Integrating Spatial and Attribute Characteristics of Extended Voronoi Diagrams in Spatial Patterning Research: A Case Study of Wuhan City in China
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Area
2.2. Data
3. Methodology
3.1. Voronoi Diagrams Used to Compare the Distance Extension
- Point index (including the healthcare index, universities and college index and stadiums index): This index is calculated using the linear model based on the grid center. The basis of the service radius from the inside to the outside is used to calculate the attribute value according to the distance linear attenuation model:
- Line index (including road accessibility): This index is calculated using the exponential model along the linear target. The basis of the service radius from the inside to the outside is used to calculate the attribute value according to the distance decay exponential model:
- Polygon index (including the noise index): This index is obtained by calculating the action mark directly.
3.2. Spatial Aggregation and Separation Index of Voronoi Diagrams
- The Voronoi polygon self-neighborhood aggregation index is calculated with the following equation:
- The Voronoi polygon regional aggregation index is calculated as follows:
3.3. Technical Research Flowcharts
- Step 1: The study map is divided into 100 m × 100 m grids by using ESRI’s ArcGIS 9.3 software.
- Step 2: A Voronoi diagram based on the center point dataset of sample points is constructed. Then, spatial overlay analysis between the Voronoi diagram and the current land use map is performed to obtain the land use type area for every Voronoi polygon. The spatial and attribute character parameters are saved into a spatial and attribute data table (Table 2). In Table 2, the coordinate is the Voronoi polygon center point, and the triangle ID is the serial number of the Voronoi polygon Delaunay triangle. The vertex and edge datasets represent the vertex and edge of every Voronoi polygon. The land use type reflects the status of each land use type, such as 0, 1 and 2. Aggregation index and clustering level data are obtained in Step 3.
- Step 3: The model is used to calculate the neighborhood aggregation index for every Voronoi polygon using Equations (7) and (8). To obtain the clustering grade data, the model performs a cluster analysis based on the shortest distance method using SPSS software. Finally, the model produces the experimental Voronoi diagram map based on the principle of “similar category incorporation and heterogeneous merging”.
3.4. Voronoi Diagrams’ Building Process
3.4.1. Calculating the Initial Centre Points and Edges
- Step 1: Although any point can be used as the initial point P1, to improve program efficiency, a point near the center of the study area was chosen as the initial point of the grid. The numbers of initial center points and edges are stored in TPointSetArry and TPointSetList, respectively.
- Step 2: The model comparison distance is defined by Equation (3).
- Step 3: The initial value of is defined as the larger value. In this paper, the diagonal length of the graphic in the entire study area is defined as the initial value of .
- Step 4: The distance between two points is calculated by using Equation (9) if the grid cell of the initial point also contains other points. This distance is then compared to to identify the nearest point to the initial point . Selecting a small value reassigns it to .
- Step 5: The adjacent grid cells are searched until the shortest side of is found, and the search pattern moves from left to right and from top to bottom. Then, the shortest side is taken as the initial Delaunay edge. The number of initial Delaunay edges is stored in TriSetList.
3.4.2. Constructing the Delaunay Triangulation
- Step 1: Taking as the current processing edge, the intersect calculation is then performed with the bottom line of the grid cells to obtain the value of . The intersection grid column gives the value of . Similarly, the intersect calculation is conducted with the right bottom line of the grid cells to obtain the value of . The intersection grid column provides the value of . Finally, the cells and are obtained at the right grid.
- Step 2: The unit triangle is formed by three vertices: , and . The triangle circumcircle is then constructed.
- Step 3: Repeat Step 1 in the area covered by the circumcircle. The point that creates the largest angle with the current edge is selected as the vertex. Then, the triangle is constructed in the circle formed by the points by repeating the previous steps until all of the grid units covered by the circumcircle are searched and no other vertex is available. The resulting triangle is a Delaunay triangle.
- Step 4: The center point and Delaunay triangle are numbered. The numbers of the three central points (vertices) that comprise the Delaunay triangle are recorded. These data are stored in TPointSetListD, and the numerical value of nTriCount is incremented by 1.
3.4.3. Constructing the Voronoi Homogeneous Diagram Map
- Step 2: A convex hull boundary with the peripheral boundary connects each center point of the adjacent triangles in the circumcircle. The entire experimental data area is searched using the novel model, and then, the Voronoi homogeneous diagram map of the study area is produce.
3.5. Spatial Clustering and Autocorrelation Analysis Method
4. Results and Discussion
4.1. Spatial Pattern Clustering Results
4.2. Discussion
5. Conclusions and Future Work
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Dewan, A.M.; Corner, R.J. Spatiotemporal analysis of urban growth, sprawl and structure. In Dhaka Megacity: Geospatial Perspectives on Urbanisation, Environment and Health; Dewan, A., Corner, R., Eds.; Springer: Dordrecht, The Netherlands, 2014; pp. 99–121. [Google Scholar]
- Tewolde, M.G.; Cabral, P. Urban sprawl analysis and modeling in asmara, eritrea. Remote Sens. 2011, 3, 2148–2165. [Google Scholar] [CrossRef]
- Rahman, M. Detection of land use/land cover changes and urban sprawl in al-khobar, saudi arabia: An analysis of multi-temporal remote sensing data. ISPRS Int. J. Geo-Inf. 2016, 5, 15. [Google Scholar] [CrossRef]
- Wang, X.; Ning, L.; Yu, J.; Xiao, R.; Li, T. Changes of urban wetland landscape pattern and impacts of urbanization on wetland in wuhan city. Chin. Geogr. Sci. 2008, 18, 47–53. [Google Scholar] [CrossRef]
- Dewan, A.M.; Yamaguchi, Y. Land use and land cover change in greater dhaka, bangladesh: Using remote sensing to promote sustainable urbanization. Appl. Geogr. 2009, 29, 390–401. [Google Scholar] [CrossRef]
- Dewan, A.M.; Yamaguchi, Y. Using remote sensing and gis to detect and monitor land use and land cover change in dhaka metropolitan of bangladesh during 1960–2005. Environ. Monit. Assess. 2008, 150, 237–249. [Google Scholar] [CrossRef] [PubMed]
- Dewan, A.M.; Yamaguchi, Y.; Ziaur Rahman, M. Dynamics of land use/cover changes and the analysis of landscape fragmentation in dhaka metropolitan, bangladesh. GeoJ 2012, 77, 315–330. [Google Scholar] [CrossRef]
- Irwin, E.G. New directions for urban economic models of land use change: Incorporating spatial dynamics and heterogeneity. J. Reg. Sci. 2010, 50, 65–91. [Google Scholar] [CrossRef]
- Vaz, E. The future of landscapes and habitats: The regional science contribution to the understanding of geographical space. Habitat Int. 2016, 51, 70–78. [Google Scholar] [CrossRef]
- Nijkamp, P.; Kourtit, K. The “new urban europe”: Global challenges and local responses in the urban century. Eur. Plan. Stud. 2013, 21, 291–315. [Google Scholar] [CrossRef]
- Byomkesh, T.; Nakagoshi, N.; Dewan, A.M. Urbanization and green space dynamics in greater dhaka, bangladesh. Landsc. Ecol. Eng. 2012, 8, 45–58. [Google Scholar] [CrossRef]
- Gordon, A.; Simondson, D.; White, M.; Moilanen, A.; Bekessy, S.A. Integrating conservation planning and landuse planning in urban landscapes. Landsc. Urban Plan. 2009, 91, 183–194. [Google Scholar] [CrossRef]
- Sakieh, Y.; Salmanmahiny, A.; Jafarnezhad, J.; Mehri, A.; Kamyab, H.; Galdavi, S. Evaluating the strategy of decentralized urban land-use planning in a developing region. Land Use Policy 2015, 48, 534–551. [Google Scholar] [CrossRef]
- Rodrigue, J.P. Geography of Transport Systems, 3rd ed.; Routledge, Taylor & Francis Group: New York, NY, USA, 2013. [Google Scholar]
- Zeng, C.; Liu, Y.; Stein, A.; Jiao, L. Characterization and spatial modeling of urban sprawl in the wuhan metropolitan area, China. Int. J. Appl. Earth Observ. Geoinf. 2015, 34, 10–24. [Google Scholar] [CrossRef]
- Xiao, J.; Shen, Y.; Ge, J.; Tateishi, R.; Tang, C.; Liang, Y.; Huang, Z. Evaluating urban expansion and land use change in shijiazhuang, china, by using gis and remote sensing. Landsc. Urban Plan. 2006, 75, 69–80. [Google Scholar] [CrossRef]
- Ma, Y.; Xu, R. Remote sensing monitoring and driving force analysis of urban expansion in guangzhou city, china. Habitat Int. 2010, 34, 228–235. [Google Scholar] [CrossRef]
- Hsu, W.-T. Central place theory and city size distribution*. Econ. J. 2012, 122, 903–932. [Google Scholar] [CrossRef]
- Abdel-Rahman, H.M.; Wang, P. Toward a general-equilibrium theory of a core-periphery system of cities. Reg. Sci. Urban Econ. 1995, 25, 529–546. [Google Scholar] [CrossRef]
- Kuby, M. A location-allocation model of lösch’s central place theory: Testing on a uniform lattice network. Geogr. Anal. 1989, 21, 316–337. [Google Scholar] [CrossRef]
- Thomas, M.D. Growth pole theory, technological change, and regional economic growth. Pap. Reg. Sci. 1975, 34, 3–25. [Google Scholar] [CrossRef]
- Mansury, Y.; Gulyás, L. The emergence of zipf’s law in a system of cities: An agent-based simulation approach. J. Econ. Dyn. Control 2007, 31, 2438–2460. [Google Scholar] [CrossRef]
- Baynes, T.; Heckbert, S. Micro-scale simulation of the macro urban form: Opportunities for exploring urban change and adaptation. In Multi-Agent-Based Simulation X, Proceedings of International Workshop MABS 2009, Budapest, Hungary, 11–12 May 2009; pp. 14–24.
- Chen, Y.; Zhou, Y. Scaling laws and indications of self-organized criticality in urban systems. Chaos Solitons Fractals 2008, 35, 85–98. [Google Scholar] [CrossRef]
- Batty, M. Complex spatial systems: The modelling foundations of urban and regional analysis. Urban Stud. 2001, 38, 1402–1404. [Google Scholar]
- Amson, J.C. Catastrophe theory: A contribution to the study of urban systems? Environ. Plan. B Plan. Des. 1975, 2, 177–221. [Google Scholar] [CrossRef]
- Batty, M. Cities and fractals: Simulating growth and form. In Fractals and Chaos; Springer-Verlag New York, Inc.: New York, NY, USA, 1991; pp. 43–69. [Google Scholar]
- Wong, D.W.S.; Fotheringham, A.S. Urban systems as examples of bounded chaos: Exploring the relationship between fractal dimension, rank-size, and rural-to-urban migration. Geogr. Ann. 1990, 72, 89–99. [Google Scholar] [CrossRef]
- Portugali, J. Self-organization and the city. In Encyclopedia of Complexity and Systems Science; Meyers, A.R., Ed.; Springer New York: New York, NY, USA, 2009; pp. 7953–7991. [Google Scholar]
- Yeh, A.G.O.; Li, X. Measurement and monitoring of urban sprawl in a rapidly growing region using entropy. Photogramm. Eng. Remote Sens. 2001, 67, 83–90. [Google Scholar]
- Aguilera, F.; Valenzuela, L.M.; Botequilha-Leitão, A. Landscape metrics in the analysis of urban land use patterns: A case study in a spanish metropolitan area. Landsc. Urban Plan. 2011, 99, 226–238. [Google Scholar] [CrossRef]
- Black, D.; Henderson, V. A theory of urban growth. J. Political Econ. 1999, 107, 252–284. [Google Scholar] [CrossRef]
- Eaton, J.; Eckstein, Z. Cities and growth: Theory and evidence from france and japan. Reg. Sci. Urban Econ. 1997, 27, 443–474. [Google Scholar] [CrossRef]
- Sklar, F.H.; Costanza, R. The development of dynamic spatial models for landscape ecology: A review and prognosis. Ecol. Stud. Anal. Synth. 1991, 82, 239–288. [Google Scholar]
- Parker, D.C.; Manson, S.M.; Janssen, M.A.; Hoffmann, M.J.; Deadman, P. Multi-agent systems for the simulation of land-use and land-cover change: A review. Ann. Assoc. Am. Geogr. 2003, 93, 314–337. [Google Scholar] [CrossRef]
- Araya, Y.H.; Cabral, P. Analysis and modeling of urban land cover change in Setúbal and Sesimbra, portugal. Remote Sens. 2010. [Google Scholar] [CrossRef]
- Herold, M.; Goldstein, N.C.; Clarke, K.C. The spatiotemporal form of urban growth: Measurement, analysis and modeling. Remote Sens. Environ. 2003, 86, 286–302. [Google Scholar] [CrossRef]
- Cromley, G.R.; Hanink, M.D. Coupling land use allocation models with raster gis. J. Geogr. Syst. 1999, 1, 137–153. [Google Scholar] [CrossRef]
- Chen, Y.; Li, X.; Liu, X.; Ai, B.; Li, S. Capturing the varying effects of driving forces over time for the simulation of urban growth by using survival analysis and cellular automata. Landsc. Urban Plan. 2016, 152, 59–71. [Google Scholar] [CrossRef]
- Nourqolipour, R.; Shariff, A.R.B.M.; Ahmad, N.B.; Balasundram, S.K.; Sood, A.M.; Buyong, T.; Amiri, F. Multi-objective-based modeling for land use change analysis in the south west of selangor, malaysia. Environ. Earth Sci. 2015, 74, 4133–4143. [Google Scholar] [CrossRef]
- Almeida, C.M.; Gleriani, J.M.; Castejon, E.F.; Soares, B.S. Using neural networks and cellular automata for modelling intra-urban land-use dynamics. Int. J. Geogr. Inf. Sci. 2008, 22, 943–963. [Google Scholar] [CrossRef]
- Wang, F.; Marceau, D.J. A patch-based cellular automaton for simulating land-use changes at fine spatial resolution. Trans. GIS 2013, 17, 828–846. [Google Scholar] [CrossRef]
- Barreira-González, P.; Gómez-Delgado, M.; Aguilera-Benavente, F. From raster to vector cellular automata models: A new approach to simulate urban growth with the help of graph theory. Comput. Environ. Urban Syst. 2015, 54, 119–131. [Google Scholar] [CrossRef]
- Moreno, N.; Wang, F.; Marceau, D.J. Implementation of a dynamic neighborhood in a land-use vector-based cellular automata model. Comput. Environ. Urban Syst. 2009, 33, 44–54. [Google Scholar] [CrossRef]
- Páez, A.; Scott, D.M. Spatial statistics for urban analysis: A review of techniques with examples. GeoJ 2005, 61, 53–67. [Google Scholar] [CrossRef]
- Luck, M.; Wu, J. A gradient analysis of urban landscape pattern: A case study from the phoenix metropolitan region, arizona, USA. Landsc. Ecol. 2002, 17, 327–339. [Google Scholar]
- Getis, A.; Ord, J.K. The analysis of spatial association by use of distance statistics. In Perspectives on Spatial Data Analysis; Anselin, L., Rey, J.S., Eds.; Springer: Berlin, Germany, 2010; pp. 127–145. [Google Scholar]
- Lee, I.; Pershouse, R.; Lee, K. Geospatial cluster tessellation through the complete order-k voronoi diagrams. In Spatial Information Theory, Proceedings of the 8th International Conference, COSIT 2007, Melbourne, Australiia, 19–23 September 2007; pp. 321–336.
- She, B.; Zhu, X.; Ye, X.; Guo, W.; Su, K.; Lee, J. Weighted network voronoi diagrams for local spatial analysis. Comput. Environ. Urban Syst. 2015, 52, 70–80. [Google Scholar] [CrossRef]
- Yamada, I.; Thill, J.-C. Local indicators of network-constrained clusters in spatial point patterns. Geogr. Anal. 2007, 39, 268–292. [Google Scholar] [CrossRef]
- Pissourios, I.; Lafazani, P.; Spyrellis, S.; Christodoulou, A.; Myridis, M. The use of point pattern statistics in urbananalysis. In Proceedings of the Bridging the Geographic Information Sciences: International Agile’2012 Conference, Avignon, France, 24–27 April 2012.
- Spinney, J.; Kanaroglou, P.; Scott, D. Exploring spatial dynamics with land price indexes. Urban Stud. 2011, 48, 719–735. [Google Scholar] [CrossRef]
- Chica-Olmo, J. Prediction of housing location price by a multivariate spatial method: Cokriging. J. Real Estate Res. 2007, 29, 91–114. [Google Scholar]
- Chi, G.; Zhu, J. Spatial regression models for demographic analysis. Popul. Res. Policy Rev. 2008, 27, 17–42. [Google Scholar] [CrossRef]
- Anselin, L. Local indicators of spatial association—LISA. Geogr. Anal. 1995, 27, 93–115. [Google Scholar] [CrossRef]
- Anselin, L. Under the hood issues in the specification and interpretation of spatial regression models. Agric. Econ. 2002, 27, 247–267. [Google Scholar] [CrossRef]
- Mostafavi, M.A.; Beni, L.H.; Mallet, K.H. Geosimulation of geographic dynamics based on voronoi diagram. In Transactions on Computational Science IX: Special Issue on Voronoi Diagrams in Science and Engineering; Gavrilova, M.L., Tan, C.J.K., Anton, F., Eds.; Springer: Berlin, Germany, 2010; pp. 183–201. [Google Scholar]
- Ali, R.; Zhao, H. Wuhan, china and pittsburgh, USA: Urban environmental health past, present, and future. EcoHealth 2008, 5, 159–166. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.; Guan, X.; He, C.; Zhang, J. Spatio-temporal patterns and policy implications of urban land expansion in metropolitan areas: A case study of wuhan urban agglomeration, central china. Sustainability 2014, 6, 4723. [Google Scholar] [CrossRef]
- Cheng, J.; Masser, I. Urban growth pattern modeling: A case study of wuhan city, pr china. Landsc. Urban Plan. 2003, 62, 199–217. [Google Scholar] [CrossRef]
- Burkey, M.L.; Bhadury, J.; Eiselt, H.A. Voronoi diagrams and their uses. In Foundations of Location Analysis; Eiselt, A.H., Marianov, V., Eds.; Springer US: Boston, MA, USA, 2011; pp. 445–470. [Google Scholar]
- Kao, B.; Lee, S.D.; Lee, F.K.; Cheung, D.W.; Ho, W.-S. Clustering uncertain data using voronoi diagrams and r-tree index. IEEE Trans. Knowl. Data Eng. 2010, 22, 1219–1233. [Google Scholar]
- Lau, B.; Sprunk, C.; Burgard, W. Improved Updating of Euclidean Distance Maps and Voronoi Diagrams. In Proceedings of the 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Taipei, Taiwan, 18–22 October 2010.
- Sharifzadeh, M.; Shahabi, C. Vor-tree: R-trees with voronoi diagrams for efficient processing of spatial nearest neighbor queries. Proc. VLDB Endow. 2010, 3, 1231–1242. [Google Scholar] [CrossRef]
- Chen, J.; Zhao, R.; Qiao, C. Voronoi diagram-based gis spatial analysis. Geomat. Inf. Sci. Wuhan Univ. 2003, 1, 32–37. [Google Scholar]
- Akdogan, A.; Demiryurek, U.; Banaei-Kashani, F.; Shahabi, C. Voronoi-based geospatial query processing with mapreduce. In Proceedings of the 2010 IEEE Second International Conference on Cloud Computing Technology and Science (CloudCom), Indianapolis, IN, USA, 30 November 2010–3 December 2010.
- Sieger, D.; Alliez, P.; Botsch, M. Optimizing voronoi diagrams for polygonal finite element computations. In Proceedings of the 19th International Meshing Roundtable, Chattanooga, TN, USA, 3–6 October 2010; Springer: Berlin, Germany, 2010; pp. 335–350. [Google Scholar]
- Chen, J.; Zhao, R.; Li, Z. Voronoi-based k-order neighbour relations for spatial analysis. ISPRS J. Photogramm. Remote Sens. 2004, 59, 60–72. [Google Scholar] [CrossRef]
- Nickel, S.; Puerto, J. Location Theory: A Unified Approach; Springer: Berlin, Germany, 2009. [Google Scholar]
- Pallant, J. Spss Survival Manual: A Step by Step Guide to Data Analysis Using Spss for Windows Version 15; Open University Press: Berkshire, UK, 2007; p. 352. [Google Scholar]
- Beiler, M.R.O.; Treat, C. Integrating gis and ahp to prioritize transportation infrastructure using sustainability metrics. J. Infrastruct. Syst. 2015, 21, 11. [Google Scholar] [CrossRef]
- Akıncı, H.; Özalp, A.Y.; Turgut, B. Agricultural land use suitability analysis using gis and ahp technique. Comput. Electron. Agric. 2013, 97, 71–82. [Google Scholar] [CrossRef]
- Cay, T.; Uyan, M. Evaluation of reallocation criteria in land consolidation studies using the analytic hierarchy process (ahp). Land Use Policy 2013, 30, 541–548. [Google Scholar] [CrossRef]
- O’Neill, R.V.; Krummel, J.R.; Gardner, R.H.; Sugihara, G.; Jackson, B.; DeAngelis, D.L.; Milne, B.T.; Turner, M.G.; Zygmunt, B.; Christensen, S.W.; et al. Indices of landscape pattern. Landsc. Ecol. 1988, 1, 153–162. [Google Scholar] [CrossRef]
- Alberti, M. The effects of urban patterns on ecosystem function. Int. Reg. Sci. Rev. 2005, 28, 168–192. [Google Scholar] [CrossRef]
- Szabo, S.; Csorba, P.; Szilassi, P. Tools for landscape ecological planning—Scale, and aggregation sensitivity of the contagion type landscape metric indices. Carpath. J. Earth Environ. Sci. 2012, 7, 127–136. [Google Scholar]
- Aurenhammer, F.; Klein, R.; Lee, D.-T.; Klein, R. Voronoi Diagrams and Delaunay Triangulations; World Scientific: Singapore, 2013. [Google Scholar]
- Chen, J.; Luo, C.; Krishnan, M.; Paulik, M.; Tang, Y. An enhanced dynamic delaunay triangulation-based path planning algorithm for autonomous mobile robot navigation. Proc. SPIE 2010. [Google Scholar] [CrossRef]
- Sudbo, J.; Bankfalvi, A.; Bryne, M.; Marcelpoil, R.; Boysen, M.; Piffko, J.; Hemmer, J.; Kraft, K.; Reith, A. Prognostic value of graph theory-based tissue architecture analysis in carcinomas of the tongue. Lab. Investig. 2000, 80, 1881–1889. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.Z.; Yan, H.U.; Yong-Qiang, M.A. Voronoi diagram generation algorithm based on delaunay triangulation: Voronoi diagram generation algorithm based on delaunay triangulation. J. Comput. Appl. 2010, 30, 75–77. [Google Scholar] [CrossRef]
- Beumer, C.; Martens, P. Bimby’s first steps: A pilot study on the contribution of residential front-yards in phoenix and maastricht to biodiversity, ecosystem services and urban sustainability. Urban Ecosyst. 2016, 19, 45–76. [Google Scholar] [CrossRef]
- Anselin, L. The moran scatterplot as an esda tool to assess local instability in spatial association. In Spatial Analytical Perspectives on GIS; Fisher, M., Sholten, H., Unwin, D., Eds.; Taylor & Francis: London, UK, 1996; pp. 111–125. [Google Scholar]
- Anselin, L. Local spatial autocorrelation. In Exploring Spatial Data with Geodatm: A Workbook; Spatial Analysis Laboratory: Champaign, IL, USA, 2005; pp. 129–147. [Google Scholar]
- Anselin, L.; Syabri, I.; Kho, Y. Geoda: An introduction to spatial data analysis. Geogr. Anal. 2006, 38, 5–22. [Google Scholar] [CrossRef]
- Pacheco, I.A.; Tyrrell, J.T. Testing spatial patterns and growth spillover effects in clusters of cities. J. Geogr. Syst. 2002, 4, 275–285. [Google Scholar] [CrossRef]
- Grimm, N.B.; Grove, J.M.; Pickett, S.T.A.; Redman, C.L. Integrated approaches to long-term studies of urban ecological systems. In Urban Ecology: An International Perspective on the Interaction between Humans and Nature; Marzluff, J.M., Shulenberger, E., Endlicher, W., Alberti, M., Bradley, G., Ryan, C., Simon, U., ZumBrunnen, C., Eds.; Springer US: Boston, MA, USA, 2008; pp. 123–141. [Google Scholar]
- Clark, W.A.V. Residential segregation in american cities: A review and interpretation. Popul. Res. Policy Rev. 1986, 5, 95–127. [Google Scholar] [CrossRef]
- Jaret, C. Recent neo-marxist urban analysis. Annu. Rev. Sociol. 1983, 9, 499–525. [Google Scholar] [CrossRef]
- Mollenkopf, J. Neighbourhood political development and the politics of urban growth. Int. J. Urban Reg. Res. 1981, 5, 15–39. [Google Scholar] [CrossRef]
- Berry, B.J.L. Urbanization and counterurbanization in the united states. Ann. Am. Acad. Political Soc. Sci. 1980, 451, 13–20. [Google Scholar] [CrossRef]
- Alonso, W. Location and land use: Toward a general theory of land rent. Econ. Geogr. 1964, 42, 11–26. [Google Scholar]
- Zhong, C.; Arisona, S.M.; Huang, X.; Batty, M.; Schmitt, G. Detecting the dynamics of urban structure through spatial network analysis. Int. J. Geogr. Inform. Sci. 2014, 28, 2178–2199. [Google Scholar] [CrossRef]
- Vaz, E.; Zhao, Y.; Cusimano, M. Urban habitats and the injury landscape. Habitat Int. 2016, 56, 52–62. [Google Scholar] [CrossRef]
Index | Weight | Index | Weight | Index | Weight |
---|---|---|---|---|---|
residential floor area ratio (U1) | 0.1592 | building density (U2) | 0.1304 | population density (U3) | 0.1001 |
green area (U4) | 0.1052 | road accessibility (U5) | 0.0706 | pipe network status (U6) | 0.0583 |
health care (U7) | 0.0544 | universities and colleges (U8) | 0.0476 | stadium completion degree (U9) | 0.0424 |
noise index (U10) | 0.0537 | land price (U11) | 0.0821 | land idle rate (U12) | 0.0960 |
No. | Field | Type | No. | Field | Type | No. | Field | Type |
---|---|---|---|---|---|---|---|---|
1 | Voronoi ID | Long | 4 | Vertex Datasets | CArray | 7 | Area | Float |
2 | Coordinate | TPoint | 5 | Edge Datasets | CArray | 8 | Aggregation Index | Float |
3 | Triangle ID | CList | 6 | Land Use Type | Int | 9 | Clustering level | Int |
Level | Residential Land | Commercial Land | Industrial Land | ||||||
---|---|---|---|---|---|---|---|---|---|
Index Value | Area (hm2) | Ratio (%) | Index Value | Area (hm2) | Ratio (%) | Index Value | Area (hm2) | Ratio (%) | |
1st level | ≥0.83 | 16.58 | 12.52 | ≥0.89 | 3.28 | 13.94 | 0.00 | 0.00 | 0.00 |
2nd level | 0.75~0.82 | 27.32 | 20.63 | 0.77~0.88 | 6.57 | 27.92 | 0.69~0.78 | 8.49 | 18.39 |
3rd level | 0.49~0.74 | 47.60 | 35.94 | 0.52~0.76 | 8.59 | 36.49 | 0.42~0.68 | 24.40 | 52.86 |
4th level | 0.33~0.48 | 40.94 | 30.91 | 0.38~0.51 | 5.10 | 21.65 | 0.29~0.41 | 13.27 | 28.75 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miao, Z.; Chen, Y.; Zeng, X.; Li, J. Integrating Spatial and Attribute Characteristics of Extended Voronoi Diagrams in Spatial Patterning Research: A Case Study of Wuhan City in China. ISPRS Int. J. Geo-Inf. 2016, 5, 120. https://doi.org/10.3390/ijgi5070120
Miao Z, Chen Y, Zeng X, Li J. Integrating Spatial and Attribute Characteristics of Extended Voronoi Diagrams in Spatial Patterning Research: A Case Study of Wuhan City in China. ISPRS International Journal of Geo-Information. 2016; 5(7):120. https://doi.org/10.3390/ijgi5070120
Chicago/Turabian StyleMiao, Zuohua, Yong Chen, Xiangyang Zeng, and Jun Li. 2016. "Integrating Spatial and Attribute Characteristics of Extended Voronoi Diagrams in Spatial Patterning Research: A Case Study of Wuhan City in China" ISPRS International Journal of Geo-Information 5, no. 7: 120. https://doi.org/10.3390/ijgi5070120
APA StyleMiao, Z., Chen, Y., Zeng, X., & Li, J. (2016). Integrating Spatial and Attribute Characteristics of Extended Voronoi Diagrams in Spatial Patterning Research: A Case Study of Wuhan City in China. ISPRS International Journal of Geo-Information, 5(7), 120. https://doi.org/10.3390/ijgi5070120