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Abstract: In this paper, we propose a multiple kernel relevance vector machine (RVM) method based
on the adaptive cloud particle swarm optimization (PSO) algorithm to map landslide susceptibility in
the low hill area of Sichuan Province, China. In the multi-kernel structure, the kernel selection problem
can be solved by adjusting the kernel weight, which determines the single kernel contribution of the
final kernel mapping. The weights and parameters of the multi-kernel function were optimized using
the PSO algorithm. In addition, the convergence speed of the PSO algorithm was increased using
cloud theory. To ensure the stability of the prediction model, the result of a five-fold cross-validation
method was used as the fitness of the PSO algorithm. To verify the results, receiver operating
characteristic curves (ROC) and landslide dot density (LDD) were used. The results show that the
model that used a heterogeneous kernel (a combination of two different kernel functions) had a larger
area under the ROC curve (0.7616) and a lower prediction error ratio (0.28%) than did the other types
of kernel models employed in this study. In addition, both the sum of two high susceptibility zone
LDDs (6.71/100 km2) and the sum of two low susceptibility zone LDDs (0.82/100 km2) demonstrated
that the landslide susceptibility map based on the heterogeneous kernel model was closest to the
historical landslide distribution. In conclusion, the results obtained in this study can provide very
useful information for disaster prevention and land-use planning in the study area.

Keywords: particle swarm optimization; multiple kernel learning; relevance vector machine;
landslide susceptibility; geographical information system (GIS)

1. Introduction

Landslide susceptibility assessment always requires the consideration of many non-linear
relation environmental factors, such as geomorphological, geological, hydrological and land cover
data [1,2]. Determining how to map regional landslide susceptibility from these factors has
become a focus of geological research. In recent years, several approaches to mapping landslide
susceptibility have been proposed, which can be grouped into two broad groups: qualitative and
quantitative [3]. Qualitative methods are somewhat subjective and depend on the judgment of
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experts, whereas quantitative methods are relatively objective and based on numerical expressions
of the relationships between environmental factors and landslides [4]. The quantitative methods
are generally considered to be more scientific and accurate than qualitative methods. With the
development of computing and geographic information system (GIS) technologies, quantitative
methods have developed rapidly in recent decades; these methods include fuzzy logic, decision trees,
logistic regression, artificial neural networks (ANNs) and support vector machines (SVMs) [5–9].
Studies have shown that fuzzy logic can address missing values, but it depends on greater experience.
Moreover, the fuzzy logic single factor evaluation matrix is difficult to establish, thus making the
model prediction unstable. Decision trees can also handle missing values and have better local
analysis capabilities than logistic regression does, which inevitably leads to over-fitting problems.
Logistic regression models are capable of good global analyses, but are sensitive to extremes. ANN and
SVM have been proven to be more effective than the above methods for landslide susceptibility
assessments. However, ANN can easily fall into local minima and has slow convergence speeds.
SVM performs better than ANN at generalization, but its kernel needs to satisfy the Mercer conditions.
Additionally, it cannot directly estimate the prediction uncertainty. Therefore, better techniques are
urgently needed.

The relevance vector machine (RVM) proposed by Tipping [10] is a new Bayes probability model
based on SVM, and its kernel does not need to satisfy the Mercer conditions [11]. Moreover, the RVM
results include classification results and the probability distribution, which are very suitable for
landslide susceptibility assessment [12]. However, RVM has been seldom applied to the study of
landslide fields, especially in regional landslide susceptibility analyses [13,14]. Similar to the SVM
model, the effect of the RVM model depends on the kernel function and kernel parameters. At present,
the methods for choosing an effective kernel function and reasonable kernel parameters are still
imperfect [15,16].

The multiple kernel learning method provides a proper solution for the kernel selection problem.
It always combines some single kernels under certain rules to offer a suitable kernel mapping
according to specific samples [16–19]. In that way, the kernel selection problem is transformed
into an optimization problem of kernel parameters and kernel weights in a multiple kernel structure.
In recent years, the particle swarm optimization (PSO) algorithm [20–23] has been widely used
to optimize the parameters of intelligent algorithms in many fields [24–29]. It is a classic group
optimization technique that Kennedy and Eberhart [20,21] designed on the basis of the actions of birds
feeding. The optimization target can be searched by tracking individual and group particles of the
population. At present, studies of the PSO algorithm can be divided into two groups: improvement
research and applied research. Most of the improvement research has concentrated on setting the
inertia weight and learning factors of the PSO algorithm [22–25]. The adaptive cloud PSO (CPSO)
algorithm is one of the most efficient methods in improvement research. It can both increase the
convergence speed and ensure the diversity of a population [24,25,28].

In the present study, RVM models using five kernel types based on the CPSO algorithm
were applied to landslide susceptibility mapping of the low hill area of China’s Sichuan Province.
The five-fold cross-validation method was used in the training processes of the five models to avoid the
over-fitting problem [30,31], and cloud theory was used to improve the PSO convergence speed [24,25].
In addition, the prediction performances of the five models were verified using a receiver operating
characteristic (ROC) curve [32–34] and landslide dot density (LDD) [35,36].

2. Study Area

The study area (27◦9′N–32◦4′N and 102◦9′E–108◦1′E) is located in the eastern part of Sichuan
Province, China (Figure 1), and covers approximately 112,000 km2 (23% of Sichuan Province).
It includes Chengdu, Zigong, Luzhou, Deyang, Mianyang, Guangyuan, Suining, Neijiang, Leshan,
Nanchong, Meishan, Yibin, Guang’an, Dachuan, Ya’an, Bazhong, Ziyang and Liangshan, for a total
of 18 cities or districts (Figure 1). It has a high population density and rapid economic development.
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According to statistics from 2009 [37–40], the population density was 437 persons per square kilometre,
which was much higher than the provincial average (168 persons per square kilometre). The gross
domestic product (GDP) was approximately 13,738.54 billion Yuan (96% of the province). However,
its landslide disaster density, which is as large as one per 100 km2, is the highest in China [41].
Therefore, research on the formation mechanisms of landslides and mapping the regional landslide
susceptibility in this area are very useful for disaster prevention and land planning [38–40].

Landslides are induced by many factors that can be divided into two broad groups: geographical
environment and human activities. First, the specific geographical environment of the study area
provides favourable conditions for landslides: (1) low hills mainly cover the study area (98%),
the altitudes of which primarily range from 0 m to 800 m (94%); (2) the topographic relief is large,
and the altitude differs over 2000 meters from west to east; (3) the study area is located in the subtropical
moist monsoon climate zone, and the annual rainfall is usually over 1000 mm from June to September
(from records, 2664 landslides induced by rainfall had occurred in the low hilly area of Sichuan
Province [42]); (4) many fractures, rivers (1.6 km/km2) and sedimentary rocks (89%) are concentrated
in this area. Second, human activities are usually the major factor for inducing landslides. There is
a well-developed transportation system in the study area, and the total length of the road network
(including national and provincial roads) exceeded 211,888 km by 2009 [42].
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Figure 1. Map of the distribution of hills in Sichuan.

3. Methods

3.1. Relevance Vector Machine

Given a set of nonlinear training samples {xi, ti} (i = 1, 2, · · · , M), where M is the number of
samples, xi ∈ Rn are the training influencing factors of landslides and ti ∈ {0, 1} represents the state
of the landslides (the landslide state is 1, and the non-landslide state is 0), assume that the objective
function is independent and has additional noise; the output of RVM model can be expressed as
Equations (1) and (2):

ti = y (xi; ω) + εi (1)

y (x; ω) =
M

∑
i=1

ωiK (x, xi) + ω0 (2)
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where εi = N
(
0, σ2) is the additive Gaussian noise, x is the input vector that needs to be predicted,

ω = [ω0, ω1, ω2, . . . , ωM]T , ωi is the model “weight”, ω0 is the deviation and K (x, xi) is the selected
kernel function.

A Bayesian probability model is used to explain the effects of the noise (εi) on the predicted results.
The model not only can improve the problem of setting the error parameter in SVM, but can also output
the probability of the results, which is used to describe the landslide susceptibility. The Bayesian
probability is:

p (t∗|t) =
∫

p
(

t∗
∣∣∣ω, σ2

)
p
(

ω, σ2
∣∣∣t) dωdσ2 (3)

where t∗ is the prediction target of the new input vector x.
To prevent the over-fitting problem when evaluating the maximum likelihood estimation of ω

and σ2, the automatic relevance determination (ARD) prior probability distribution can be defined as

p(ω|α) =
M

∏
i=0

N
(

ωi

∣∣∣0, α−1
i

)
(4)

The prior distribution of the ωi is a Gaussian distribution with a mean of 0 and variance α−1
i .

Following the Bayesian rule, the conditional probability can be written as:

p (t∗|t) =
∫

p
(
t∗
∣∣ω, σ2) p

(
ω
∣∣t, α, σ2) p

(
α, σ2

∣∣t) dωdαdσ2

≈
∫

p
(
t∗
∣∣ω, ∂MP, σ2

MP
)

p
(
ω
∣∣t, ∂MP, σ2

MP
)

dω
(5)

Using the Laplace method to make p
(
ω, α, σ2

∣∣ti
)

approximate a Gaussian distribution:

∂new
i =

γi

µ2
i

, (σ2)
new

=
‖ t−Φµ ‖2

M−∑M
i=0 γi

(6)

where µi is the i-th element of the a posteriori mean vector (µ) of weights, ∑i,i is the i-th diagonal
element of the covariance matrix (∑) and γi = 1 − ∂i ∑i,i. In the training process, Equation (6)
continues to iterate until ∂new

i and (σ2)
new are approximately ∂MP and σ2

MP. In that case, most ∂i tend
to infinity, and the corresponding ωi tend to 0. Finally, a few ω tend to finite values, and their
corresponding xi are the relevant vectors of the RVM model.

The logistic model of the regression method was applied to solve the problem of classification,
which is written as:

p
(

ti = 1
∣∣∣ωTxi

)
= 1/

(
1 + exp

(
−ωTxi

))
(7)

The probability of the prediction results can then be described as:

p (t|ω) =
N

∏
i=1

σ {y (xi; ω)}ti [1− σ {y (xi; ω)}]1−ti (8)

where t = {tn}M
n=1, and the landslide discrimination criterion is:

ti =

{
0 (non− landslide) , i f pi = 1/ (1 + e−y) < 0.5
1 (landslide) , i f pi = 1/ (1 + e−y) ≥ 0.5

(9)

3.2. Multiple Kernel RVM

The adaptive multi-kernel function of the linear combination is the most classic method [23] and
is formed of a combination of an overall kernel function (polynomial) and a local kernel function
(Gaussian). It can be written as:
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Kmix (x, xi) = βKgauss (x, xi) + (1− β)Kpoly (x, xi) =
2

∑
i=1

βiK (x, xi) (10)

Kgauss (x, xi) = exp
(
−‖ x− xi ‖2

σ2

)
, σ > 0 and (11)

Kpoly (x, xi) = ((x, xi) + c)2 , c ≥ 0 (12)

where Kgauss (x, xi) is the Gaussian kernel function and Kpoly (x, xi) is the polynomial kernel function.
The kernel weight β (β ∈ (0, 1)) is a regulatory factor that is used to adjust the contribution of each
kernel. When β is 1, the multi-kernel function is the same as a Gaussian kernel function, and when β is
0, the multi-kernel function equates to a polynomial kernel function. The greater the kernel weight,
the greater the contribution of the corresponding kernel to Kmix (x, xi).

After substituting Equation (10) into the original RVM model (Equation (2)), the output of the
MKRVM model can be written as

y (x; ω) =
M

∑
i=1

ωiKmix (x, xi) + ω0 (13)

In this way, the multiple kernel RVM (MKRVM) model transforms the expression problem of the
samples in the feature space into the setting problem of the kernel parameters and kernel weights [21].
Three types of multi-kernel combinations are encountered in this paper: the combination of a Gaussian
kernel and a polynomial kernel (Gauss and Poly), the combination of two polynomial kernels
(Poly and Poly), and the combination of two Gaussian kernels (Gauss and Gauss). A combination
of two same kernels is called a homogeneous kernel, and a combination of different kernels is called
a heterogeneous kernel.

3.3. Particle Swarm Optimization

The iterative update strategy of original PSO algorithm is:{
vi+1 = ω× vi + c1 × r1 × (Pbest (i)− xi) + c2 × r2 × (Gbest (i)− xi)

xi+1 = xi + vi+1
(14)

where vi is the particle velocity, xi is an individual particle, ω is the inertia weight, Pbest (i) and Gbest (i)
are the individual and global optimizations in the i-th iteration, respectively, r1 and r2 are random
numbers (0–1) and c1 and c2 are the learning factors.

In this paper, the original PSO was improved using cloud theory (CPSO). In the CPSO algorithm,
the particle swarm is divided into three groups to calculate the inertia weight (ω) using different
generation strategies. Suppose that the fitness (the prediction error of the RVM models) of the i-th
particle in the k-th iteration is f k

i ; the average of all of the fitnesses is f k
avg = 1

N ∑N
i=1 f k

i (N is the
population size); the average of the fitness that is lower than f k

avg is set to f ′avg; the average of the fitness
that is higher than f k

avg is set to f ′′avg; and the best fitness is set to f k
best. The specific generation strategy

is described as follows.

(1) When f k
i ≤ f ′avg, the fitness of these particles is closer to the optimal solution (the lowest error

rate). Therefore, set a low inertia weight value (ω = 0.2) to speed up local convergence.
(2) When f k

i < f ′′avg and f k
i > f ′avg, these particles are relatively far from the best fitness, which can

be improved by the cloud model.
The expectation of the cloud model is Ex = f k

best.
The entropy can be calculated using the distance of the expectation and f ′avg:

En =
(

f ′avg − f k
best

)
/c1.
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In addition, the hyper entropy was set using He = En/c2.
The value of the inertia weight can be described as:

ω = 0.9− 0.5e
−( f k

i −Ex)
2

2(En′)2 , En
′
= normrnd (En, He) (15)

According to “3En” rules, the control parameters c1 and c2 were set to 3 and 10 [24].
“normrnd” generates normally distributed data.

(3) When f k
i ≥ f ′′avg, these particles need a higher inertia weight (ω = 0.9) to improve the global

search capability.

3.4. PSO-MKRVM

Many of the PSO-MKRVM model parameters require initialization. For the study area, the RVM
training samples were comprised of eight condition attributes (the landslides’ predisposing factors)
and one decision attribute (the states of the landslides). In the multi-kernel structure, one kernel
weight β and two kernel parameters needed to be calculated. The optimization target of the PSO
algorithm is to minimize the result of the five-fold cross-validation [33]. The PSO population size was
set to 20, and the number of iterations was set to 50. The iterative curves of the classic linear kernel
function (Figure 2) show that the optimal solution could be found within 20 iterations. In addition,
c1 = c2 = 2 was chosen to make the search region centre on Pbest (i) and Gbest (i). The particle of the
PSO algorithm was set as x = (β, width1, width2).

The training process for the PSO-MKRVM models included the following steps.
Step 1: Initialization. Set some of the parameters of the PSO-MKRVM models, including the

population size, iterations and learning factors.
Step 2: Optimization. Based on the training samples, the 5-fold cross-validation method and PSO

algorithm are used to optimize the parameters and weights of the multi-kernel function.
Step 3: Building. Depending on the results of step 2, the MKRVM prediction models can be built.
Step 4: Prediction. The models built in Step 3 can be used to make distribution maps of the

landslide susceptibility index (DMLSI).
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4. Data

4.1. Influencing Factors of Landslides

Overall, 382 landslide samples from the China Institute of Geo-Environmental Monitoring
were used for this study; the landslides had occurred in the low hilly area of Sichuan in 2007.
Researchers have performed some studies on the susceptibility of landslide predisposing factors
based on variable dimension fractal theory and a certainty factor probability model in this area [39,40].
Eight landslide-predisposing factors have been demonstrated to be the major factors responsible
for inducing landslides in this area. Based on the landslide inventories and thematic data available
in the study area, we used those factors to build landslide prediction models. The factors include
landforms (altitude, slope and relief amplitude), geological lithology (lithology), geological structure
(faults), cutting slope (river and road) and vegetation (normalized difference vegetation index (NDVI)).
The values of the factors are listed in Table 1.

Table 1. Evaluation factor system for landslides in the Sichuan Province hills.

Groups Factors Subclasses Area (%) Factors Subclasses Area (%)

Landform Slope

0–3◦ 20.57

Altitude

0–400 m 37.2
3–5◦ 17.09 400–600 m 45.84
5–15◦ 43.01 600–800 m 11.31

15–25◦ 14.42 800–1000 m 3.41
25–30◦ 2.55 1000–1200 m 1.18
30–45◦ 2.13 >1200 m 1.06
>45◦ 0.24

Geological
structure

Faults
(buffer distance)

0–2 km 5.83

Faults
(buffer distance)

10–12 km 8.84
2–4 km 14.36 12–14 km 7.54
4–6 km 13.68 14–16 km 6.26
6–8 km 12.09 >16 km 5.04

8–10 km 10.23

Cutting
slope

River network
(buffer distance)

0–2 km 10.14

Road network
(buffer distance)

0–2 km 13.6
2–4 km 33.49 2–4 km 11.65
4–6 km 22.16 4–6 km 10.43
6–8 km 16.01 6–8 km 9.16

8–10 km 11.17 8–10 km 8.38
>10 km 7.02 10–12 km 7.48

Relief amplitude
0–200 m 71.81 12–14 km 6.36

200–600 m 25.96 >14 km 32.93
>600 m 2.23

Geological
lithology Lithology

Unconsolidated deposits 9.96

Lithology

Conglomerates 37.7

Mudstone 26.78
Dolomite

0.54

Carbonate rocks

Limestone 3.35
GraniteBasalt 0.84

Sandstone 20.83 Shale

Vegetation NDVI −1–1

Based on the above evaluation factor system (Table 1), eight maps of landslide predisposing
factors (Figure 3) can be displayed using GIS technologies. Slope, altitude and relief amplitude
were derived from the DEM. The slope (Figure 3A) cannot accurately reflect the landforms over
equal intervals in the study area. Based on surface features, the slope was divided into 7 intervals.
Most areas are in the range of the top four levels (0◦–25◦, 95.09%). However, many landslides are
concentrated in a few areas (25◦–45◦, 4.68%). In addition, the landslides that occurred above 45◦ are
typically collapsed [5]. The altitude (Figure 3B) was divided into six parts. Area (>800 m) accounts
for only 5.65% of the study area, but it gathers a large number of landslides. The relief amplitude
(Figure 3C) was derived from the GIS neighbourhood statistics module when the best statistics window
radius was 1.1 km. The study area is mainly composed of hills (0–200 m, 71.81%) and low-mountain
areas (200–600 m, 25.96%), where landslides have often occurred. Vegetation coverage was extracted
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from MODIS products and described by NDVI (Figure 3D). The NDVI values ranged from −1–1;
the value increased with an increasing vegetation coverage rate and vice versa. Rivers and roads
directly influence the regional geological environments of landslides [2]. The buffer distance maps
of rivers (Figure 3E) and roads (Figure 3F) show that landslides primarily occur in the lower buffer
distance area. In addition, geological lithology and geological structure are important landslide
factors and were extracted from geological maps. The lithology map (Figure 3G) was produced
using the ArcGIS vector fusion (Dissolve) method. Limestone, basalt and carbonate rocks represent
a small part of the lithology (4.45%), but a number of landslides (2.81, 3.2 and 3.9) occurred in them.
Mudstone, sandstone and conglomerates make up 89% of the lithology, but only 1.7, 1.2 and 0.8
landslides per 100 square kilometres occurred in them. In this paper, the impact of faults on landslides
was quantified by the buffer distance from the faults (Figure 3H). The fractured structure of the
study area presents a spatial “chessboard form”, where the lengths of the fracture zones vary from
one kilometre to tens of kilometres.
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prediction model were extracted using the Arc Toolbox Extraction tool (Figure 4). Similarly, the 
prediction model inputs of the study area were extracted based on the 27,998 raster units in the 
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4.2. Normalization Processing

Based on historical landslides and the distribution maps of the eight landslide predisposing factors,
750 training samples (382 landslide samples and 368 non-landslide samples) from the prediction model
were extracted using the Arc Toolbox Extraction tool (Figure 4). Similarly, the prediction model inputs
of the study area were extracted based on the 27,998 raster units in the study area (the widths and
heights of the raster units were 2000 m).

These training samples and regional inputs had to be normalized into unified non-dimensional
data using Equation (16):

x′ = (x− xmin) / (xmax − xmin) (16)

where x (x ∈ [xmin, xmax]) represents the actual value of one factor, xmin and xmax are, respectively,
the minimum and maximum of that factor and x′ ∈ (0− 1) is the normalization result. The landslides
were divided into two states: 1 (landslide) and 0 (non-landslide). To ensure the reliability and stability
of the prediction models, a 5-fold cross-validation method was used to divide the 750 training samples
into five equal parts. In the training process, four parts were used as training samples, and the
other part was used as testing samples. Each part of the samples was used in the training role and
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testing role five times. The result of the 5-fold cross-validation method was used as the fitness of the
PSO algorithm.
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5. Results and Discussion

5.1. Model Training

Based on the 750 training samples and the 5-fold cross-validation method, the RVM model
parameters were optimized using the PSO algorithm and are shown in Table 2.

Table 2. Kernel parameters and weight coefficient optimized using the PSO algorithm. Poly, polynomial.

Model (Kernel Type) Weight Width 1 Width 2 Error Rate (ER)

Gauss 1 0.313
Poly 0.8443 0.333

Gauss and Poly 0.6831 0.6138 2 0.28
Gauss and Gauss 0.2366 0.3396 1 0.333

Poly and Poly 0.114 0.6 0.8844 0.333

The “weight” in the multi-kernel structure represents the weight of the first kernel function.
“Width 1” and “Width 2” are the values of the first kernel and second kernel parameters, respectively.
The search ranges of the two kernel parameters were [0.3, 1.5] and [0.6, 2.5]. The “error rate” (ER) is
the result of the 5-fold cross-validation. Table 2 shows that the “Gauss and Poly” kernel demonstrated
the best prediction performance (ER = 0.28) when the three parameters were 0.6821, 0.6138 and 2.

These models were used to make maps of the distribution of the landslide susceptibility index
(DMLSI) in the study area. Based on the DMLSI, a cluster analysis of the natural discontinuous
points method was used to divide the study area into five landslide susceptibility zones: a very
low susceptibility zone (VLS-zone), low susceptibility zone (LS-zone), moderate susceptibility
zone (MS-zone), high susceptibility zone (HS-zone) and very high susceptibility zone (VHS-zone).
The landslide susceptibility maps (LSM) of the study area developed using this method are presented
in Figure 5.
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Gaussian and Gaussian; (E) LSM by polynomial and polynomial. RVM, relevance vector machine.
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It is obvious that the LSM of the five models conforms well to the distribution of historical
landslides. In addition, the models whose kernel function contained a Gaussian function performed
better than those employing a polynomial function. This result means that the Gaussian function
is more suitable for landslide susceptibility assessment in the study area. However, it is difficult to
accurately evaluate the model prediction performances by using LSM.

5.2. Receiver Operating Characteristic Curve

ROC curves are a representative method for testing the accuracies of analysis methods and can
reflect the relationship between specificity and sensitivity [32–34]. They were initially applied in the
assessment of the receptivity of radar signals and have recently been used to evaluate the prediction
performance of medical diagnostic tests [32]. The RIC index that is used to discriminate the accuracy
of a “diagnosis” is the area under the ROC curve (AUC) [33]. When the AUC value ranges from 0.5–1,
the current method has a good “diagnosis” ability [9]. The diagnostic accuracy can be divided into
three levels: low (0.5–0.7), medium (0.7–0.9) and high (>0.9) [33,34].

In this paper, the landslide states were used as the state variable of the ROC curve, and the
prediction results of the RVM training models were used as the test variable of the ROC curve.
The ROC curves for the different kernel type analyses are shown in Figure 6. The curves indicate that
the heterogeneous kernels achieved higher prediction performances (AUC = 0.7616) than did the other
kernel types. In addition, the three multi-kernel types that contained a Gaussian function had stronger
diagnostic abilities (AUC > 0.7) than did the other types (AUC < 0.7). The strong ability of Gaussian
kernel functions for assessing landslide susceptibility in the study area has again been demonstrated.
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5.3. Landslide Dot Density

The frequency ratios of the landslides in each zone of the five LSMs (Figure 5) were used to
draw a landslide frequency ratio plot (Figure 7)). The plot results shows that the five frequency ratio
lines largely conformed to the actual landslide distribution, in that the frequency ratios continued to
grow from the VLS-zone to the VHS-zone. The figure also shows that the “Gauss and Gauss” kernel
performed better between the HS-zone and VHS-zone than the other kernel types, but did not perform
best in the two low susceptibility zones. In addition, the “Poly and Poly” and “Poly” kernels were
almost the same in the five susceptibility zones.
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Frequency plots can directly reflect landslides’ distributions, but they cannot describe the
superiority of a model. Landslide dot density (LDD) is a useful method for making detailed and
reasonable analyses of landslide prediction results [35,36]. The LDD results (Table 3) show that the LDD
of the polynomial kernel was highest in the VHS-zone (4.47), but not the lowest in the VLS-zone (0.33).
The “Gauss and Poly” and “Gauss and Gauss” kernels had identical LDD values (0.24), which were
the lowest in the VLS-zone, but did not have the highest LDD values in the VHS-zone. In particular,
the “Gauss and Gauss” kernel had the lowest value (3.94) in the VHS-zone. It is difficult to evaluate
the effect of each model in a single landslide susceptibility zone. Therefore, we used the summed
value of the LDD in the two high susceptibility zones or the two low susceptibility zones to verify the
prediction performance. The results show that the “Gauss and Poly” kernel performed best, in that
the LDD value was highest in the two high susceptibility zones (6.71) and lowest in the two low
susceptibility zones (0.82).

Table 3. The landslide dot densities of the five landslide susceptibility zones. LDD, landslide
dot density.

Landslide Susceptibility Zone
LDD (/100 km2)

Gauss Poly Gauss and Poly Poly and Poly Gauss and Gauss

Very low 0.36 0.33 0.24 0.33 0.24
Low 0.71 0.65 0.58 0.65 0.71

Moderate 1.24 0.98 1.36 0.99 1.22
High 2.3 2.03 2.52 2.04 2.35

Very high 4.1 4.47 4.19 4.42 3.94
Sum of low and very low 1.7 0.98 0.82 0.98 0.95

Sum of high and very high 6.4 6.5 6.71 6.46 6.29

6. Conclusions

RVM is a new Bayesian probability model that performs better than SVM when estimating
prediction uncertainties. However, it is seldom used in landslide susceptibility assessments.
The effectiveness of RVM depends primarily on the selection of the kernel and kernel parameters.
This paper proposed a multi-kernel learning method based on the linear combination of a Gaussian
function and a polynomial function to solve the kernel selection problem. In the multi-kernel structure,
three parameters were calculated using the adaptive cloud PSO algorithm. To verify the prediction
performance of the multi-kernel method, we applied the RVM models in the low hill area of China’s
Sichuan Province.

Five RVM models used for comparison tests were presented in this paper. The results show that
the heterogeneous kernel performed better (ER = 0.28; AUC = 0.7616; the sum of the two HS-zone
LDDs was 6.71, and the sum of the two LS-zone LDDs was 0.82) than the other kernel types. This result
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occurred mainly because the multi-kernel structure can adaptively adjust its kernel parameters to fit
the specific study area. The classic linear kernel combination can not only maintain the interpolation
ability of a local kernel function (Gaussian function), but also integrate the generalization ability
of a global kernel function (polynomial function). As a final conclusion, the proposed method has
a superior prediction skill and higher reliability for regional landslide susceptibility mapping.
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