Granulometric Analysis on Remote Sensing Images: Application to Mapping Retrospective Changes in the Sahelian Ligneous Cover
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data and Background
2.2. Morphological Analysis
2.3. k-Means Classification
3. Results
3.1. Guileyni
3.2. Kirib Kaina
4. Discussion and Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Kemmouche, A.; Mering, C.; Sansal, B.; Dewolf, Y. Macro-texture mapping from satellite images by morphological granulometries: Application to vegetation density mapping in arid and semi-arid areas. Int. J. Remote Sens. 2004, 25, 5319–5336. [Google Scholar]
- Larwanou, M.; Saadou, M. The role of human interventions in tree dynamics and environmental rehabilitation in the Sahel zone of Niger. J. Arid Environ. 2011, 75, 194–200. [Google Scholar] [CrossRef]
- Mering, C.; Chopin, F. Granulometric maps from high resolution satellite images. Image Anal. Stereol. 2002, 21, 19–24. [Google Scholar]
- Ke, Y.; Quackenbush, L.J. A review of methods for automatic individual tree-crown detection and delineation from passive remote sensing. Int. J. Remote Sens. 2011, 32, 4725–4747. [Google Scholar] [CrossRef]
- Zhen, Z.; Quackenbush, L.J.; Zhang, L. Trends in automatic individual tree crown detection and delineation—Evolution of LiDAR data. Remote Sens. 2016, 8, 333. [Google Scholar]
- Pitkanen, J. Individual tree detection in digital aerial images by combining localy adaptive binarization and local maxima methods. Can. J. For. Res. 2001, 31, 832–844. [Google Scholar] [CrossRef]
- Chepkochei, L.C. Object-oriented image classification of individual trees using Erdas imagine objective: Case study of Wanjohi Area, Lake Naivasha Basin. In Proceedings of the Kenya Geothermal Conference, Nairobi, Kenya, 21–23 November 2011.
- Spiekermann, R.; Brandt, M.; Samini, C. Woody vegetation and land cover changes in the Sahel of Mali (1967–2011). Int. J. Appl. Earth Obs. Geoinf. 2015, 34, 113–121. [Google Scholar] [CrossRef]
- San Emeterio, J.L.; Mering, C. Climatic and human impacts on the ligneous cover in the Sahel from the analysis of aerial photographs before and after the drought periods of the 70’s and 80’s. Geophys. Res. Abstr. 2012, 14, EGU2012-3052. [Google Scholar]
- Kalapala, M. Estimation of tree count from satellite imagery through mathematical morphology. Int. J. Adv. Res. Comput. Sci. Softw. Eng. 2014, 1, 490–495. [Google Scholar]
- Serra, J. Image Analysis and Mathematical Morphology; Academic Press: London, UK, 1982. [Google Scholar]
- Soille, P. Morphological Image Analysis: Principles and Applications, 2nd ed.; Springer: Berlin, Germany, 2003. [Google Scholar]
- Bernabé, S.; Plaza, A.; Marpu, P.R.; Benediktsson, J.A. A new parallel tool for classification of remotely sensed imagery. Comput. Geosci. 2012, 46, 208–218. [Google Scholar] [CrossRef]
- Pesaresi, M.; Benediktsson, J.A. A new approach for the morphological segmentation of High-Resolution Imagery. IEEE Trans. Geosci. Remote Sens. 2001, 39, 309–320. [Google Scholar] [CrossRef]
- Benediktsson, J.A.; Pesaresi, M.; Arnason, K. Classification and feature extraction for remote sensing images from urban areas based on morphological transformations. IEEE Trans. Geosci. Remote Sens. 2003, 41, 1940–1949. [Google Scholar] [CrossRef]
- Fauvel, M.; Benediktsson, J.A.; Chanussot, J.; Sveinson, J. Spectral and spatial classification of hyperspectral data using SVMS and morphological profiles. IEEE Trans. Geosci. Remote Sens. 2008, 46, 3804–3814. [Google Scholar] [CrossRef]
- Mura, M.D.; Benediktsson, J.A.; Waske, B. Morphological attribute profiles for the analysis of very high resolution images. IEEE Trans. Geosci. Remote Sens. 2010, 48, 3747–3762. [Google Scholar] [CrossRef]
- Kemmouche, A.; Mering, C.; Sansal, B. Cartographie de la densité du couvert ligneux dans les zones arides et semi-arides à l’aide de l’imagerie satellitaire. Sécheresse 2008, 19, 129–135. [Google Scholar]
- Mering, C.; Baro, J.; Upegui, E. Retrieving urban areas on Google Earth images: Application to towns of West Africa. Int. J. Remote Sens. 2012, 31, 5867–5877. [Google Scholar] [CrossRef]
- Hartigan, J.A.; Wong, M.A. Algorithm as 136: A k-means clustering algorithm. J. R. Stat. Soc. 1979, 28, 100–108. [Google Scholar] [CrossRef]
- San Emeterio, J.L.; Alexandre, F.; Andrieu, J.; Génin, A.; Mering, C. Changements socio-environnementaux et dynamiques des paysages ruraux le long du gradient bioclimatique nord-sud dans le sud-ouest du Niger (regions de Tillabéry et de Dosso). Available online: http://www.vertigo.revues.org/14456 (accessed on 9 July 2014).
- Vincet, L. Morphological grayscale reconstruction in image analysis: Applications and efficient algorithms. IEEE Trans. Image Process. 1993, 2, 176–201. [Google Scholar] [CrossRef] [PubMed]
- David, A.; Vassilvitskii, S. K-means++: The advantages of careful seeding. In Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, New Orleans, LA, USA, 7–9 January 2007.
- Chiang, M.M. Intelligent choice of the number of clusters in k-means clustering: An experimental study with different cluster spreads. J. Classif. 2009, 27, 3–40. [Google Scholar] [CrossRef]
- Bholowalia, P.; Kumar, A. EBK-means: A clustering technique based on elbow method and k-means in WSN. Int. J. Comput. Appl. 2014, 105, 17–24. [Google Scholar]
- Andersen, G.L. How to detect desert trees using CORONA images. Discovering historical ecological data. J. Arid Environ. 2006, 65, 491–511. [Google Scholar] [CrossRef]
- Leblanc, M.J.; Favreau, G.; Massuel, S.; Tweed, S.T.; Loireau, M.; Cappelaere, B. Land clearance and hydrological change in the Sahel: SW Niger. Glob. Planet. Chang. 2008, 61, 135–150. [Google Scholar] [CrossRef]
1. CROPS | Background | Small trees | Big trees | ErrorC |
Background | 33,535 | 152 | 3 | 0.0046 |
Small trees | 13 | 1802 | 18 | 0.0169 |
Big trees | 0 | 1 | 181 | 0.0055 |
ErrorO | 0.004 | 0.0783 | 0.1040 | |
2. VALLEY | Background | Small trees | Big trees | ErrorC |
Background | 31,483 | 77 | 13 | 0.0029 |
Small trees | 16 | 2105 | 0 | 0.0075 |
Big trees | 0 | 10 | 2380 | 0.0042 |
ErrorO | 0.0005 | 0.0397 | 0.0054 | |
3. VILLAGE | Background | Small trees | Big trees | ErrorC |
Background | 30,385 | 3 | 57 | 0.0020 |
Small trees | 1224 | 567 | 2 | 0.6838 |
Big trees | 711 | 0 | 3329 | 0.1760 |
ErrorO | 0.0599 | 0.0053 | 0.0174 |
PLATEAU | Big Trees | Tiger Bush | Small Trees | Background | ErrorC |
Big trees | 656 | 0 | 10 | 0 | 0.015 |
Tiger bush | 0 | 8005 | 1 | 0 | 0.0001 |
Small trees | 15 | 49 | 1069 | 0 | 0.0565 |
Background | 0 | 29 | 108 | 61524 | 0.0022 |
ErrorO | 0.0224 | 0.0096 | 0.1002 | 0.0000 | |
DN | Big trees | Small trees | Background | ErrorC | |
Medium | 2996 | 0 | 26 | 0.0086 | |
Small trees | 93 | 1837 | 28 | 0.0618 | |
Background | 81 | 107 | 66575 | 0.028 | |
ErrorO | 0.0549 | 0.0550 | 0.0008 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
San Emeterio, J.L.; Mering, C. Granulometric Analysis on Remote Sensing Images: Application to Mapping Retrospective Changes in the Sahelian Ligneous Cover. ISPRS Int. J. Geo-Inf. 2016, 5, 192. https://doi.org/10.3390/ijgi5100192
San Emeterio JL, Mering C. Granulometric Analysis on Remote Sensing Images: Application to Mapping Retrospective Changes in the Sahelian Ligneous Cover. ISPRS International Journal of Geo-Information. 2016; 5(10):192. https://doi.org/10.3390/ijgi5100192
Chicago/Turabian StyleSan Emeterio, José Luis, and Catherine Mering. 2016. "Granulometric Analysis on Remote Sensing Images: Application to Mapping Retrospective Changes in the Sahelian Ligneous Cover" ISPRS International Journal of Geo-Information 5, no. 10: 192. https://doi.org/10.3390/ijgi5100192
APA StyleSan Emeterio, J. L., & Mering, C. (2016). Granulometric Analysis on Remote Sensing Images: Application to Mapping Retrospective Changes in the Sahelian Ligneous Cover. ISPRS International Journal of Geo-Information, 5(10), 192. https://doi.org/10.3390/ijgi5100192