residual pheromone of the edge [image: there is no content]. [image: there is no content] is the heuristic function [image: there is no content] node [image: there is no content] to node [image: there is no content]; when solving the TSP, [image: there is no content]. [image: there is no content] reflects the cost of the walk from node [image: there is no content] to node [image: there is no content]. [image: there is no content] and [image: there is no content] are the weights of the pheromone and the heuristic function, respectively. Adjacent nodes [image: there is no content] can be chosen by the ant [image: there is no content] in node [image: there is no content]. According to the planning space defined above, each node has eight expanding nodes.




4.1.2. Pheromone Updating Model


The pheromone updating model provides a feedback mechanism in the ACO algorithm. After all the ants have completed an iteration round, pheromones will be left on the path traversed by the ants and the pheromone concentration is updated as follows:


[image: there is no content]



(9)




where [image: there is no content] is the pheromone retention coefficient [image: there is no content]. [image: there is no content] represents the pheromones left at the edge of [image: there is no content] by the ant [image: there is no content] at the iteration of round [image: there is no content] and is calculated as follows:


[image: there is no content]



(10)




where [image: there is no content] is the set of edges traversed by ant [image: there is no content] is the total cost of the edges.





4.2. Parameter Optimization


In the basic ACO algorithm, the ants do not know the target location. Our application scenario knows the location of the target and we can thus introduce a heuristic function to guide the ants to accelerate the iterative process of the algorithm. In the pheromone feedback mechanism of the basic ACO algorithm, the pheromone left by the less successful ants may interfere with a better result, which easily causes the algorithm to fall into a local optimum. To solve the UAV problem described in this paper, we improved the heuristic cost function, pheromone update mechanisms, algorithm efficiency and other aspects of the algorithm. Additionally, to avoid the ants returning, we set up tabu lists to mark the nodes that the ants have traversed; the expanding nodes located in the threat area or in the tabu lists are excluded.



4.2.1. Cost Function


In view of the planning space built in Chapter 3, we introduce the cost function:


[image: there is no content]



(11)




where [image: there is no content] is the cost of the edge [image: there is no content], [image: there is no content] is the Euclidean length of the edge [image: there is no content], which approximately reflects the fuel consumption cost of the UAV, and [image: there is no content] is the average terrain elevation of node [image: there is no content] and [image: there is no content], which is [image: there is no content] and reflects the altitude of the route. Because the units of the fuel consumption cost and height cost are not of the same order of magnitude, they are normalized. [image: there is no content] is the largest Euclidean distance of the two adjacent nodes in the grid. Because planning space is irregular, we set [image: there is no content] when the grid width is determined. [image: there is no content] and [image: there is no content] are the highest and lowest elevation of the planning space, respectively. [image: there is no content] is the weight, which determines the valley-following performance of the planner and enables the UAV to fly as low as possible. Flying at low-altitude can improve the survival rate of the UAV if the deployment information of the enemy radar is unknown.




4.2.2. Heuristic Function and Valley-Following


In the basic ACO algorithm, the ants have difficulty reaching the target successfully because the [image: there is no content] can only reflect the cost of node [image: there is no content] to [image: there is no content], and thus the direction to the end node is unknown. In this study, a heuristic cost function is introduced that can promote the ant to move towards the target:


[image: there is no content]



(12)




where [image: there is no content] is the distance between node [image: there is no content] and the target point and [image: there is no content] is the distance between node [image: there is no content] and the end point. If [image: there is no content], the ants are moving farther and farther away from the target and will be assigned a smaller probability to select this node.



Equation (12) can promote the ants to walk to the destination node; however, the ants cannot use the local valley terrain information to achieve valley-following. When we analysed the terrain data, we found that the valley region was continuous, and the enhanced local valley-following algorithm is proposed accordingly. The eight adjacent nodes of the current point [image: there is no content] are [image: there is no content], and the implementation method is as follows:

	
Calculate the average terrain altitude of [image: there is no content] points.



	
Compare the average altitude with the altitude of point [image: there is no content]; if greater than the threshold [image: there is no content], the UAV at point [image: there is no content] is located in the mountainous area.



	
If the UAV is located in the mountainous region, the adjacent [image: there is no content] points are sorted according to their altitudes, and the [image: there is no content] points with highest elevation are set to [image: there is no content].



	
If the UAV is located in the non-mountainous region, all the neighbouring nodes are reachable.








After this treatment, [image: there is no content] can promote movement of the ants to the target point and make full use of local terrain information.




4.2.3. Pheromone Update Mechanisms


The updating mechanism of the basic ACO algorithm makes it easy for premature results to occur. The pheromone update strategy we use is as follows:


[image: there is no content]



(13)




where [image: there is no content] is the pheromone increment of global optimal ant:


[image: there is no content]



(14)




where [image: there is no content] is the set of edges traversed by the global optimal ant. [image: there is no content] was calculated according to Equation (11) and is the cost of the global optimal route. To ensure that the nodes that the global optimal ant did not walk can be reached with a certain probability and to prevent premature results because of too much pheromone on the global optimal route, we limit the pheromone concentration to [image: there is no content].


[image: there is no content]



(15)




where [image: there is no content] is the estimated node number of the global optimal route.




4.2.4. Algorithm Efficiency Improvement


Because of the introduction of the virtual globe platform, every distance calculation needs to transform between two coordinate systems. To reduce the time cost of the repeated distance computation of the ACO, we calculate the distance between the adjacent nodes in advance. This paper introduces a three-dimensional array of off-line storage; the third dimension of the array is used to store the distance from the current node [image: there is no content] to the eight adjacent nodes. Additionally, a two-dimensional array is used to store the distance between [image: there is no content] and the end node.



In the ACO algorithm, the worst performing ant may run a very biased path with a relatively small probability, thus affecting the overall efficiency of the algorithm. In this paper, the maximum number of search steps is [image: there is no content]; when the search steps of ants exceed the maximum number, the result is discarded.





4.3. Dynamic Threat Avoidance


When considering dynamic threats, we need to introduce a dynamic threat avoidance algorithm. To avoid the dynamic threat, the time [image: there is no content] of the ant at any node should be known. The ants carry out the following calculation after walking each step to save the current time.



Given a UAV flight speed of [image: there is no content], the route point set that the ant walked is [image: there is no content]; when k = 1, the UAV start time is [image: there is no content]. If we know the time [image: there is no content] of the ant at node k − 1, when the ant walks to route point k we look up the distance of [image: there is no content], named [image: there is no content], and the current time [image: there is no content]. The time of the ant at any node can thus be determined.



The ants excluded the expanding nodes by the following steps:

	
When the ant [image: there is no content] at node [image: there is no content] selects the eight expanding nodes, the nodes in the static threat and the ant’s tabu list are first excluded and we then can obtain the remaining expanding nodes [image: there is no content].



	
By using the method mentioned above, we calculate the time the ant arrives at every expanding node [image: there is no content], named [image: there is no content].



	
We use the method mentioned in Section 3.3 to implement linear interpolation for every dynamic threat in the dynamic threat set and obtain the threat areas at [image: there is no content].



	
If the node j is located in any threat area, we exclude this node.








The dynamic threat avoidance algorithm will consume many computing resources; therefore, we compile two route planning versions during use. When there is no dynamic threat in the planning scenario, the planning algorithm is used, named MACO, and when we need to consider the dynamic threat, we introduce the dynamic threat avoidance algorithm and name the planning algorithm MACOD.




4.4. Route Optimization


The route planned by the ACO algorithms above is composed of a series of broken line segments. To determine the feasible route, we need to optimize the route by a series of operations.



4.4.1. Route Compression


To avoid frequent turning of the UAV, it is necessary to compress the waypoints, as shown in Figure 10. When the broken line is compressed, it will be shorter than the original path planned by the grid search algorithm. By compressing the route, errors are introduced; however, the route is optimized to a certain extent.


Figure 10. Length changed before and after compression.



[image: Ijgi 05 00184 g010]






When compressing the waypoints, the adjusted route should not cross the threatened area, and the average altitude of the route has not been significantly improved. After deleting waypoint [image: there is no content], the route should meet the criteria: (a) the adjusted route segments [image: there is no content] should not be located in the threatened area and (b) the difference value of average altitude between [image: there is no content] and [image: there is no content]should not exceed the specified threshold [image: there is no content]. The average altitude is calculated as follows: interpolate for the route with interval [image: there is no content] in [image: there is no content], then transform the interval points to [image: there is no content] and obtain the terrain altitude for them.



This paper improves the Douglas-Peucker algorithm [36]; the improved algorithm steps are as follows:

	
First, the algorithm compares the distance between each waypoint and the link line of two endpoints. If the distance is less than the tolerance [image: there is no content], judge the route segment to determine if it meets the conditions (a) and (b) after removing this waypoint. If satisfied, then delete this waypoint and if not, then keep this one.



	
Select the point that has the farthest distance with the link line of two endpoints as the separation waypoint such that the route is divided into two segments, and then perform Step 1 recursively for these two segments until there is no waypoint to be deleted.









4.4.2. Smooth Route Turning


After compression, the route still consists of broken lines. The UAV cannot smoothly complete the turning process. There are some common segment fitting methods, such as the Dubins curve [15] and the Bézier curve [2], and some of the authors do not smooth the broken line [12]. In fact, a Fly-by Fix or Fly-over Fix [22] is usually used in PBN flight procedures for turning. In this study, we use the Fly-by Fix for UAV smooth turning. In Figure 11a, [image: there is no content] is the length of the minimum straight route segment required by the Fly-by Fix; it is determined by the flight speed, turning angle and other parameters and is calculated as follows:


[image: there is no content]



(16)




where [image: there is no content] is the turning radius, [image: there is no content] is the true airspeed, [image: there is no content] is the tailwind, and [image: there is no content] is the slope angle.


Figure 11. (a) Distance of turn anticipation model; (b) Profile view for RNP segment width.
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UAV flight tends to avoid frequent rising or descending. If a UAV needs to fly from the waypoint [image: there is no content] to waypoint [image: there is no content] with different elevations, the UAV should rise/descend with maximum lifting angle to the horizontal line of [image: there is no content] and then maintain level flight to [image: there is no content].




4.4.3. Route Buffer Area


The route buffer area provides a vertical and horizontal buffer for the route for UAV safety. For the shadow regions shown in Figure 11b, the route buffer area regards the route as the centre line, with a width of 4 × RNP, and the height is a rectangular buffer needed to override the obstacle (ROC). We do interpolation for the entire buffer. If the altitude difference between the interpolation point and the terrain is less than ROC, the height of the waypoint needs to be increased so that the route buffer area does not intersect the terrain and the threat zone.






5. Results and Discussion


In this chapter, we first introduce the platform and parameters in Section 5.1. Pilot experiments with the route planner are reported in Section 5.2, Section 5.3 and Section 5.4. In Section 5.5, we compare six types of planners. To compare the different algorithms, we do not introduce dynamic threats and dynamic threat avoidance algorithms from Section 5.1 to Section 5.5. The planner in this paper is currently named MACO-pl. In Section 5.6, we introduce the dynamic threat and evaluate the performance of MACOD-pl.



5.1. Platform and Parameters


On the basis of the above methods, we developed a route planning system based on a virtual globe platform. This system provides interactive functions such as parameter input, route generation, route editing, route evaluation, threat modelling, data management, flight simulation and so on. Some interactive screenshots can be found in Appendix A. All of the route planning experiments that follow were completed on our route planning platform. The hardware environment was as follows: CPU: Core i7-4790; memory: 8GB DDR3 1600 MHz. The flight parameters of the UAV are shown in Table 1.



Table 1. The UAV flight parameters.







	
[image: there is no content] (km/h)

	
[image: there is no content] (km/h)

	
Maximum Lifting Angle

	
[image: there is no content] (m)

	
RNP (nmi)

	
Turning Fix






	
350

	
0

	
20°

	
400

	
0.25

	
Fly-by Fix










The route buffer area width was 2 × RNP = 0.5 nmi, and [image: there is no content] and [image: there is no content] were 5000 and 0, respectively. The algorithm processing time was the average time of the three experiments. The implementation of the algorithm used different programming skills, programming languages and compilers, all of which have large impacts on performance; as a result, the processing time can only be used as a reference.



Much literature research and discussion was reviewed for the selection of parameters in the ACO algorithm [37]. The selection of parameters was based on a large number of experiments. For a specific application, the ACO algorithm requires many experiments to determine better parameters. Through experiments, we found that the processing time of the ACO algorithm was inversely proportional to the evaporation coefficient. With the increase of the evaporation coefficient, the positive feedback effect of pheromones was increased. However, the increase of the evaporation coefficient may cause the algorithm to sink into a local optimum. If the number of ants is too small, the algorithm may terminate prematurely; however, too many ants can increase the time of algorithm iterations. In this study, the parameters of the pheromone were: retention coefficient: [image: there is no content]; weight coefficient: [image: there is no content], [image: there is no content]; ant number: 30; iteration number: 200; node number n between the start point and end point; threshold [image: there is no content]; local uplift threshold in route compression: [image: there is no content]; and interpolation interval: [image: there is no content].



This experiment used five coordinate groups, as shown in Table 2.



Table 2. Experimental coordinate groups.







	
Serial Number

	
Start Point

	
End Point

	
[image: there is no content]

	
[image: there is no content]




	
[image: there is no content]

	
[image: there is no content]

	
(km)

	
(m)






	
1

	
99.96463°

	
99.43347°

	
110.613

	
2339.93




	
26.88202°

	
27.75616°




	
1819.58 m

	
2530.68 m




	
2

	
90.86051°

	
94.46516°

	
350.051

	
4492.95




	
29.30996°

	
29.42218°




	
3573.99 m

	
2951.15 m




	
3

	
121.84255°

	
119.05692°

	
342.512

	
4.49




	
30.98066°

	
32.95193°




	
21.51 m

	
14.17 m




	
4

	
99.44990°

	
118.45611°

	
1909.435

	
1186.37




	
27.81014°

	
25.09058°




	
1723.22 m

	
397.35 m




	
5

	
109.78029°

	
120.41494°

	
2259.830

	
203.71




	
18.85893°

	
37.01404°




	
445.07 m

	
132.31 m










The planning space needs to be generated in advance, and the altitude property of the node can be stored off-line and can be used based on need. In this study, we generated a multi-granularity planning space; the pre-generated longitude range was [90, 125] and the pre-generated latitude range was [15, 45], corresponding to more than 10,000,000 square kilometres of planning area. At a grid width of 0.01°, the number of nodes was 10,500,000, and the grid space required approximately 5 min to be generated in the experimental machine. Before the implementation of the planning algorithm, we could load the corresponding offline block based on the size of the planning space.



Figure 12 shows the planning area of the first experimental coordinate group; the area is surrounded by the points (100.284, 27.622), (100.047, 26.723), (99.093, 26.920), (99.295, 27.812). Points [image: there is no content] and [image: there is no content] were the start and end points, respectively.


Figure 12. Cartographic Map-1.



[image: Ijgi 05 00184 g012]







5.2. Get the Initial Route


The parameter [image: there is no content] balances the valley-following ability and the length of the route. Different experimental results can be obtained by setting different coefficients. The initial altitude of the route is the sum of the node elevation and the ROC value. The experimental results are shown in Figure 13 and Table 3. It can be concluded that when [image: there is no content] was relatively high, the valley-following performance of the algorithm was better. However, a higher [image: there is no content] will increase the difficulty for an ant to reach the end point, which also increases the running time of the algorithm. When [image: there is no content] was 0, the algorithm calculated the shortest path; however, the path was longer than the shortest path in the continuous world because of the impact of irregular topography and the grid space. When [image: there is no content], a feasible solution may not be obtained. Suitable values of [image: there is no content] can be selected according to the application requirements. For the following experiments we chose [image: there is no content].


Figure 13. Experiment results with different height cost coefficients [image: there is no content]. (a) [image: there is no content]; (b) [image: there is no content]; (c) [image: there is no content]; (d) [image: there is no content].
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Table 3. Comparison results for different coefficients.







	
Coefficients ([image: there is no content])

	
Planning Time (s)

	
[image: there is no content] (km)

	
[image: there is no content] (m)

	
Waypoint Number

	
Compared with [image: there is no content]

	
Compared with [image: there is no content]






	
0

	
1.01

	
118.428

	
2488.07

	
86

	
+7.07%

	
+6.33%




	
0.5

	
1.09

	
119.074

	
2351.98

	
87

	
+7.65%

	
+0.51%




	
1

	
1.20

	
119.924

	
2152.15

	
88

	
+8.42%

	
−8.03%




	
1.5

	
1.29

	
119.995

	
2138.84

	
89

	
+8.48%

	
−8.59%




	
2

	
1.37

	
120.617

	
2058.38

	
90

	
+9.04%

	
−12.03%




	
2.5

	
1.55

	
123.085

	
2028.94

	
92

	
+11.28%

	
−13.29%




	
3

	
N/A

	

	

	

	

	










Figure 14 shows the convergence results of the MACO algorithm when [image: there is no content].


Figure 14. Global optimal solutions for different iterations [image: there is no content]. (a) [image: there is no content]; (b) [image: there is no content]; (c) [image: there is no content]; (d) [image: there is no content].
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5.3. Route Optimization


5.3.1. Route Compression


The results of Figure 13c were first optimized by compression. As shown in Figure 15 and Table 4, different results were obtained by setting a different tolerance [image: there is no content].


Figure 15. Comparison results for different tolerances ϵ. (a) ϵ = 0.25 nmi; (b) ϵ = 0.50 nmi; (c) ϵ = 0.75 nmi; (d) ϵ = 1.00 nmi.
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Table 4. Comparison results for different tolerances.







	
[image: there is no content] (nmi)

	
[image: there is no content] (km)

	
[image: there is no content] (m)

	
Waypoint Number

	
Compared with [image: there is no content]

	
Compared with [image: there is no content]






	
0.25

	
120.129

	
2063.33

	
34

	
+8.60%

	
−11.82%




	
0.50

	
117.172

	
2060.58

	
16

	
+5.93%

	
−11.94%




	
0.75

	
116.003

	
2141.67

	
9

	
+4.87%

	
−8.47%




	
1.00

	
115.061

	
2120.13

	
6

	
+4.02%

	
−9.39%










Table 4 shows that the length of the compressed route may have been shorter than the shortest path obtained by the ACO algorithm in Table 3.



There are both advantages and disadvantages in the influence of tolerance, and the tolerance should be selected based on the actual needs.




5.3.2. Smooth Route Turning


As Figure 16 shows, we used Equation (16) and Fly-by Fix to address all UAV turning corners. With respect to the results of Figure 16, the route length after adjustment was 115.495 km with an average terrain height of 2142.80 m. The turning curve is a set of route control points with an interval of 50 m.


Figure 16. Turning, falling and rising corner adjustment. (a) Before turning corner adjustment; (b) After turning corner adjustment.
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5.3.3. Route Buffer Areas


Figure 17a is the result of the introduction of route buffer zones. A route segment that does not meet the flight safety requirements is marked in red. Figure 17b is the result after height adjustment. After the introduction of the route buffer zone, the route length was adjusted to 115.609 km with an average height of 3228.90 m, and the terrain average height was 2142.50 m. Figure 18 is the vertical figure of route and terrain. The Terrain Altitude-curve is the terrain altitude that the planning route passes through, and the 2RNP Terrain Altitude-curve is the highest terrain altitude within the 2RNP range. The initial route was unsafe; we obtained a safe route that could meet the safety requirements after adjusting the elevation.


Figure 17. Route optimization with route buffer areas. (a) Before height adjustment; (b) After height adjustment.
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Figure 18. Vertical flight path.



[image: Ijgi 05 00184 g018]






After route optimization, [image: there is no content] = 0; however, the average height of the route changed and the average terrain height passed through by the UAV also changed. Errors introduced by the optimization process may cause a route to pass through a threat area, as was mentioned in Section 3.4.1, and the threat area should thus be expanded when it is mapped into the planning space. The expansion width of the threat zone should be greater than the navigation performance error (0.5 nmi); the width of the corresponding expansion in the 0.01° grid width planning space was 1 node.





5.4. Multi-Granularity Results


In Section 3.4.2, we introduced a multi-granularity planning space suitable for different applications. Based on different grids, the experimental results are shown in Table 5.



Table 5. Comparison of results with different granularity.







	
Grid Width

	
[image: there is no content] (nmi)

	
Processing Time (s)

	
[image: there is no content] (km)

	
[image: there is no content] (m)

	
Compared with [image: there is no content]

	
Compared with [image: there is no content]






	
0.007°

	
0.75

	
2.15

	
115.117

	
1975.70

	
+4.07%

	
−15.57%




	
0.007°

	
0.50

	
2.15

	
116.899

	
1947.84

	
+5.68%

	
−16.76%




	
0.006°

	
0.75

	
2.73

	
114.404

	
1979.44

	
+3.43%

	
−15.41%




	
0.006°

	
0.50

	
2.73

	
117.060

	
1953.05

	
+5.83%

	
−16.53%




	
0.005°

	
0.75

	
3.21

	
114.086

	
1942.91

	
+3.14%

	
−16.97%




	
0.005°

	
0.50

	
3.21

	
115.603

	
1905.73

	
+4.51%

	
−18.56%




	
0.004°

	
0.75

	
4.24

	
114.403

	
1955.89

	
+3.43%

	
−16.41%




	
0.004°

	
0.50

	
4.24

	
115.523

	
1923.16

	
+4.44%

	
−17.81%




	
0.003°

	
0.75

	
6.18

	
114.498

	
1961.64

	
+3.51%

	
−16.17%




	
0.003°

	
0.50

	
6.18

	
115.300

	
1925.10

	
+4.24%

	
−17.73%




	
0.002°

	
0.75

	
7.37

	
115.033

	
1973.27

	
+4.00%

	
−15.67%




	
0.002°

	
0.50

	
7.37

	
115.711

	
1961.85

	
+4.61%

	
−16.16%










As the grid width was reduced and the planning space became closer to the real world, the route we obtained was more consistent with reality. The algorithm ran slower; however, when the grid width was reduced to a certain value limited by factors such as the input parameters and the experimental terrain data source, the results no longer improved. In the experiment scene shown in Figure 19, a better effect was achieved when grid width was 0.005° and [image: there is no content] was 0.50 nmi. The following experiments are based on these parameters.


Figure 19. (a) The optimal result for grid width = 0.005°, [image: there is no content]i, [image: there is no content], terrain average altitude = 1905.73 m, and average altitude of the route after introducing the route buffer = 2698.37 m; (b,c) are local route details.
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5.5. Comparison Experiments


On our virtual globe platform we also implemented the route planner of the basic ACO pheromone model named ACO-pl and the Rank-based pheromone model named RAS-pl. The number of retaining ants of RAS-pl was 5. We used the local valley-following method described in Section 4.2.2 and the shortest distance from the target as the heuristic function to realize an A* based planner, named A*-pl.



Additionally, we implemented the planners based on PSO and EA, named PSO-pl and EA-pl, respectively. Because these two methods use the dimension-reduction encode method to achieve evolutionary computation, the local valley-following method in Section 4.2.2 was not applicable. This study used the minimal flight altitude method in [12] to update the average altitude of the route. Because of the interval difference between adjacent waypoints, interval interpolation for the route was needed when calculating the average altitude. In the following experiments, the inertial weight coefficient of PSO-pl was linear from 0.9 to 0.4. The iteration count of PSO-pl and EA-pl was 200 and the population size was 30.



When implementing the six types of planners, this study used data structures to store pre-calculated distances between the adjacent nodes and pre-calculated distances between each node and the end node. The adjacent waypoints in MACO-pl, ACO-pl, RAS-pl and A*-pl are adjacent nodes in the grid planning space, as shown in Figure 20a. The algorithm proposed and used in this study achieved computational acceleration. While the adjacent waypoints in PSO-pl and EA-pl are not necessarily adjacent nodes, as shown in Figure 20b, the waypoints P and Q can only move in two directions. At this point, P and Q are not adjacent nodes and thus distances must be calculated. Although the waypoints Q and H are adjacent nodes, we can obtain the distance between Q and H by a table lookup.


Figure 20. The relationship between waypoint and node for different algorithms. (a) MACO, ACO, RAS, A*; (b) PSO, EA.
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The comparison experiments used the same grid size and UAV parameters and were conducted for different coordinate groups. The results are shown in Table 6 and Figure 21.


Figure 21. Planning results of 1–5 coordinate groups. (a) Processing time (s); (b) Comparison with [image: there is no content]; (c) Comparison with [image: there is no content].
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Table 6. Planning results of 1–5 coordinate groups.







	
Serial Number

	
Method

	
Processing Time (s)

	
[image: there is no content] (km)

	
[image: there is no content] (m)

	
Compared with [image: there is no content]

	
Compared with [image: there is no content]






	
1

	
MACO-pl

	
3.21

	
115.603

	
1905.73

	
+4.51%

	
−18.56%




	
1

	
ACO-pl

	
10.07

	
118.831

	
2262.32

	
+7.43%

	
−3.32%




	
1

	
RAS-pl

	
5.66

	
117.267

	
1914.28

	
+6.02%

	
−18.19%




	
1

	
A*-pl

	
2.16

	
116.875

	
1916.29

	
+5.66%

	
−18.10%




	
1

	
PSO-pl

	
9.78

	
118.679

	
2177.42

	
+7.29%

	
−6.94%




	
1

	
EA-pl

	
10.84

	
119.441

	
2190.32

	
+7.98%

	
−6.39%




	
2

	
MACO-pl

	
12.39

	
398.782

	
3471.04

	
+13.92%

	
−22.74%




	
2

	
ACO-pl

	
38.48

	
389.907

	
4074.93

	
+11.39%

	
−9.30%




	
2

	
RAS-pl

	
20.40

	
399.823

	
3623.61

	
+14.22%

	
−19.35%




	
2

	
A*-pl

	
148.14

	
396.934

	
3681.73

	
+13.39%

	
−18.05%




	
2

	
PSO-pl

	
40.02

	
386.679

	
4081.56

	
+10.46%

	
−9.15%




	
2

	
EA-pl

	
41.28

	
385.041

	
4094.39

	
+10.00%

	
−8.87%




	
3

	
MACO-pl

	
10.96

	
362.433

	
2.85

	
+5.82%

	
−36.53%




	
3

	
ACO-pl

	
36.42

	
368.345

	
2.98

	
+7.54%

	
−33.63%




	
3

	
RAS-pl

	
18.67

	
365.184

	
2.93

	
+6.62%

	
−34.74%




	
3

	
A*-pl

	
116.23

	
363.245

	
2.94

	
+6.05%

	
−34.52%




	
3

	
PSO-pl

	
39.57

	
366.176

	
4.01

	
+6.91%

	
−10.69%




	
3

	
EA-pl

	
38.95

	
364.504

	
3.95

	
+6.42%

	
−12.03%




	
4

	
MACO-pl

	
80.12

	
2115.333

	
1043.90

	
+10.78%

	
−12.01%




	
4

	
ACO-pl

	
201.15

	
2135.830

	
1097.04

	
+11.85%

	
−7.53%




	
4

	
RAS-pl

	
149.98

	
2136.106

	
1063.77

	
+11.87%

	
−10.33%




	
4

	
A*-pl

	
N/A

	

	

	

	




	
4

	
PSO-pl

	
278.26

	
2104.857

	
1137.25

	
+10.23%

	
−4.14%




	
4

	
EA-pl

	
299.38

	
2109.891

	
1131.32

	
+10.50%

	
−4.64%




	
5

	
MACO-pl

	
78.84

	
2371.012

	
84.59

	
+4.92%

	
−58.48%




	
5

	
ACO-pl

	
197.43

	
2401.023

	
116.56

	
+6.25%

	
−42.78%




	
5

	
RAS-pl

	
136.01

	
2390.174

	
85.99

	
+5.76%

	
−57.79%




	
5

	
A*-pl

	
N/A

	

	

	

	




	
5

	
PSO-pl

	
301.44

	
2398.322

	
127.76

	
+6.13%

	
−37.28%




	
5

	
EA-pl

	
279.64

	
2388.459

	
134.31

	
+5.69%

	
−34.07%










The pheromone evaporation model of ACO-pl easily resulted in the local route planning optimum. Compared with ACO-pl, RAS-pl used the results of higher ranking ants and had better exploration ability. The A* algorithm is highly efficient in solving a simple shortest path problem; however, the performance of this algorithm was reduced when the local terrain was introduced. A*-pl can have good solutions in small scenes; however, its open table became increasingly large when the scene became larger and more complex. Although we introduced a binary heap to speed up the query, it remained very difficult to find a solution. The valley-following abilities of EA-pl and PSO-pl were not as good; however, the performance for the height and length of these methods was relatively balanced. Moreover, EA-pl and PSO-pl were less efficient than MACO-pl because of frequent interpolation and distance calculation. Compared with the A* algorithm, intelligent planners have advantages in solving large-scale complex problems. We demonstrated by the comparisons that MACO-pl produced a better solution and that the algorithm was more efficient.



Figure 22 shows the results of MACO-pl. In the area of Figure 22a, the planner could track the trend of the terrain in the valley, which reflects better terrain tracking ability. Figure 22b is mostly a plains area, and the trend of the route was relatively straight. Figure 22c,d show the planning results in large-scale planning scenarios. Figure 23 shows some local details of these routes.


Figure 22. Planning results of 2–5 coordinate groups using MACO-pl. (a) Coordinate group 2; (b) Coordinate group 3; (c) Coordinate group 4; (d) Coordinate group 5.
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Figure 23. Local details of the routes of 2–5 coordinate groups. (a) Coordinate group 2; (b) Coordinate group 3; (c) Coordinate group 4; (d) Coordinate group 5.



[image: Ijgi 05 00184 g023]






After marking the radar zone, no-fly zone, and missile threat zone, we did experiments on coordinate groups 1, 2, 4, and 5. Table 7 and Figure 24 show the results of different planners. We demonstrated that the MACO-pl had a better solution. Figure 25 shows local results by MACO-pl of four coordinate groups after plotting threatened areas. The planned routes could make use of the terrain condition to avoid the threatened area.


Figure 24. Planning results under threat environments. (a) Processing time (s); (b) Comparison with [image: there is no content]; (c) Comparison with [image: there is no content].
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Figure 25. Low altitude penetration routes using MACO-pl of different cases. (a) Case 1; (b) Case 2; (c) Case 4; (d) Case 5.
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Table 7. Planning results in threat environments.







	
Serial Number

	
Method

	
Processing Time (s)

	
[image: there is no content] (km)

	
[image: there is no content] (m)

	
[image: there is no content] (km)

	
Compared with [image: there is no content]

	
Compared with [image: there is no content]






	
1

	
MACO-pl

	
5.63

	
136.480

	
2725.64

	
0

	
+23.39%

	
+16.48%




	
1

	
ACO-pl

	
17.02

	
138.737

	
2870.48

	
0

	
+25.43%

	
+22.67%




	
1

	
RAS-pl

	
9.39

	
137.158

	
2757.80

	
0

	
+24.00%

	
+17.86%




	
1

	
A*-pl

	
5.27

	
136.497

	
2789.72

	
0

	
+23.40%

	
+19.22%




	
1

	
PSO-pl

	
29.84

	
138.528

	
2955.42

	
0

	
+25.24%

	
+26.30%




	
1

	
EA-pl

	
31.15

	
137.917

	
2918.81

	
0

	
+24.68%

	
+24.74%




	
2

	
MACO-pl

	
20.85

	
421.922

	
4379.01

	
0

	
+20.53%

	
−2.54%




	
2

	
ACO-pl

	
75.35

	
431.943

	
4687.66

	
0

	
+23.39%

	
+4.33%




	
2

	
RAS-pl

	
37.28

	
423.871

	
4470.49

	
0

	
+21.09%

	
−0.50%




	
2

	
A*-pl

	
326.92

	
422.775

	
4450.11

	
0

	
+20.78%

	
−0.95%




	
2

	
PSO-pl

	
91.49

	
430.563

	
4716.47

	
0

	
+23.00%

	
+4.97%




	
2

	
EA-pl

	
99.02

	
428.719

	
4671.99

	
0

	
+22.47%

	
+3.98%




	
4

	
MACO-pl

	
127.39

	
2250.836

	
1086.37

	
0

	
+17.88%

	
−8.43%




	
4

	
ACO-pl

	
391.50

	
2301.760

	
1143.74

	
0

	
+20.55%

	
−3.59%




	
4

	
RAS-pl

	
271.98

	
2284.541

	
1109.44

	
0

	
+19.64%

	
−6.49%




	
4

	
A*-pl

	
N/A

	

	

	

	

	




	
4

	
PSO-pl

	
401.32

	
2304.283

	
1217.07

	
0

	
+20.68%

	
+2.59%




	
4

	
EA-pl

	
384.56

	
2300.575

	
1203.64

	
0

	
+20.48%

	
+1.46%




	
5

	
MACO-pl

	
84.26

	
2438.912

	
86.22

	
0

	
+7.92%

	
−57.68%




	
5

	
ACO-pl

	
209.92

	
2494.026

	
119.14

	
0

	
+10.36%

	
−41.51%




	
5

	
RAS-pl

	
140.15

	
2477.678

	
86.85

	
0

	
+9.64%

	
−57.37%




	
5

	
A*-pl

	
N/A

	

	

	

	

	




	
5

	
PSO-pl

	
329.48

	
2489.205

	
129.49

	
0

	
+10.15%

	
−36.43%




	
5

	
EA-pl

	
286.77

	
2503.418

	
136.61

	
0

	
+10.78%

	
−32.94%











5.6. Experiments on Dynamic MACO


This section introduces the dynamic threat area discussed in Section 3.3. Based on MACOD-pl, we used coordinate group 1 to test the algorithm. Considering that the route optimization algorithms would bring approximately 1%–3% error to the initial route length, which is approximately 1–4 km under the current scenario, the maximum time error was approximately 40 s, and the moving speed of the dynamic threat area in the figure was approximately 12.6 m/s. The maximum error range was thus approximately 510 m. To ensure route safety, the boundary of the dynamic threat area was expanded by 0.01°. As shown in Figure 26 and Table 8, when the start time of the UAV was not the same, the UAV could meet the threat at different times and places, and the planned routes were thus different. When the start time of the UAV was between 0 and 2000 s, the dynamic threat area would block the UAV from flying in the valley area. When the start time of the UAV was 3000 s, the dynamic threat area would pass through the valley area and the result of route planning was similar to the result without the threat. Because of the introduction of dynamic threats, the dynamic threat avoidance algorithm needed to consume many computing resources, and the operating efficiency of the MACOD-pl algorithm was much lower than that of the MACO-pl algorithm.


Figure 26. The results of different start times under dynamic threats. (a) Start time = 0 s; (b) Start time = 1000 s; (c) Start time = 3000 s.
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Table 8. The results of different start times under dynamic threats.







	
Start Time (s)

	
Planning Time (s)

	
[image: there is no content] (km)

	
[image: there is no content] (m)

	
Compared with [image: there is no content]

	
Compared with [image: there is no content]






	
0

	
10.01

	
133.850

	
2112.65

	
+21.01%

	
−9.71%




	
1000

	
12.14

	
135.633

	
2724.18

	
+22.62%

	
+16.42%




	
2000

	
12.89

	
136.204

	
2725.49

	
+23.14%

	
+16.48%




	
3000

	
9.49

	
115.377

	
1906.71

	
+4.31%

	
−18.51%












6. Conclusions and Future Work


This paper presented an improved ACO-based planner based on the virtual globe platform to solve the route planning problem in risk environments. We developed a route planning system and realized six different planners in the static threat. By experimental analysis, we demonstrated that our optimum planner had better performance in terms of fuel consumption, terrain masking, and risk avoidance. Finally, we demonstrated the effectiveness of MACOD-pl in the dynamic threat environment. Benefiting from the virtual globe platform, the method presented in this paper can achieve route planning globally and meet the current maximum combat radius of UAVs in battlefields. The planned route can effectively avoid various threats and, by changing the parameters, the planner is suitable for military penetration, search-and-rescue, and many other scenarios. Our route planning system can perform not only automatic planning but also route editing and storage, flight simulation experiments, and other tasks.



Many other types of planning algorithms exist; for example, some algorithms use a rotated coordinate frame to reduce the dimension of the problem [12,18]. Further research on how to apply other algorithms to the virtual globe platform and efficiently obtain better results would be worthwhile, as well as further research on the model of different dynamic threats and the efficient use of dynamic threat avoidance algorithms.
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Figure A1. Threat modelling in the route planning system in which a radar threat zone is marked interactively. 






Figure A1. Threat modelling in the route planning system in which a radar threat zone is marked interactively.
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Figure A2. Screenshot of a flight simulation in the route planning system in which a simulated flight experiment is performed for the saved route. 






Figure A2. Screenshot of a flight simulation in the route planning system in which a simulated flight experiment is performed for the saved route.
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