A Combinatorial Reasoning Mechanism with Topological and Metric Relations for Change Detection in River Planforms: An Application to GlobeLand30’s Water Bodies
Abstract
:1. Introduction
2. Related Works
2.1. Topological Relations of Lines and Regions
2.2. Metric Relations of Lines and Regions
2.3. Topological and Metric Combined Relations of Lines and Regions
3. River Planforms and Their GIS Models
3.1. Two Typical Classifications of River Planforms
3.2. GIS Models of River Planforms
3.3. Simple GIS Models of River Planforms
4. Combinatorial Reasoning Mechanism for RPCs
4.1. Spatial Relations between SGRPMs
4.1.1. Topological Relations between SGRPMs
4.1.2. Metric Relations between SGRPMs
- is the distance between A’s SP () and’s SP ();
- is the distance between A’s SP () and ’s SP ();
- is the distance between B’s SP () and ’s SP ();
- is the distance between B’s SP () and ’s SP ();
- is the distance between A’s SP () and B’s SP (); and
- is the distance between’s SP () and’s SP ():
- ;
- ;
- ; and
- .
4.1.3. Combinatorial Reasoning Mechanism with Topological and Metric Relations between the SGRPMs
4.2. Segmentation Rules for River Planforms
4.3. A Combinatorial Reasoning Mechanism Table of River Planforms
5. Conclusions and Future Work
Acknowledgments
Author Contributions
Conflicts of Interest
Appendix A
References
- Perillo, G.M.E.; Pérez, D.E.; Piccolo, M.C.; Palma, E.D.; Cuadrado, D.G. Geomorphologic and physical characteristics of a human impacted estuary: Quequén Grande river estuary, Argentina. Estuar. Coast. Shelf Sci. 2005, 62, 301–312. [Google Scholar] [CrossRef]
- Gregory, K.J. The human role in changing river channels. Geomorphology 2006, 79, 172–191. [Google Scholar] [CrossRef]
- Billen, G.; Garnier, J.; Ficht, A.; Cun, C. Modeling the response of water Quality in the Seine River estuary to human activity in its watershed over the last 50 years. Estuaries 2001, 24, 977–979. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, Z.F.; Liu, S.M.; Wu, Y.; Xiong, H.; Chen, H.T. Human impacts on the large world rivers: Would the Changjiang (Yangtze River) be an illustration? Glob. Biogeochem. Cycles 1999, 13, 1099–1105. [Google Scholar] [CrossRef]
- Vanacker, V.; Molina, A.; Govers, G.; Poesen, J.; Dercon, G.; Deckers, S. River channel response to short-term human-induced change in landscape connectivity in Andean ecosystems. Geomorphology 2005, 72, 340–353. [Google Scholar] [CrossRef]
- Ghoshal, S.; James, L.A.; Singer, M.B.; Aalto, R. Channel and floodplain change analysis over a 100-year period: Lower Yuba River, California. Remote Sens. 2010, 2, 1797–1825. [Google Scholar] [CrossRef] [Green Version]
- Khan, N.I.; Islam, A. Quantification of erosion patterns in the Brahmaputra-Jamuna River using geographical information system and remote sensing techniques. Hydrol. Process. 2003, 17, 959–966. [Google Scholar] [CrossRef]
- Goswami, U.; Sarma, J.N.; Patgiri, A.D. River channel changes of the Subansiri in Assam, India. Geomorphology 1999, 30, 227–244. [Google Scholar] [CrossRef]
- Pati, J.K.; Lal, J.; Prakash, K.; Bhusan, R. Spatio-temporal shift of Western Bank of the Ganga River, Allahabad City and its implications. J. Indian Soc. Remote Sens. 2008, 36, 289–297. [Google Scholar] [CrossRef]
- Rakwatin, P.; Sansena, T.; Marjang, N.; Rungsipanich, A. Using multi-temporal remote-sensing data to estimate 2011 flood area and volume over Chao Phraya River basin, Thailand. Remote Sens. Lett. 2013, 4, 243–250. [Google Scholar] [CrossRef]
- Das, J.D.; Dutta, T.; Saraf, A.K. Remote sensing and GIS application in change detection of the Barak River Channel, N.E. India. J. Indian Soc. Remote Sens. 2007, 35, 301–312. [Google Scholar] [CrossRef]
- Kummu, M.; Lu, X.X.; Rasphone, A.; Sarkkula, J.; Koponen, J. Riverbank changes along the Mekong River: Remote sensing detection in the Vientiane-Nong Khai area. Quat. Int. 2008, 186, 100–112. [Google Scholar] [CrossRef]
- Mossa, J. Historical changes of a major juncture: Lower Old River, Louisiana. Phys. Geogr. 2013, 34, 315–334. [Google Scholar]
- Kumar, A.; Jayappa, K.S.; Deepika, B. Application of remote sensing and geographic information system in change detection of the Netravati and Gurpur river channels, Karnataka, India. Geocarto Int. 2010, 25, 397–425. [Google Scholar] [CrossRef]
- Peixoto, J.M.A.; Nelson, B.W.; Wittmann, F. Spatial and temporal dynamics of river channel migration and vegetation in central Amazonian white-water floodplains by remote-sensing techniques. Remote Sens. Environ. 2009, 113, 2258–2266. [Google Scholar] [CrossRef]
- Lau, T.; Franklin, W.R. River network completion without height samples using geometry-based induced terrain. Cartogr. Geogr. Inf. Sci. 2013, 40, 316–325. [Google Scholar] [CrossRef]
- Mantilla, R.; Gupta, V.K. A GIS numerical framework to study the process basis of scaling statistics in river networks. IEEE Geosci. Remote Sens. Lett. 2005, 2, 404–408. [Google Scholar] [CrossRef]
- Langhammer, J.; Vilímek, V. Landscape changes as a factor affecting the course and consequences of extreme floods in the Otava river basin, Czech Republic. Environ. Monit. Assess. 2008, 144, 53–66. [Google Scholar] [CrossRef] [PubMed]
- Wohlfart, C.; Liu, G.; Huang, C.; Kuenzer, C. A River Basin over the course of Time: Multi-temporal analyses of Land surface dynamics in the Yellow River basin (China) based on medium resolution remote sensing data. Remote Sens. 2016, 8. [Google Scholar] [CrossRef]
- Assunção, M.D.; Calheiros, R.N.; Bianchi, S.; Netto, M.A.S.; Buyya, R. Big data computing and clouds: Trends and future directions. J. Parallel Distrib. Comput. 2015, 79, 3–15. [Google Scholar] [CrossRef]
- Fan, J.; Han, F.; Liu, H. Challenges of big data analysis. Nat. Sci. Rev. 2014, 1, 293–314. [Google Scholar] [CrossRef] [PubMed]
- Gandomi, A.; Haider, M. Beyond the hype: Big data concepts, methods, and analytics. Int. J. Inf. Manag. 2015, 35, 137–144. [Google Scholar] [CrossRef]
- Kambatla, K.; Kollias, G.; Kumar, V.; Grama, A. Trends in big data analytics. J. Parallel Distrib. Comput. 2014, 74, 2561–2573. [Google Scholar] [CrossRef]
- Swan, M. The quantified self: Fundamental disruption in big data science and biological discovery. Big Data 2013, 1, 85–99. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Chen, J.; Liao, A.P.; Cao, X.; Chen, L.J.; Chen, X.H.; He, C.Y.; Han, G.; Peng, S.; Lu, M.; et al. Global land cover mapping at 30m resolution: A POK-based operational approach. ISPRS J. Photogramm. Remote Sens. 2015, 103, 7–27. [Google Scholar] [CrossRef]
- Han, G.; Chen, J.; He, C.Y.; Li, S.N.; Wu, H.; Liao, A.P.; Peng, S. A web-based system for supporting global land cover data production. ISPRS J. Photogramm. Remote Sens. 2015, 103, 66–80. [Google Scholar] [CrossRef]
- Zhao, Y.Y.; Gong, P.; Yu, L.; Hu, L.Y.; Li, X.Y.; Li, C.C.; Zhang, H.Y.; Zheng, Y.M.; Wang, J.; Zhao, Y.C.; et al. Towards a common validation sample set for global land-cover mapping. Int. J. Remote Sens. 2014, 35, 4795–4814. [Google Scholar] [CrossRef]
- Grekousis, G.; Mountrakis, G.; Kavouras, M. An overview of 21 global and 43 regional land-cover mapping products. Int. J. Remote Sens. 2015, 36, 5309–5335. [Google Scholar] [CrossRef]
- Arsanjani, J.J.; Tayyebi, A.; Vaz, E. GlobeLand30 as an alternative fine-scale global land cover map: Challenges, possibilities, and implications for developing countries. Habitat Int. 2016, 55, 25–31. [Google Scholar] [CrossRef]
- Ran, Y.; Li, X. First comprehensive fine-resolution global land cover map in the world from China—Comments on global land cover map at 30-m resolution. Sci. China Earth Sci. 2015, 58, 1677–1678. [Google Scholar] [CrossRef]
- Costabile, P.; Macchione, F.; Natale, L.; Petaccia, G. Flood mapping using LIDAR DEM. Limitations of the 1-D modeling highlighted by the 2-D approach. Nat. Hazards 2015, 77, 181–204. [Google Scholar] [CrossRef]
- Flener, C.; Vaaja, M.; Jaakkola, A.; Krooks, A.; Kaartinen, H.; Kukko, A.; Kasviet, E.; Hyyppä, H.; Hyyppä, J.; Alho, P. Seamless mapping of river channels at high resolution using mobile LiDAR and UAV-Photography. Remote Sens. 2013, 5, 6382–6407. [Google Scholar] [CrossRef]
- Mandlburger, G.; Hauer, C.; Wieseret, M.; Pfeifer, N. Topo-Bathymetric LiDAR for monitoring river morphodynamics and instream habitats—A case study at the Pielach River. Remote Sens. 2015, 7, 6160–6195. [Google Scholar] [CrossRef]
- Pan, Z.; Glennie, C.; Hartzell, P.; Fernandez-Diaz, J.C.; Legleiter, C.; Overstreetet, B. Performance assessment of high resolution airborne full waveform LiDAR for shallow river bathymetry. Remote Sens. 2015, 7, 5133–5159. [Google Scholar] [CrossRef]
- Teng, J.; Vaze, J.; Dutta, D.; Marvanek, S. Rapid inundation modelling in large floodplains using LiDAR DEM. Water Res. Manag. 2015, 29, 2619–2636. [Google Scholar] [CrossRef]
- Goulden, T.; Hopkinson, C.; Jamieson, R.; Sterling, S. Sensitivity of DEM, slope, aspect and watershed attributes to LiDAR measurement uncertainty. Remote Sens. Environ. 2016, 179, 23–35. [Google Scholar] [CrossRef]
- Peršić, V.; Horvatić, J. Spatial distribution of nutrient limitation in the Danube river floodplain in Relation to hydrological connectivity. Wetlands 2011, 31, 933–944. [Google Scholar] [CrossRef]
- Zhou, D.M.; Luan, Z.Q.; Guo, X.Y.; Lou, Y.J. Spatial distribution patterns of wetland plants in relation to environmental gradient in the Honghe National nature reserve, Northeast China. J. Geogr. Sci. 2012, 22, 57–70. [Google Scholar] [CrossRef]
- Schilling, K.E.; Jacobson, P. Spatial relations of topography, lithology and water quality in a large river floodplain. River Res. Appl. 2012, 28, 1417–1427. [Google Scholar] [CrossRef]
- Hudson, P.F.; Colditz, R.R.; Aguilar-Robledo, M. Spatial relations between floodplain environments and land use—Land cover of a large lowland tropical river valley: Pánuco Basin, México. Environ. Manag. 2006, 38, 487–503. [Google Scholar] [CrossRef] [PubMed]
- Pan, D.Y.; Domon, G.; Blois, S.D.; Andre, B. Temporal (1958–1993) and spatial patterns of land use changes in haut-Saint-Laurent (Quebec, Canada) and their relation to landscape physical attributes. Landsc. Ecol. 1999, 14, 35–52. [Google Scholar]
- Hernández-Gracidas, C.A.; Sucar, L.E.; Montes-y-Gómez, M. Improving image retrieval by using spatial relations. Multimedia Tools Appl. 2011, 62, 479–505. [Google Scholar] [CrossRef]
- Buckingham, S.E.; Whitney, J.W. GIS methodology for quantifying channel change in Las Vegas, Nevada. J. Am. Water Res. Assoc. 2007, 43, 888–898. [Google Scholar] [CrossRef]
- Egenhofer, M.J.; Franzosa, R.D. Point-set topological spatial relations. Int. J. Geogr. Inf. Syst. 1991, 5, 161–174. [Google Scholar] [CrossRef]
- Formica, A.; Pourabbas, E.; Rafanelli, M. Constraint relaxation of the polygon-polyline topological relation for geographic pictorial query languages. Comput. Sci. Inf. Syst. 2013, 10, 1053–1075. [Google Scholar] [CrossRef]
- Lin, P.L.; Tan, W.H. An efficient method for the retrieval of objects by topological relations in spatial database systems. Inf. Process. Manag. 2003, 39, 543–559. [Google Scholar] [CrossRef]
- Liu, K.F.; Shi, W.Z. Computing the fuzzy topological relations of spatial objects based on induced fuzzy topology. Int. J. Geogr. Inf. Sci. 2006, 20, 857–883. [Google Scholar] [CrossRef]
- Liu, K.F.; Shi, W.Z. Extended model of topological relations between spatial objects in geographic information systems. Int. J. Appl. Earth Obs. Geoinform. 2007, 9, 264–275. [Google Scholar] [CrossRef]
- Wang, S.S.; Liu, D.; Zhang, C.; Liu, D.Y. Representation, reasoning and similar matching for detailed topological relations with DTString. Inf. Sci. 2014, 276, 255–277. [Google Scholar] [CrossRef]
- Gao, Y.; Zhang, Y.; Tian, Y.; Weng, J.N. Topological relations between directed lines and simple geometries. Sci. China Ser. E 2008, 51, 91–101. [Google Scholar] [CrossRef]
- Long, Z.G.; Li, S.J. A complete classification of spatial relations using the Voronoi-based nine-intersection model. Int. J. Geogr. Inf. Sci. 2013, 27, 2006–2025. [Google Scholar] [CrossRef]
- Ber, F.L.; Napoli, A. Design and comparison of lattices of topological relations for spatial representation and reasoning. J. Exp. Theor. Artif. Intell. 2003, 15, 331–371. [Google Scholar] [CrossRef]
- Deng, M.; Cheng, T.; Chen, X.Y.; Li, Z.L. Multi-level topological relations between spatial regions based upon topological invariants. Geoinformatica 2007, 11, 239–267. [Google Scholar] [CrossRef]
- Schneider, M.; Behr, T. Topological relationships between complex lines and complex regions. Lect. Notes Comput. Sci. 2005, 3716, 483–496. [Google Scholar] [CrossRef]
- Renz, J.; Rauh, R.; Knauff, M. Towards Cognitive Adequacy of Topological Spatial Relations. In Spatial Cognition II; Springer: Berlin/Heidelberg, Germany, 2000; pp. 184–197. [Google Scholar]
- Du, S.H.; Wang, Q.; Guo, L. Modeling the scale dependences of topological relations between lines and regions induced by reduction of attributes. Int. J. Geogr. Inf. Sci. 2010, 24, 1649–1686. [Google Scholar] [CrossRef]
- Guo, L.; Du, S.H. Deriving topological relations between regions from direction relations. J. Vis. Lang. Comput. 2009, 20, 368–384. [Google Scholar] [CrossRef]
- Wang, K. A computational model for direction relations between spatial objects in GIS. Optik. Int. J. Light Electron. Opt. 2014, 125, 6981–6986. [Google Scholar] [CrossRef]
- Deng, M.; Li, Z.L. A statistical model for directional relations between spatial objects. Geoinformatica 2007, 12, 193–217. [Google Scholar] [CrossRef]
- Lin, J.X.; Chen, C.C.; Wu, J.W. CD-graph: Planar graph representation for spatial adjacency and neighbourhood relation with constraints. Int. J. Geogr. Inf. Sci. 2013, 27, 1902–1923. [Google Scholar] [CrossRef]
- Du, Y.; Liang, F.; Sun, Y. Integrating spatial relations into case-based reasoning to solve geographic problems. Knowl. Based Syst. 2012, 33, 111–123. [Google Scholar] [CrossRef]
- Nedas, K.A.; Egenhofer, M.J.; Wilmsen, D. Metric details of topological line–line relations. Int. J. Geogr. Inf. Sci. 2007, 21, 21–48. [Google Scholar] [CrossRef]
- Xu, J. Formalizing natural-language spatial relations between linear objects with topological and metric properties. Int. J. Geogr. Inf. Sci. 2007, 21, 377–395. [Google Scholar] [CrossRef]
- Legleiter, C.J. A geostatistical framework for quantifying the reach-scale spatial structure of river morphology: Variogram models, related metrics, and relation to channel form. Geomorphology 2014, 205, 65–84. [Google Scholar] [CrossRef]
- Brice, J.C. Planform Properties of Meandering Rivers. In Proceedings of the Rivers’ 83 Conference, New Orleans, LA, USA, 24–26 October 1983.
- Fuller, C. River and Channel Morphology; Technical Report Prepared for Horizons Regional Council; Massey University: Раlmеrstоn Nоrth, Nеw Zеаlаnd, 2007. [Google Scholar]
Time 1\Time 2 | SSLM | DSLM | DSL-1RM | DSL-SRM |
---|---|---|---|---|
SSLM | Yes | Yes | Yes | Yes |
DSLM | Yes | Yes | Yes | |
DSL-1RM | Yes | Yes | ||
DSL-SRM | Yes |
Num | Segments | DSL4IMs | IDMs | DS8DMs |
---|---|---|---|---|
1 | St–L1 | Null | ||
2 | L1–L2 | |||
3 | L2–L3 | |||
4 | L3–L4 | |||
5 | L4–L5 | |||
6 | L5–L6 | |||
7 | L6–End |
© 2017 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leng, L.; Yang, G.; Chen, S. A Combinatorial Reasoning Mechanism with Topological and Metric Relations for Change Detection in River Planforms: An Application to GlobeLand30’s Water Bodies. ISPRS Int. J. Geo-Inf. 2017, 6, 13. https://doi.org/10.3390/ijgi6010013
Leng L, Yang G, Chen S. A Combinatorial Reasoning Mechanism with Topological and Metric Relations for Change Detection in River Planforms: An Application to GlobeLand30’s Water Bodies. ISPRS International Journal of Geo-Information. 2017; 6(1):13. https://doi.org/10.3390/ijgi6010013
Chicago/Turabian StyleLeng, Liang, Guodong Yang, and Shengbo Chen. 2017. "A Combinatorial Reasoning Mechanism with Topological and Metric Relations for Change Detection in River Planforms: An Application to GlobeLand30’s Water Bodies" ISPRS International Journal of Geo-Information 6, no. 1: 13. https://doi.org/10.3390/ijgi6010013
APA StyleLeng, L., Yang, G., & Chen, S. (2017). A Combinatorial Reasoning Mechanism with Topological and Metric Relations for Change Detection in River Planforms: An Application to GlobeLand30’s Water Bodies. ISPRS International Journal of Geo-Information, 6(1), 13. https://doi.org/10.3390/ijgi6010013