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Abstract: Location-based services (LBS) are services offered through a mobile device that take into
account a device’s geographical location. To provide position information for these services, location is
a key process. GNSS (Global Navigation Satellite System) can provide sub-meter accuracy in open-sky
areas using satellite signals. However, for indoor and dense urban environments, the accuracy
deteriorates significantly because of weak signals and dense multipaths. The situation becomes
worse in indoor environments where the GNSS signals are unreliable or totally blocked. To improve
the accuracy of indoor positioning for location-based services, an improved WiFi/Pedestrian Dead
Reckoning (PDR) integrated positioning and navigation system using an adaptive and robust filter
is presented. The adaptive filter is based on scenario and motion state recognition and the robust
filter is based on the Mahalanobis distance. They are combined and used in the WiFi/PDR integrated
system to weaken the effect of gross errors on the dynamic and observation models. To validate their
performance in the WiFi/PDR integrated system, a real indoor localization experiment is conducted.
The results indicate that the adaptive filter is better able to adapt to the circumstances of the dynamic
model by adjusting the covariance of the process noise and the robust Kalman filter is able to mitigate
the harmful effect of gross errors from the WiFi positioning.

Keywords: WiFi; pedestrian dead reckoning; integrated system; indoor localization; adaptive and
robust filter

1. Introduction

Indoor localization technology can be used to provide position information for pedestrians and
indoor transportation. This technology has been investigated for several years in different applications,
such as pedestrian navigation in airports, purchasing guides in superstores, emergency evacuations,
and rescue in disaster situations. However, it is also a difficult task to improve the reliability of indoor
positioning technology. Hence, an integrated multi-sensor system is an effective method for enhancing
the accuracy of indoor positioning. The Kalman filter (the filter is used to represent the Kalman filter
below) is the most widely used data fusion method in integrated multi-sensor systems. Because of
the complexity of the indoor environment, it is difficult to construct dynamic and observation models
with high accuracy.

An accurate and reliable single-sensor indoor positioning system is still one of the largest
challenges in the field of navigation for location-based services. To make up for the disadvantages
of single-sensor systems, sensors for indoor positioning are increasingly integrated. One proposed
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indoor three-dimensional integrated localization system for wheeled vehicles uses the existing IEEE
802.11 WLAN (WiFi) [1,2] and low-cost micro-electro-Mechanical system (MEMS)-based reduced
inertial sensors. The WiFi/MEMS inertial measurement unit (IMU) is based on an optimized adaptive
version of a mixture particle filtering algorithm for state estimation [3]. Position information was
calculated by integrating a standard robot’s position estimator with a Bayesian estimator using the
received signal strength indicator (RSSI) [4]. A foot-mounted IMU-based position estimation method
was aided by the RSSI obtained from several active radio frequency ID (RFID) tags placed at known
locations in a building. The tightly coupled IMU/RFID system eliminated the typical drift of IMU-only
solutions that caused typical positioning errors along a walking path of approximately 1.5 m [5].
A novel visual-inertial integration system was also presented for human navigation in free-living
environments in which the measurements from wearable inertial and monocular visual sensors
are integrated [6]. Because both kinds of systems have unique advantages and disadvantages, a
maximum likelihood-based fusion methodology that integrates a typical WiFi indoor positioning
method with a pedestrian dead reckoning (PDR) method was also presented. The strength of the PDR
method is that it is able to decrease the weakness of the WiFi positioning method [7]. A particle filter
algorithm has also been presented to achieve a good positioning performance in indoor situations.
The proposed method is based on the integration of IMU observations, the radio signal strength
of a standard wireless network, and map information [8]. In addition, a calibration-free hybrid
indoor positioning methodology that uses the observation from WLAN (wireless local area networks),
low-cost BLE (Bluetooth low-energy) wireless beacons, and INS (inertial navigation system) was
presented. This research utilizes a grid-based nonlinear Bayesian filter algorithm to fuse the sensor
information [9]. Map matching is defined as the process of correlating two sets of geographical
positional information. Combined with the dead reckoning estimation approach, the map matching
significantly improves the overall positioning accuracy [10]. The quality of the existing radio map by
utilization of the crowd-sourced WiFi fingerprints which are post-processed offline along with the
logged pedestrian trajectory is improved. The solution focuses on the method which does not require
human intervention, and thus the end users do not have to report their locations [11]. A novel indoor
localization algorithm using smartphones where WiFi, orientation and visual signals are fused together
was proposed to improve the localization performance. The reference database was built as a signal
tree with less computational cost as WiFi and orientation signals pre-cluster the reference images [12].
A WiFi-aided magnetic matching (MM) system for indoor pedestrian positioning was proposed. This
method decreases both the mismatch rate and computational load of MM using WiFi positioning
information to lower the MM search coverage [13]. A robust indoor positioning algorithm integrating
low-cost sensors with map matching and a wireless positioning method was presented, in which an
indoor map is combined with WiFi positioning information to obtain a more reliable scheme based
on the indoor situation [14]. Further, an improved integration system for WiFi fingerprinting and
MEMS sensors for indoor positioning was presented. The proposed methodology constrains the search
space for WiFi fingerprinting and improves the algorithm’s speed and positioning accuracy [15,16].
A hybrid localization system was presented, providing position information and navigation aid
to pedestrians in dynamic indoor environments, such as construction sites, by combining an IMU
and a spatial non-uniform UWB network [17]. A multi-sensor fusion algorithm based on particle
filters was proposed for mobile robot localization in crowded environments. The proposal was
validated experimentally with a laser range-finder, a WiFi card, a magnetic compass, and an external
multi-camera network [18]. With more sensors integrated for indoor positioning, a highly reliable and
accurate filter model is increasingly important.

Building walls act like mirrors for WiFi signals in an indoor environment. A reflected signal may
be treated as a real signal, which introduces a large outlier in the WiFi positioning [19]. At the same
time, a complicated indoor environment will decrease the accuracy of the dynamic model. Adaptive
and robust filters are able to weaken the influence of the error in dynamic and observation models,
respectively. Adaptive Kalman filters and robust Kalman filters can be employed to mitigate the effects
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of large error in the dynamic and observation models, respectively. Many forms of adaptive filters and
robust Kalman filters have been proposed in the literature. For instance, an adaptively robust filter
based on a robust maximum-likelihood estimation was proposed and applied to kinematic geodetic
positioning and measurement. The method could not only balance the contribution between the
updated parameters and measurement, but also mitigated the influence of measurement outliers [20].
A new robust parameter estimator to adjust correlated observations based on a bifactor reduction
model of weight elements was developed. The new equivalent weight matrix, composed of bifactor
weight elements, preserves symmetry and keeps the original correlation coefficients unchanged [21].
An adaptively robust filter with multiple adaptive factors based on the principles of the adaptive
Kalman filter and bifactor robust estimation for correlated observations was also proposed. This filter
and the one with a unified adaptive factor could be integrated in practical applications [22]. Robust
Kalman filters have been investigated over the past decades for different applications such as the
in-motion alignment of INS [23], SINS/SAR (strap-down inertial navigation system/synthetic aperture
radar) integrated navigation systems [24], real-time estimation of satellite clock offsets [25], precise
point positioning (PPP) [26], and small satellite attitude estimation [27]. A robust Kalman filter using
the Chi-squared test to detect measurement outliers was proposed [28]. The square of the Mahalanobis
distance from the observation to its prediction, which is defined as the test statistic to detect outliers,
should be Chi-square distributed with the dimension of the observation vector equal to the degrees
of freedom.

In the present study, an adaptive filter based on scenario and motion state recognition is proposed
to improve the adaptive ability of the dynamic model in a WiFi/PDR integrated system. At the
same time, the adaptive filter proposed in the study and the robust filter from [28] are combined and
implemented in the WiFi/PDR integrated system to improve the accuracy of the position information
for indoor localization. The application of the adaptive filter and the robust filter is able to enhance
the reliability of indoor localization, which is the improvement of the WiFi/PDR integrated system.
The remainder of this paper is divided into six sections. Indoor positioning models including WiFi
positioning technology and inertial measurement–based PDR are reviewed in Section 2. Section 3
describes the WiFi/PDR integrated system as well as the dynamic model, observation model, and
fusion filter algorithm of the integrated system. Section 4 presents the proposed adaptive and robust
filters based on scenario and motion state recognition. The results of field experiments are then
presented and analyzed in Section 5, followed by a summary of the main conclusions in Section 6.

2. Indoor Positioning Model

2.1. WiFi Positioning Technology

The indoor positioning method based on fingerprinting information consists of two phases:
an offline data training phase and a real-time positioning phase. During the offline data training phase,
many reference points (RPs) are set in the targeted area to collect the WiFi signal information such
as signal strength and the positions of access points (APs). The coordinates of the RPs are known in
advance. After computing the signal strength distribution of all APs from different RPs, the fingerprint
database for indoor positioning in the targeted area is constructed. During the real-time positioning
phase, the positions of the target user’s mobile device are obtained by matching the real-time WiFi
signal information to the fingerprint database.

The k-nearest neighbors (KNN) algorithm is used here. An object is classified by a majority vote
of its neighbors, in which the object is assigned to the class that is most common among its k-nearest
neighbors. The targeted area is divided into a regular grid and the angular points are set to be the RPs.
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The fingerprint information includes the RSSI measurement and the coordinates of the RPs. The signal
information for the ith RP can be expressed as [29]:

Ti =


Pr (A1O1|Pti) Pr (A2O1|Pti) · · · Pr (AnO1|Pti)

Pr (A1O2|Pti) Pr (A2O2|Pti) · · · Pr (AnO2|Pti)
...

...
. . .

...
Pr (A1Ov|Pti) Pr (A2Ov|Pti) · · · Pr (AnOv|Pti)

 (1)

where A is the AP information, O is the RSSI measurement, and Pt denotes the coordinates of the RP.
The average value of the signal strength from every AP is computed in the RP. This information is

used to construct the fingerprint database. The fingerprint for the ith RP can be expressed as:

Ti =
[
Si
∣∣Pti

]
=
[

Pr
(

A1O
)

Pr
(

A2O
)
· · · Pr

(
AnO

)∣∣Pti

]
(2)

If the real-time WiFi signal strength received by the target user’s mobile device is S, the distance
between the real-time WiFi signal information and the fingerprint database is calculated by the
following matching algorithm:

di = ‖S− Si‖ (3)

Using the k-nearest neighbors algorithm, the K smallest values of di are used to compute the
coordinates of the target point:

L = ∑
i∈C

Li
di

(4)

where C is the set constructed by the K smallest values of di and Li denotes the coordinates of RP.

2.2. PDR Based on Inertial Measurement

The PDR method uses the IMU for navigation and positioning. With the increased sensor offerings
in smartphones, the accelerometer can be used as a pedometer and the magnetometers can be used as
a compass heading provider. Based on the initial position, the position information can be obtained
using the pedometer and heading.

In the PDR algorithm, the number and length of each step are measured according to the
accelerometer observations and the navigation heading is calculated using observations from the
gyroscope and magnetometer. The current position can then be computed using the following
equation [30]: {

Ni+1 = Ni + SLi × cosαi
Ei+1 = Ei + SLi × sinαi

(5)

where (N, E) denotes the position coordinates of the pedestrian, SL is the step length, and α is
the heading.

The walk will lead to a change in core, which is indicated by the accelerometer.
Hence, the batch-mode algorithm implemented for step detection can be implemented using
accelerometer information.

There is a clear correlation between the step length and the statistics of the accelerometer
information, such as the max value, variance, and period. The relationship between the step length and
walking speed has been researched in [30,31].These studies indicate that the step length became larger
unconsciously when the walking speed was intended to be faster [31]. The following three-parameter
linear model [30] is used to compute the step length via the following equation [32]:

SL = A + B× p + C× smax (6)
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where p is the period of every step, smax is the peak value of acceleration after smooth filtering, and A,
B and C are the regression coefficients, which are obtained by training.

3. WiFi/PDR Integrated System

3.1. Dynamic Model

PDR is a self-contained algorithm with high-frequency observation and it provides accurate
position information in the short term. The largest problem for PDR is the cumulative error.
The fingerprint database of WiFi positioning technology is constructed based on the known points.
There is no direct relationship for the position results at different times. The position resolution
by WiFi technology at the current moment will not be affected by the previous position resolution.
So there is no cumulative error for WiFi positioning technology. The update period is about 1 or 2 s for
WiFi positioning. It is clear that integrating WiFi positioning technology and PDR can enhance the
performance over an individual system. The Kalman filter is employed in the WiFi/PDR integrated
system. The dynamic model and observation model presented in [33] are used here. The position
error, distance error, and heading error are the state variables to be estimated. The state vector can be
expressed as [33]:

X = [dN, dE, ds, dθ] (7)

Further, the system error dynamic model of a WiFi/PDR integrated system is as follows:
dNk+1 = dNk + cosθk × dsk − sk × sinθk × dθk + wN
dEk+1 = dEk + sinθk × dsk + sk × cosθk × dθk + wE
dsk+1 = dsk + ws

dθk+1 = dθk + wθ

(8)

where N and E are the position coordinates of the integrated system in the north and east, respectively,
s is the step length calculated by the PDR algorithm, and θ is the heading angle. Further, wN, wE, ws and
wθ are the process noise of state parameters dN, dE, ds and dθ, respectively. They have a Gaussian
distribution, and their variances are denoted by δ2

N , δ2
E, δ2

s and δ2
θ , respectively.

The state transition matrix is modeled as follows:

Fk =


1 0 cosθk −sk × sinθk
0 1 sinθk sk × cosθk
0 0 1 0
0 0 0 1

 (9)

3.2. Observation Model

The observation model in the WiFi/PDR integrated system is composed of the position difference
between the WiFi positioning technology and the PDR algorithm, as follows [33]:

Z = [∆N, ∆E]T =
[

Nw,k − Np,k, Ew,k − Ep,k

]T
(10)

where (∆N, ∆E) is the position difference, (Nw,k, Ew,k) is the position result calculated by the WiFi
positioning system, and (Np,k, Ep,k) is the position calculated by the PDR algorithm.
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3.3. Fusion Algorithm with Kalman Filter

When WiFi signals are available, the Kalman filter estimation is employed to update the state
parameters through a time update and an observation update in the WiFi/PDR integrated system.
The time update process is expressed as [34]:

Xk = Fk,k−1X̂k−1 (11)

Pk = Fk,k−1Pk−1FT
k,k−1 + Qk−1 (12)

In addition, the Kalman filter observation update equation is written as:

Vk = Zk −HkXk (13)

PVk
= HkPkHT

k + Rk (14)

Gk = PkHT
k P−1

Vk
(15)

X̂k = Xk + GkVk (16)

Pk = (I−GkHk)Pk (17)

where Xk is the a priori state estimation, X̂k is the a posteriori state estimation, Gk is the gain matrix of
the Kalman filter, Pk is the a priori covariance matrix of the state vector, Pk is the a posteriori covariance
matrix of the state vector, Rk is the covariance matrix of the observation noise vector, and Qk−1 is the
covariance matrix of the process noise. The subscript k denotes the time, and the subscript k, k−1
represents the state or covariance estimates forward from k−1 to k.

We present a block diagram in Figure 1 that outlines the fundamental mechanisms of the
WiFi/PDR integrated system for indoor localization. In PDR positioning technology, observations from
an accelerometer and gyroscope are used to detect steps and compute their length. At the same time,
the observations from the magnetometer and gyroscope are used to obtain the heading information.
With the step length and heading information, the position can be estimated. The position that is
estimated by WiFi positioning technology is input into the Kalman filter to resolve the fusion position
with the position information obtained by the PDR.
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Figure 1. WiFi/PDR integrated system for indoor localization.

4. An Adaptive and Robust Filter Based on Scenario and Motion State Cognition

To improve the adaptability of the dynamic model and robustness of the observation model,
adaptive and robust filters based on the scenario and motion state recognition are employed.
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4.1. Adaptive Filter Based on Scenario and Motion State Recognition

The reliability of positions calculated using WiFi positioning technology and PDR is poor. The path
environment and motion state have a large influence on the positioning resolution. Hence, the accuracy
of the state model changes notably in different path environments and motion states. To adjust the state
model so that it adapts to different path environments and motion states, an adaptive filter based on
path environments and motion state recognition is proposed. The adaptive filter determines the type
of pedestrian path (straight or turning) [33]. In a real scenario, the type of path a pedestrian travels
is one of the factors that influences accuracy. To improve the recognition ability of the WiFi/PDR
integrated system, additional factors including the path environment (open or corridor regions) and
velocity (slow, normal, or fast) are considered.

1. The type of pedestrian path affects the accuracy of state parameter θ. The variance of dθ is
large when the pedestrian turns (δ2

θ = 2 deg × 2 deg) and smaller when he/she moves straight
(δ2

θ = 10 deg × 10 deg). The type of pedestrian path can be judged by the accumulated values of
the gyroscope data.

2. The path environment affects the accuracy of state parameters N and E. In a corridor region,
there are only two directions of motion available. In an open region, the uncertainty of motion
direction is very large. The accuracy of state parameters N and E is therefore higher in a corridor
than in an open region. When the pedestrian is located in a corridor, δ2

N = δ2
E = 2.5 m× 2.5 m;

when the pedestrian is located in an open region, δ2
N = δ2

E = 5 m× 5 m. The path environment
can be determined by the strength of the WiFi signal.

3. The velocity affects the accuracy of the step length calculation. Hence, there is a strong relation
between the velocity and state parameter s. The variance of ds is large when the pedestrian moves
at a slow or fast speed (δ2

s = 2 m× 2 m), and small when moving at normal speed (δ2
s = 1 m× 1 m).

The velocity can be determined by the accumulated values of the accelerometer data.

4.2. Robust Kalman Filter Based on Mahalanobis Distance

Under the Gaussian assumption, Zk should be Gaussian with mean HkXk and covariance PVk
.

Hence, one-mth of the squared Mahalanobis distance of Zk should be the F-distribution and m is the
dimension of observation vector Zk. The freedom of the F-distribution is m and ∞ [28,35]:

λk = M2
k /m =

(
Zk −HkXk

)T
(

PVk

)−1 (
Zk −HkXk

)
/m ∼ F (m, ∞) (18)

where Mk is the Mahalanobis distance.
An F test is constructed to determine whether the actual measurement is a realization of Zk

under the Gaussian assumption. Significance level α is the probability threshold below which the null
hypothesis is rejected. In this study, 1% is adopted and the corresponding upper α-quantile is Fα(m, ∞):

Pr [λk > Fα (m, ∞)] < α (19)

where Pr[·] represents the probability of a random event, i.e., that the probability of λk being larger than
Fα(m,∞) is very small, say α. Hence, if the actual λk is larger than this α-quantile, the null hypotheses
is rejected and it can be concluded that there is some kind of violation of the basic assumptions. In this
case, Zk is deemed to be disturbed by gross error.

If index λk is larger than Fα(m,∞), a robust factor β is introduced to inflate the covariance matrix
of the measurement noise vector:

Rk = βkRk (20)

The robust factor is calculated as:
βk =

λk
Fα (m, ∞)

(21)
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According to the above method, when λk is larger than Fα(m,∞), observation Zk is deemed to be
disturbed by gross error. In practice, it is possible for λk to be larger than Fα(m,∞), even when there is
no gross error in observation Zk.

We schematically present a block diagram in Figure 2 that outlines the fundamental mechanism
of the adaptive and robust filter based on scenario and motion state recognition. Compared with [35],
an adaptive filter based on scenario and motion state recognition is proposed with more index factors
to adjust the covariance of the dynamical model. At the same time, the robust filter in [28] is applied in
the WiFi/PDR integrated system to adjust the covariance of observation model.ISPRS Int. J. Geo-Inf. 2016, 5, 224 8 of 14 
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5. Experiment and Analysis

The experimental site was set up on the fourth floor of the School of Environment Science
and Spatial Informatics, China Mining University of Technology [33]. A WiFi network system was
established, and the Samsung Galaxy Note 3 (SM-N9002) was chosen as the mobile testing device.
As shown in Figure 3, D-LINK wireless routers (DIR-600NB) were installed every 9 m along both sides
of the corridor, providing 64 APs in total. During the experiment, the positioning system sent the
positional information to the mobile users every 2 s according to the WiFi signal strength. The data
sampling frequency of the inertial navigation system was set as 50 Hz. In the experiment, the pedestrian
started from the west end of Area C in the School of Environment Science and Spatial Informatics and
headed towards the westernmost end of Area B via Area A along the corridor at a constant speed.
During this process, the pedestrian basically held the mobile phone level and walked 316 steps in total.
The reference trajectory is compared with the trajectory calculated by the WiFi positioning technology
in Figure 4. The results show that there are many gross errors in the positioning resolution from the
WiFi technology, especially at the corners. Four gross errors are obvious and marked by red circles.
The resolution from WiFi positioning verifies that the indoor scenario is likely to disturb the WiFi
signal seriously.
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Figure 4. Comparison of the reference trajectory and WiFi positioning trajectory.

To test the efficiency of the adaptive and robust filters based on scenario and motion state
recognition, three calculation schemes were performed:

Scheme 1: standard filter only;
Scheme 2: adaptive filter based on scenario and motion state recognition;
Scheme 3: adaptive and robust filter (method proposed in Section 4).

Figure 5 shows the trajectories of the reference and three schemes. Because of the influence of
the gross error in the WiFi positioning, the position errors for the standard filter and adaptive filter
are large. Scheme 3 achieves an accurate and robust performance. The position error of Scheme 1
is slightly larger than the position accuracy of Scheme 2, which indicates that the adaptive filter is
more stable. Figure 6 compares field test trajectories for different schemes in an indoor floor plan.
The results show that Schemes 1 and 2 obtain low accuracy. When the WiFi positioning has gross
errors, the positions in Schemes 1 and 2 seriously deviate from the reference. In contrast, Scheme 3
mitigates these errors and improves the navigation result. The trajectory of Scheme 2 was located in a
corridor region during the entire experiment.
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Figure 6. Comparison of the positions calculated by different filters for WiFi/PDR integrated system in
an indoor floor plan.

Position errors were computed with respect to the reference position to evaluate performance.
Figure 7 shows the time series of the position errors in the east and north directions for different
schemes. The positions of the three schemes in the plane direction are compared in Figure 8. The root
mean square (RMS) of the position error for each scheme is presented in Table 1. The position error of
Scheme 1 is larger than the position error of Scheme 2, which indicates that the proposed adaptive
filter is able to determine the scenario and motion state and adjust the covariance of the process
noise. The adaptive and robust filter is able to mitigate the effects of gross error. The results show
that the position of Scheme 3 can achieve accuracy levels of 2.197 m, 1.406 m, and 2.608 m for the
east, north, and plane coordinate components, respectively. Compared with Scheme 1, the proposed
Scheme 3 improves the position accuracy in the east, north, and plane directions by 27%, 14%, and 24%,
respectively, clearly illustrating that the adaptive and robust Kalman filter is very effective, and all the
gross errors caused by WiFi positioning are successfully identified.

Table 1. RMS comparison of position error for different filter schemes.

Scheme East (m) North (m) Plane (m)

Standard filter 3.027 1.642 3.444
Adaptive filter 2.923 1.526 3.297

Adaptive and robust filter 2.197 1.406 2.608
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Figure 8. Comparison of the vertical position calculated by different filters for WiFi/PDR integrated system.

Table 2 compares the vertical position RMS error for the solutions of the different schemes and the
reference position for points 1, 2, 3 and 4, where gross errors occur. When compared with Scheme 1,
the adaptive and robust filter improves the plane position accuracy at points 1, 2, 3 and 4 by 68%, 44%,
61% and 68%, respectively. The results show Scheme 1 can achieve a plane position accuracy of 8.712 m,
3.561 m, 5.856 m and 5.977 m for points 1, 2, 3 and 4, respectively. In contrast, the corresponding
position errors that occur when the adaptive and robust filter is applied are 2.756 m, 1.983 m, 2.295 m
and 1.932 m, respectively. Compared with Scheme 2, Scheme 3 reduces the plane position errors at
points 1, 2, 3 and 4 by 56%, 33%, 53% and 54%, respectively. This clearly illustrates that the adaptive
and robust filter performs well at points where gross errors occur.
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Table 2. RMS comparison of plane position error for different filter schemes at points with gross error.

Scheme Point 1 (m) Point 2 (m) Point 3 (m) Point 4 (m)

Standard filter 8.712 3.561 5.856 5.977
Adaptive filter 7.612 3.162 5.385 5.153

Adaptive and robust filter 2.756 1.983 2.295 1.932

In order to develop better judgment about the proposed methods, the other experiment was
tested on the scenario that goes inside rooms. The experimental site was same as that of the above
experiment. Figure 9 shows the trajectories of the reference and three schemes. In a similar manner
to the above experimental results, it is obvious that the trajectories of Scheme 1 and Scheme 2 have
seriously deviated from the reference. Figure 10 shows the time series of the position errors in the
east and north directions for different schemes on the scenario that goes inside rooms. The root
mean square (RMS) of the position error for each scheme is presented in Table 3. The results show
that the position of Scheme 3 can achieve accuracy levels of 1.002 m, 1.069 m and 1.465 m for the
east, north, and plane coordinate components, respectively. Compared with Scheme 1, the proposed
Scheme 3 improves the position accuracy in the east, north, and plane directions by 59%, 54% and 57%,
respectively. It clearly illustrates that the adaptive and robust filter is able to improve the accuracy of
the WiFi/PDR integrated system on the scenario that goes inside rooms.ISPRS Int. J. Geo-Inf. 2016, 5, 224 12 of 14 
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Figure 9. Comparison of the trajectories of different filters for the WiFi/PDR integrated system on the
scenario that goes inside rooms.
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Figure 10. Comparison of the position calculated by different filters for WiFi/PDR integrated system
on the scenario that goes inside rooms in the east and north directions.
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Table 3. RMS comparison of position error for different filter schemes on the scenario that goes
inside rooms.

Scheme East (m) North (m) Plane (m)

Standard filter 2.451 2.321 3.376
Adaptive filter 1.986 1.940 2.776

Adaptive and robust filter 1.002 1.069 1.465

6. Conclusions

This paper presented an improved WiFi/PDR integrated system using adaptive and robust filters
to obtain more accurate position information for indoor localization. Specifically, an adaptive Kalman
filter based on scenario and motion state recognition was constructed, as well as a robust Kalman filter
based on the Mahalanobis distance. The adaptive and robust filters were implemented to improve the
position accuracy of WiFi/PDR integrated systems. Real measurements were used to demonstrate the
performance of the proposed approach.

In field tests, a comparison of the error of the standard Kalman filter, the adaptive Kalman filter,
and the adaptive and robust Kalman filter, the adaptive Kalman filter based on scenario and motion
state recognition was shown to provide a slightly better performance for WiFi/PDR integrated systems
than the standard Kalman filter. The robust Kalman filter is very effective at identifying large position
information error caused by WiFi positioning technology, and also demonstrates good robustness.
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