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Abstract: Road information is fundamental not only in the military field but also common daily living.
Automatic road extraction from a remote sensing images can provide references for city planning
as well as transportation database and map updating. However, owing to the spectral similarity
between roads and impervious structures, the current methods solely using spectral characteristics
are often ineffective. By contrast, the detailed information discernible from the high-resolution aerial
images enables road extraction with spatial texture features. In this study, a knowledge-based method
is established and proposed; this method incorporates the spatial texture feature into urban road
extraction. The spatial texture feature is initially extracted by the local Moran’s I, and the derived
texture is added to the spectral bands of image for image segmentation. Subsequently, features
like brightness, standard deviation, rectangularity, aspect ratio, and area are selected to form the
hypothesis and verification model based on road knowledge. Finally, roads are extracted by applying
the hypothesis and verification model and are post-processed based on the mathematical morphology.
The newly proposed method is evaluated by conducting two experiments. Results show that the
completeness, correctness, and quality of the results could reach approximately 94%, 90% and 86%
respectively, indicating that the proposed method is effective for urban road extraction.
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1. Introduction

As a key component of the transportation systems, roads belong to the infrastructure of
modernization. They are significant in both the military field and common daily living. With the
development of the remote sensing technology, automatic road extraction from remote sensing images
has become an important subject in digital photogrammetry [1]. Road extraction can provide references
for city planning, transportation database, map updating, and land resource management, as well as
guidance during emergencies and disaster rescue operations [2].

With the introduction of computers, road extraction gradually advanced from manual operation
to automation. Various road extraction algorithms have been proposed over the past decades,
including edge and line detection [3], image classification and segmentation [4–6], or multiple quadratic
snakes [7]. The integration of spectral and shape information has also been investigated as a means to
extract road features [8]. A review of various road extraction methods was presented by Kaur et al. [9],
which divides the road extraction process into three stages: image pre-processing, road detection,
and post-processing. Li et al. [10] reviewed some applications of semi-automatic road extraction
methods. Trinder et al. [1] proposed a knowledge-based method for road extraction from aerial
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images; in their method, the radiometric and geometric properties of roads and the relationship
among the roads in images of different resolutions are used to extract roads. However, this method
requires different resolution images, which are difficult to achieve because of mismatch of different
data sources. Shi et al. [11] presented an integrated method to extract urban main-road centerlines
from optical images. The method integrates spectral–spatial classification, local Geary’s C, road shape
features, locally weighted regression, and tensor voting. The method uses the spectral bands only;
as a result, it fails to handle complex road junctions. Miao et al [12] extracted the road centerline
from high-resolution imagery by using shape features and multivariate adaptive regression splines
(MARS) which separated the road features from the background; consequently, the smoothness of
the extracted road centerline was increased. Nevertheless, the proposed method is based on the
homogeneous surface properties, but the texture information is not considered. Thus, it is unsuitable
for extracting spectral heterogeneous roads. Singh and Garg [13] used the adaptive global thresholds
and the morphological operations to extract road networks from high resolution satellite images.
The drawback is that some non-roads are also extracted as roads. Song and Civco [14] integrated
shape features with the results of pixel-wise support vector machine classification to extract roads.
Given that the detailed information of the roads is not considered, their method is unsuitable for road
extraction from high-resolution images. In conclusion, various algorithms have been proposed for
road extraction; however, they share a common problem. The detailed information is inadequately
considered, and spectral similarities exist between roads and other artificial structures with impervious
surfaces; as a result, the accuracy of the extraction is relatively low when using spectral bands alone.

To overcome the aforementioned problem and improve the accuracy of road extraction, a new
method is proposed in this study to extract urban roads from high-resolution remote sensing images.
The proposed road extraction method is based on object-based methods [15], in which the spatial
texture feature is extracted by using the local spatial statistics, and the derived texture is added to the
spectral bands for road extraction.

2. Methodology

This study proposes a method for urban road extraction from high-resolution aerial images.
The method is divided into three key processes: texture information extraction, road extraction,
and post-processing. The texture information is extracted from the remote sensing images firstly
and is added to the spectral bands of the image. Second, the urban roads are extracted using the
knowledge-based model. Finally, the extracted results are post-processed to eliminate noise by using
mathematical morphology. Figure 1 illustrates the processes in detail.

ISPRS Int. J. Geo-Inf. 2016, 5, 114  2 of 12 

 

extraction methods. Trinder et al. [1] proposed a knowledge-based method for road extraction from 

aerial images; in their method, the radiometric and geometric properties of roads and the relationship 

among the roads in images of different resolutions are used to extract roads. However, this method 

requires different resolution images, which are difficult to achieve because of mismatch of different 

data sources. Shi et al. [11] presented an integrated method to extract urban main-road centerlines 

from optical images. The method integrates spectral–spatial classification, local Geary’s C, road shape 

features, locally weighted regression, and tensor voting. The method uses the spectral bands only; as 

a result, it fails to handle complex road junctions. Miao et al [12] extracted the road centerline from 

high-resolution imagery by using shape features and multivariate adaptive regression splines 

(MARS) which separated the road features from the background; consequently, the smoothness of 

the extracted road centerline was increased. Nevertheless, the proposed method is based on the 

homogeneous surface properties, but the texture information is not considered. Thus, it is unsuitable 

for extracting spectral heterogeneous roads. Singh and Garg [13] used the adaptive global thresholds 

and the morphological operations to extract road networks from high resolution satellite images. The 

drawback is that some non-roads are also extracted as roads. Song and Civco [14] integrated shape 

features with the results of pixel-wise support vector machine classification to extract roads. Given 

that the detailed information of the roads is not considered, their method is unsuitable for road 

extraction from high-resolution images. In conclusion, various algorithms have been proposed for 

road extraction; however, they share a common problem. The detailed information is inadequately 

considered, and spectral similarities exist between roads and other artificial structures with 

impervious surfaces; as a result, the accuracy of the extraction is relatively low when using spectral 

bands alone. 

To overcome the aforementioned problem and improve the accuracy of road extraction, a new 

method is proposed in this study to extract urban roads from high-resolution remote sensing images. 

The proposed road extraction method is based on object-based methods [15], in which the spatial 

texture feature is extracted by using the local spatial statistics, and the derived texture is added to the 

spectral bands for road extraction.  

2. Methodology 

This study proposes a method for urban road extraction from high-resolution aerial images. The 

method is divided into three key processes: texture information extraction, road extraction, and post-

processing. The texture information is extracted from the remote sensing images firstly and is added 

to the spectral bands of the image. Second, the urban roads are extracted using the knowledge-based 

model. Finally, the extracted results are post-processed to eliminate noise by using mathematical 

morphology. Figure 1 illustrates the processes in detail.  

Texture Extracted 

by Local Spatial 

Statistics

Post-processed by 

Mathematical 

Morphology

High-resolution 

Remote Sensing 

Image

Final Road

Road Extraction

Hypothesized 

Road Extraction 

Verification of 

Hypotheses

 

Figure 1. Flow chart of the newly proposed method. Figure 1. Flow chart of the newly proposed method.
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2.1. Texture Information Extraction

Image texture generally describes the spatial variability of radiometric data, and it is expressed as
the digital numbers of a remote sensing image. In extracting features from images, texture information
plays a critical role in distinguishing among roads, buildings, and other artificial objects [16]. Before
the texture information extraction, the road edges are initially enhanced using a bilateral filter, which
is defined as [17,18]

BF rLsP “
1

Wp

ÿ

qPs
Gσs p||p´ q||qGσr

`
ˇ

ˇLp ´ Lq
ˇ

ˇ

˘

Lq (1)

where L is the image. The normalization factor Wp ensures that the sum of the pixel weights is equal
to 1.0 Gσs p||p´ q||q. Gσr is a range Gaussian that decreases the influence of pixel q when the intensity
value Lq value differs from Lp. The target pixel that will be filtered is denoted by p [17], and the weight
Gσs for pixel q is defined by the Gaussian Lp. The image filtered by the bilateral filter is processed
by the principal component analysis (PCA) [19], The PCA result is calculated with the local Moran’s
I index for texture extraction. The result is then added to the spectral bands of the image by layer
stacking. The local Moran’s I [20,21] is defined as

I “
n
řn

i“1
řn

j“1 wij pxi ´ xq
`

xj ´ x
˘

řn
i“1

řn
j“1 wij

řn
i“1 pxi ´ xq2

(2)

where n is the number of georeferenced observations, xi, xj are the observations at the ith and jth
location respectively, and x the mean of the observations. The value of weight wij in Equation (2) is
determined based on the adjacent neighbors and is defined as

wij “

#

1 if i, j are adjacent neighbors

0 otherwise
(3)

A specific class of neighborhood rules must be selected to compute the local Moran’s I. This rule
defines which adjacent pixels should be compared with the central pixel. The choices are listed as
follows [22]:

Rook’s Case Selects the pixels on the top, bottom, left, and right.
Bishop’s Case Selects four diagonal neighboring pixels.
Queen’s Case Selects all eight neighboring pixels.
Horizontal Selects two neighboring pixels in the same row.
Vertical Selects two neighboring pixels in the same column.
Positive Slope Selects two neighboring pixels in opposite corners in a positive diagonal.
Negative Slope Selects two neighboring pixels in opposite corners in a negative diagonal.

For ease of computation, wij is set as one and the rook’s case adjacency is selected in this study.

2.2. Road Extraction

In this paper, the selection and representation of road knowledge is critical. In general, road
knowledge from the high-resolution remote sensing images is described as follows: (1) the road objects
generated by image segmentation present a relatively homogeneous gray, showing a certain level
of contrast with the surrounding background [18]. (2) Roads are ribbon-shaped with steady width.
(3) The rectangularity and aspect ratio are high. (4) The road edges are obvious and the two edges
on both sides of the road are parallel. A knowledge-based method is used to extract the roads in this
study. The method consists of two main steps: hypothesis generation and hypothesis verification.
A hypothesis model is established to generate the hypotheses for roads, and these hypotheses are later
verified with the verification model.

When an entire road is divided into several road segments by multi-scale segmentation, the
regular boundary of the road segment turns into an irregular polygon. For polygonal objects, using the
external rectangle is an effective method to describe the shape approximately [23]. In general, external
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rectangle includes minimum bounding rectangle (MBR) and minimum area bounding rectangle
(MABR). The MABR can better describe the direction, length, width, and other shape characteristics of
a polygonal object [23]; thus, this study uses the MABR of a road object to express road knowledge.
The MABR calculation method was proposed by Castleman [24]. Figure 2a shows the schematic
diagram of the MABR. The search rectangle is first rotated around the polygon’s centroid at a regular
angle interval angle of 5˝. The areas of search rectangles are calculated after each rotation and the
rectangle with the smallest area is the MABR of the road segment. The MABR is illustrated in Figure 2b.
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Figure 2. Minimum area bounding rectangle (MABR). (a) The schematic diagram of MABR;
(b) The MABR of road object.

Quantitative expression parameters of road knowledge include brightness, mean, standard
deviation, rectangularity, area and so on. The “brightness” is used to represent the gray value of an
image, whereas the “mean” is used to represent the gray value of a band of the image. The relationship
between the brightness and mean is defined as

B “
1
K

K
ÿ

i“0

mi (4)

where B is the brightness. K is the number of bands in the image, and mi is the mean gray value of the
ith band. The standard deviation reflects the homogeneity of road objects. The standard deviation is
defined as

σ “

g

f

f

e

1
N

N
ÿ

i“0

pui ´ uq2 (5)

where σ is the standard deviation of the road object. N is the number of pixels in the road object.
u is the mean gray value of the road object and ui is the gray value of the ith pixel in the road object.
According to road knowledge (1) mentioned in the first paragraph of Section 2.2, the standard deviation
of road objects is to some extent low, and the gray presents a certain contrast with the surrounding
background. Thus, the brightness and standard deviation are selected to build the hypothesis model.
The other three components of road knowledge (Paragraph 1, Section 2.2) show that the rectangularity
and aspect ratio of road objects are rather high. However, another problem is that the rectangularity
and aspect ratio of the buildings are also relatively high. To overcome this problem, we use the area to
eliminate the negative influences of the buildings. The buildings are independent in image and they
are not bordering each other; thus, the area of the building is significantly less than that of the road.
In conclusion, the rectangularity, aspect ratio and area are selected to develop the verification model.
Rectangularity is described as
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RE “
Aroad

AMABR
“

Aroad
AMABR ˆWMABR

(6)

where RE is the rectangularity of the road, Aroad is the area of the road, AMABR is the area of the
MABR, LMABR and WMABR are the length and width of the MABR respectively. The expression for the
hypothesis model is as follows:

Hroad “ Broad Y Sroad
Broad “ tb|b1 ă b ă b2u ; Sroad “ ts|s1 ă s ă s2u

(7)

where Hroad represents the hypothetical roads, b and s are the brightness and standard deviation of
the roads respectively, b is calculated using the average gray value of the four bands (R, G, B and the
spatial texture). b1 and b2 are the predefined thresholds for the brightness of the roads, s1 and s2 are
the predefined thresholds for the standard deviation of the roads. For the objects generated by image
segmentation, if b P rb1, b2s or s P rs1, s2s, then the corresponding objects belong to set Broad or set Sroad
respectively. The hypothesis verification model is used to remove those false objects such as trees,
vehicles and artificial structures. The expression for the hypothesis verification model is as follows:

Vroad “ Hroad XY
Y “ RYW Y A

R “ tr|r ă r1u ; W “ tw|w ă w1u ; A “ ta|a ă a1u

(8)

where Vroad represents the roads after verification, r, w and a are the rectangularity, aspect ratio and
area of the roads respectively, r1, w1 and a1 are the predefined thresholds for the rectangularity, aspect
ratio and area of the road segments respectively. For the objects generated by image segmentation, if
r P p0, r1q, w P p0, w1q or a P p0, a1q, then the corresponding objects belong to set R, set W, or set A,
respectively. In Equation (8), Y is the complement set of set Y. Equation (8) means that, when the objects
in the hypothetical roads are included in set Y, then they are removed from the Hroad. The verified
results are the extracted roads.

The complete method for road extraction is shown in Figure 3, which contains sufficient and
detailed information of its entire procedure.
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2.3. Post-Processing

As a result of the variations in the vehicles, lanes, buildings, and other ground objects, certain
noises and holes appear in the road extraction results. To eliminate them and improve the accuracy of
the results, we process the extracted results by the closing operation of mathematical morphology.

Mathematical morphology method was introduced by Matheron and Serra in 1964, and it is
one of the most important frameworks for non-linear image processing [25]. The basic operations of
mathematical morphology include dilation, erosion, opening and closing. The closing operation is
defined as

A ‚ B “ pA‘ Bq a B (9)

where ‚ is the closing operation, A is the binary image, B is the structuring element, ‘ and a are the
dilation and erosion operations, respectively. Figure 4 shows the experiment for the closing operation.
Figure 4a presents the original image, and Figure 4b shows the results of the road extraction. The results
after being processed by the closing operation are shown in Figure 4c.
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Figure 4. Experiment of the closing operation. (a) Original image; (b) Results of road extraction;
(c) Results of the closing operation.

In this study, the selected structuring element was a disc with a radius r of 2 pixels. When the
structuring element is at this scale, the roads are not adversely affected. Consequently, the roads are
extracted more completely.

3. Results and discussions

3.1. Experiment 1

The study area is located in Yangjiang, Guangdong Province, China. A 0.1 m three-band (red,
green and blue) aerial image with a size of 2808 pixels ˆ 2719 pixels is used in this study, as shown in
Figure 5a. It was provided by the national disaster reduction center of China. The width of the road is
approximately 10 m. The type of the road is high-grade urban.

PCA is a standard tool in modern data analysis, and it can compress and enhance data by
applying linear algebra [19]. The dimension of the data can be reduced by PCA. In this experiment,
PCA was performed for data compression and image enhancement by using the ENVI software
package (Transform > Principal Components > Forward PC Rotation > Compute New Statistics and
Rotate). The principal components were calculated based on a covariance matrix. The dimension
of input data is three, and that of the PCA result is one. The PCA result was shown in Figure 5b
and selected for texture information extraction with the local Moran’s I. With respect to the adjacent
neighbors, the rook’s case adjacencies were selected to limit comparisons to pixels that share an edge.
The result obtained by the local Moran’s I was shown in Figure 5c, and this result was added to the
original bands of the image by layer stacking.
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Figure 5. Results on the first image. (a) Study area image; (b) Band 1 of Principal Component Analysis
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road; (f) Road after verification; (g) Extracted Road and original image superposition; (h) Result using
Hu’s method.

After the texture information extraction, the multi-scale segmentation method was used for
image segmentation. The multi-scale segmentation is a bottom-up region-merging technique starting
with one-pixel objects [26]. In the subsequent steps, smaller image objects are merged into larger
ones. Through this pair-wise clustering process, the underlying optimization procedure minimizes
the heterogeneity of the resulting image objects. In each step, a pair of adjacent image objects are
merged, resulting in the smallest growth of the defined heterogeneity. If the smallest growth exceeds
the threshold defined by the scale parameter, the process stops. The scale parameter [26] can be
determined by the number of pixels of the extracted ground target of interest or the range of spatial
structure in the image. The smaller the scale parameter is, the less frequent the merging process is
implemented. The generated image object region is likewise smaller, and the size of the generated
image objects increases as the scale parameter increases. In this way, the homogeneous image objects
are generated. Figure 5d presents the result of image segmentation. The generated objects were
processed by the hypothesis model, and the hypothetical roads were obtained, as shown in Figure 5e.
Subsequently, the hypothesis verification model is used to validate the hypothetical roads and remove
the false roads. In this process, the values of b1, b2, s1, s2, r1, w1 and a1 are defined as 75, 105, 12,
15, 0.6, 2 and 50000 pixels respectively. Figure 5f presents the roads after verification, which was
post-processed by the closing operation of mathematical morphology. The post-processed result was
illustrated in Figure 5g. Figure 5h shows the result with the Hu’s method [27], in which, spectral and
shape features but texture information are used in road extraction.

3.2. Experiment 2

In the second case study, the newly proposed method is tested on a high-resolution image
acquired by unmanned aerial vehicles. The size of the image is 2080 pixelsˆ 2395 pixels, and its spatial
resolution is 0.1 m per pixel. The image is shown in Figure 6a. The roads in this image have many
branches, and such roads are very common in actual practice.

As in the previous experiment, the local Moran’s I was likewise applied to extract texture
information in this experiment after the PCA. Figure 6b shows the PCA results, which was processed by
the local Moran’s I with the rook’s case adjacencies. The texture information in Figure 6c was added to
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the original bands and the multi-scale segmentation method was again applied to image segmentation.
Figure 6d shows the result of image segmentation. The hypothesis model was applied to extract roads,
and the result is shown in Figure 6e. In Figure 6e, some buildings and other impervious surfaces,
which should have been removed, are mistaken for roads. The hypothesis verification model was used
to remove the false roads, and the result is shown in Figure 6f. In this process, the values of b1, b2, s1,
s2, r1, w1 and a1 are defined as 110, 130, 4, 8, 0.5, 1 and 4000 pixels respectively. The morphological
closing operation was applied to fill the holes. The result was shown in Figure 6g. Figure 6h shows the
result obtained using the Hu’s method [27], which had been described in Section 3.1.
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3.3. Accuracy Evaluation

To evaluate the accuracy of the road extraction results in the two experiments, we compare them
to the manually created ground-truth representation of the roads. The manually delineated roads are
shown in Figure 7, which presents the extracted roads for comparison.
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The following three widely accepted evaluation measures are used to evaluate how well our road
extraction results match the ground-truth data set [4,5,28–30].

Completeness “
TP

TP` FN
(10)

Correctness “
TP

TP` FP
(11)

Quality “
TP

TP` FN ` FP
(12)

where TP denotes the extracted road pixels that coincide with the reference data, FN refers to the road
pixels that are in the reference data but not in the extracted result, and FP represents the extracted road
pixels that are not in the reference data. Table 1 presents the accuracy of the road extraction results.

Table 1. Accuracy evaluation of road extraction.

Experiment Method Completeness (%) Correctness (%) Quality (%)

1
Proposed method 95.12 90.31 86.31

Hu’s Method 89.91 86.24 78.63

2
Proposed method 93.56 91.53 86.11

Hu’s Method 92.55 87.33 81.59

It can be seen from Table 1 that the extracted results are fairly accurate, which justifies the
effectiveness of the proposed method. In Experiment 1, the completeness and correctness of the results
can respectively reach 95.12% and 90.31%, and the quality of the results is 86.31%. The corresponding
accuracy values for Experiment 2 are 93.56%, 91.53%, and 86.11%, respectively. Compared with the
existing method, the proposed method achieves higher accuracy. However, some errors still exist for
two possible reasons. The first reason is the influence of mixed pixels, which blur the road boundary
and consequently affect the accuracy of road extraction. The other reason is the negative influence
of vehicles, trees and dust, which present spectra different from those of roads and may thus be
easily omitted (Figure 8). In future research, the road vector data can be used to connect broken
road segments.
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3.4. Parameter Selection

In the newly proposed method, few parameters, such as the segmentation scale are set according
to the input image resolution. In general, the segmentation scale and road width are positively
correlated. In this paper, the road width Wroad is approximately 100 pixels, and the segmentation
scale was set to 100, 110, ..., 300 according to the analysis of the image characteristics. After some trial
and error, the proposed extraction method with a segmentation scale of 200 performs best when the
homogeneity of the road objects is the highest. We can find the detailed definition of the homogeneity
in [31]. The optimal segmentation scale would be larger than 200 when the road width is thicker
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than 100 pixels and vice versa. Moreover, on the basis of numerous experiments, we got an empirical
conclusion that the optimal segmentation scale is usually 2ˆWroad. However, when applied to the
complex road networks, certain deviations may occur, and the optimal segmentation scale is usually
in the scope of p2˘ 0.5qWroad, which can be used in determining of the general range of the optimal
segmentation scale.

However, some parameter selections require manual interaction in the proposed method.
We conduct a sensitivity analysis on the proposed method by varying each parameter within a
reasonable range while holding other parameters fixed [32]. Quality (Q), which is introduced in
Section 3.3, is used to evaluate the free parameter quantitatively. When Q reaches the global maximum,
the corresponding value of the free parameter is selected as the threshold value. For the parameter
selections in Experiment 1, the quantitative results for the free parameters are shown in Figure 9,
which compares several reasonable values of b1, b2, s1, s2, r1, w1 and a1 (Section 2.2). According to the
experiments, the values of b1, b2, s1, s2, r1, w1 and a1 are set to 75, 105, 12, 15, 0.6 and 2, respectively.
The corresponding free parameters in Experiment 2 are also set using the same procedure.
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4. Conclusions

In this study, the representation and extraction of road knowledge are investigated, and a
knowledge-based method to extract urban roads from high-resolution aerial images is proposed.
More specifically, the proposed method incorporates texture, spectral and shape features. Compared
with existing methods, which use spectral and shape features without texture information, the
proposed method exhibits improved accuracy, as shown in Table 1. Furthermore, with the use of
mathematical morphology in the post-processing stage, the proposed method shows good smoothness
of road edges and reduces the negative influence of vehicles, lanes, and other ground objects.
The overall quality of the results is higher than 85%.

The newly developed approach is evaluated by using high resolution RGB aerial images.
The experimental results show that the proposed method can be used to extract roads successfully.
In view of the influence of mixed pixels, research on target-enhancing algorithms are worth exploring
to increase the contrast between roads and other land markers. Furthermore, a small quantity of
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broken road segments appear in the experiments; thus, the use of road vector data to connect these
broken road segments warrants further research.
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