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Abstract: Trajectory simplification has become a research hotspot since it plays a significant role in the
data preprocessing, storage, and visualization of many offline and online applications, such as online
maps, mobile health applications, and location-based services. Traditional heuristic-based algorithms
utilize greedy strategy to reduce time cost, leading to high approximation error. An Optimal Trajectory
Simplification Algorithm based on Graph Model (OPTTS) is proposed to obtain the optimal solution
in this paper. Both min-# and min-ε problems are solved by the construction and regeneration of
the breadth-first spanning tree and the shortest path search based on the directed acyclic graph
(DAG). Although the proposed OPTTS algorithm can get optimal simplification results, it is difficult
to apply in real-time services due to its high time cost. Thus, a new Online Trajectory Simplification
Algorithm based on Directed Acyclic Graph (OLTS) is proposed to deal with trajectory stream. The
algorithm dynamically constructs the breadth-first spanning tree, followed by real-time minimizing
approximation error and real-time output. Experimental results show that OPTTS reduces the global
approximation error by 82% compared to classical heuristic methods, while OLTS reduces the error
by 77% and is 32% faster than the traditional online algorithm. Both OPTTS and OLTS have leading
superiority and stable performance on different datasets.

Keywords: trajectory simplification; breadth-first spanning tree; shortest path search; directed
acyclic graph

1. Introduction

With the rapid growth of modern technologies to navigate objects’ geo-locations, geo-positioning
mobile devices have accumulated a huge amount of trajectory data. The un-exploited knowledge
behind trajectory data has attracted many researchers’ attention and interests. In addition, different
domains have all taken advantage of trajectory data in their own applications such as navigation
applications, animal protection agencies, and air traffic control department [1]. With the development
of sensor technology, position-locating equipment can acquire spot information more precisely, also at
a higher frequency, leading to stronger accuracy in trajectory tracking. Nonetheless, collection of points
can sometimes cause problems with data storage, transmission, visualization, and pattern discovery.
Massive trajectory data can occupy a large amount of storage space, thus increasing data transmission
costs enormously [2] and leading visualization system to delay or even collapse. Therefore, a growing
concern for the trajectory simplification (TS) issue has been raised.
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A trajectory is composed of a series of track points, expressed as T = {pi|i = 1, 2, 3, . . . , N}, where
N is the number of track points. When the input is a data stream, N → ∞ . Every track point is
composed of spatial information and time stamp, expressed as pi = (xi, yi, ti). The aim of the TS
algorithm is to select and maintain M points from N points of the original trajectory (M < N). Upon
simplification, the trajectory can be expressed as T′ =

{
pk1 , pk2 , . . . , pkM

}
, where 1 ≡ k1 < k2 < . . . <

kM ≡ N. The beginning and ending points are usually contained in the compressed trajectory. Figure 1
shows the illustration of the original and simplified trajectory.
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Figure 1. Illustration of trajectory simplification. The original trajectory consists of ten points and the
simplified trajectory contains four points, namely {p1, p5, p9, p10}.

The optimal simplification is to retain the smallest number of points and to achieve the minimum
approximation error. However, the increase of either the approximation error or the number of points
remained may result in the decrease of the other factor. Given certain constraints, TS can be approached
in two ways:

• Minimum point number problem (min-#): Given an approximation error threshold of ε, trajectory
T is compressed to achieve the minimum number of points, M.

• Minimum approximation error problem (min-ε): Given the maximum number of points M,
trajectory T is compressed to achieve the minimum approximation error.

A large number of TS algorithms have been proposed, most of which are heuristic-based.
Heuristic algorithms use greedy strategy to eliminate track points with minimum error, leading
to low time complexity. However, inappropriate selection of local optimization conditions can lead
to high approximation error. Some optimal-based TS algorithms have been proposed to reduce the
compression error, but cannot get the optimal solution under current conditions. Furthermore, due to
the urgent demand of real-time services, online TS algorithms have been developed to deal with the
trajectory stream. However, current online methods usually adopt heuristic methods which cannot
obtain the optimal solution.

In this paper, an Optimal Trajectory Simplification Algorithm based on Graph Model (OPTTS) is
proposed to achieve the optimal solution. First, the min-# problem is solved by the construction
of a breadth-first spanning tree. Then the regeneration of the spanning tree and the shortest
path search based on a directed acyclic graph (DAG) are carried out to solve the min-ε problem.
OPTTS works in batch mode and gains the optimal result. Furthermore, a new Online Trajectory
Simplification Algorithm based on Directed Acyclic Graph (OLTS) is proposed to apply to online
services. OLTS inherits and extends the framework of OPTTS, which utilizes the dynamic construction
of the breadth-first spanning tree with stopping criterion, followed by the real-time minimization
of approximation error, and achieving the real-time output. OLTS meets the demand of online
applications with high efficiency and low approximation error.
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2. Related Work

2.1. Evaluation Criterion

TS algorithm aims to retain the smallest number of points and to make the simplified trajectory as
similar to its original trajectory as possible. Thus, appropriate error metrics and performance metrics
are key evaluation criteria for TS algorithms.

2.1.1. Error Metric

The approximation error is needed to quantify the accuracy loss of the simplified trajectory.
There are multiple error metrics in the field of curve simplification, such as perpendicular distance,
tolerance zone, parallel-strip, minimum height, and minimum width [3–5]. The most widely used
metric in TS algorithms is Synchronous Euclidean Distance (SED) [2].

Though SED suitably illustrates the approximation error, it is difficult to accumulate consecutive
SEDs of the line segment pi pj quickly. On the contrary, the Local Integral Square Synchronized
Euclidean Distance (LISSED) and the Integral Square Synchronized Euclidean Distance (ISSED),
proposed in [6], could be calculated efficiently within O(1) time after pre-calculating all the accumulative
terms. The LISSED means the accumulation of SED for every point pk between pi and pj:

LISSED
(

Tj
i

)
= ∑

i<k<j
SED2(pk, pk

′) (1)

The ISSED is the sum all the LISSEDs of the simplified trajectory T′:

ISSED = ∑
pki
∈T′

LISSED
(

Tki+1
ki

)
(2)

In the following sections, LISSED and ISSED will be used for the approximation of the trajectory
simplification and for evaluating the deviation between the compressed and the original trajectory.

2.1.2. Performance Metrics

In addition to the error metrics, in order to achieve a more comprehensive and effective evaluation
of the performance of TS algorithms, the following indicators are also defined.

Compression Ratio. For the off-line TS algorithms, the compression ratio is λ = N
M , where N is

the number of original points and M is the number of compressed points. For online applications,
the total number of points cannot be obtained in advance, the compression ratio in this situation means
that for every λ points of input, there will be one point of output.

Compression Time. Time cost is determined by the time complexity of the algorithm. In most
applications, the compression time should be as small as possible.

Delay and Gap. Online services expect TS algorithms to give output constantly. Thus, the delay
and gap are put forward in this paper to evaluate the timeliness of an online TS algorithm. Assume
that {ai|1 ≤ i ≤ M} means the indices of input points pai (1 ≤ ai ≤ N), which have output pbi

, and
{bi|1 ≤ i ≤ M} represents the indices of output points. delayi = ai − ai−1 is defined as the interval
between two input points that have outputs, and gapi = ai − bi indicates the distance of an input point
and its output. The smaller the delay and gap, the higher the timeliness of the algorithm.

2.2. Existing Algorithms

Existing TS algorithms have two main categories, namely curve and trajectory simplification.
Each of them can be divided into heuristic and optimal according to the different ideas of the algorithm.
According to the application scenarios, it can also be divided into offline and online compression.
The detailed classification of TS algorithms is presented in Table 1.
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Table 1. Classification of TS algorithms.

Heuristic Optimal Hybrid

Curve Offline
Simple Simplify Graph-Based

RSDPDouglas–Peucker Iterative Map
Merging Priority Quere

Trajectory

Offline
Threshold

OPTTS 1 MRPATime Ratio

Online

Uniform Sample

OLTS 1Open Window
ST-Trace
Squish-E

1 OPTTS and OLTS are proposed in this paper.

2.2.1. Curve Simplification Algorithms

Curve simplification algorithms can be used for reference if topological features and spatial
information of trajectory data are the only factors to consider. Most of the curve simplification
algorithms are based on heuristic strategy, which can be divided into two categories, splitting and
merging. The classical Douglas–Peucker algorithm [7] first finds the point with maximum deviation
error of the whole curve and moves it to the simplified set. Then the curve is divided into two parts,
for each part the operation is repeated until no point has error that exceeds the given threshold.
The average time complexity of the algorithm is O(NlogN), while O

(
N2) is obtained in the worst case.

Pikaz et al. [8] proposed a merging algorithm with O(NlogN) time complexity, which utilizes greedy
strategy to combine the pair of segments with minimum deviation. These heuristic methods have low
time complexity but may lead to high approximation error when local optimization conditions are not
properly selected.

Optimal curve simplification algorithms are mostly implemented by constructing a graph [5]
and suffer a computational cost limitation of O

(
N2). Agarwal [9] proposed a divide and conquer

algorithm using an iterative map, reaching the best time complexity of O(N
4
3+δ), where δ is an

arbitrarily small constant. Later, the graph algorithm framework has been reorganized and improved
by Daescu et al. [10]. Two dynamic priority queues are used to reduce the number of edge tests.
The optimal algorithms can achieve desirable compression results but have a high time cost.

Kolesnikov proposed a hybrid method to reduce time complexity, called reduced search dynamic
programming [11]. The algorithm generates the reference curve by the corridor bounding, followed
by the minimum cost path search to obtain the compressed curve. However, curve simplification
algorithms ignore important indicators of trajectory, such as the topological and geographical features,
speed, orientation, and time information.

2.2.2. Trajectory Simplification Algorithms

Offline and heuristic-based TS algorithms are widely used. The Threshold algorithm proposed
by Potamias et al. [12] tries to predict a region that a track point may appear according to historical
position, speed, and direction. Meratnia et al. [2] extended the Douglas–Peucker algorithm to trajectory
simplification by replacing the distance function with synchronization Euclidean distance (SED).
Heuristic-based offline TS algorithms are not able to achieve the global minimum approximation error.

Optimal-based approaches are able to obtain low approximation error, but may lead to high
computation cost. Chen et al. proposed a hybrid algorithm called MRPA [6]. The algorithm utilizes
a priority queue and stopping condition to reduce the calculation of graph construction, and then
fine tunes the graph to obtain the minimum approximation error. MRPA has low time complexity,
but cannot obtain a global optimum. However, offline TS algorithms need to collect the entire trajectory
before simplification, which are impractical in real-time services.

Most online algorithms are heuristic-based. The easiest algorithm of online TS is uniform
sampling [13], in which the trajectory stream is sampled with a predefined or random interval.
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The open window based algorithm (OPW) proposed by Keogh [14] adds points continuously in
a window until the approximation error exceeds the predefined threshold. The last point with a
legal error will be output and selected as the start point of the new window. However, the result
of OPW is sensitive to the window size and error threshold. The ST-Trace algorithm proposed by
Potamias et al. [12] is implemented using a bottom-up strategy that the SED error is minimized in each
step. SQUISH-E, proposed by Muckell et al. [15], utilizes a window determined by the compression
rate and maintains a priority queue, which preserves the increase of the SED error caused by the
reduction of points. When a newly added point exceeds the window size, the point in the priority
queue with the minimum value will be reduced. Heuristic-based online TS algorithms may suffer from
high approximation error.

To sum up, existing offline TS algorithms concentrating on a heuristic-based method have the
characteristics of easy implementation and high efficiency, but local optimal conditions may lead to
large error on the overall trajectory. Thus an Optimal Trajectory Simplification Algorithm based on
Graph Model (OPTTS) is proposed in this paper, which can obtain the optimal compression scheme
with the minimum global approximation error. OPTTS works in offline mode, which is not suitable for
real-time services. Most online TS algorithms are also heuristic-based and suffer the same problem as
offline algorithms. Thus, this paper proposes a new Online Trajectory Simplification Algorithm based
on Directed Acyclic Graph (OLTS). The algorithm is based on OPTTS and adapts to online services,
which ensures efficiency and obtains a near-optimal solution.

3. An Optimal Trajectory Simplification Algorithm Based on Graph Model

3.1. Optimal Solution

The primary goal of TS algorithm is to find the simplified trajectory with the minimum number
of compressed points, under the circumstance that the SED error is less than the given threshold.
At the same time, it minimizes the global approximation error:{

T′ = argmin
T′

M and argmin
T′

ISSED

SED(pk, pk
′) ≤ εth

(3)

Then substitute the expression of the ISSED into Equation (6):

T′ = argmin
T′

ISSED

= argmin
T′

∑
pki
∈T′

LISSED
(

Tki+1
ki

)
= argmin

T′
∑

pki
∈T′

∑
ki<k<ki+1

SED2(pk, pk
′)

(4)

The solution of Equation (7) is determined by the selection of pki
, where ki is the indicator of

simplified point. Enumeration method can be used to find all possible choices of pki
. If the compressed

trajectory contains m points, m-2 points are retained among N-2 points (excluding the head and end
points), so there are Cm−2

N−2 compression schemes. By enumerating all possible values of m, the total
number of all compression schemes is ∑2≤m≤N Cm−2

N−2 = 2N−2. The relationship between the number
of simplified points m and ISSED error is shown in Figure 2a.

Among those 2N−2 compression schemas, the optimal solution can be obtained by the following
process. First, it minimizes the number of compressed points under the error threshold, which is the
min-# problem. Given SED(pk, pk

′) ≤ εth, ISSED ≤ M·(εth)2 can be derived. Intuitively, the upper
bound of ISSED is drawn as the horizontal red line in Figure 2b. There are many compression schemes
below that line, while min-# is to find the minimum M. Then, the optimal solution is the one that
has the minimum ISSED error among those schemas with M compressed points, which is the min-ε
problem. In Figure 2b, the optimal solution is marked by the red circle.
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To solve the min-# problem, OPTTS will first transform the trajectory into the graph model under
the given threshold, then utilizes a breadth-first search to obtain the spanning tree containing the path
with the minimum number of points (Section 3.2). To solve the min-ε problem, edge regeneration is
carried out on the spanning tree to obtain the regeneration tree. Finally, a single-source shortest path
search is used to find the path with the minimum approximation error (Section 3.3). The flow chart of
OPTTS is illustrated in Figure 3.
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3.2. Solving the Min-# Problem Based on the Breadth-First Spanning Tree

3.2.1. Graph Construction

Points in the trajectory are sorted by timestamp, so the trajectory graph is directed, which means
that there is only connection from small index point to large index point. Meanwhile, approximate
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errors of pi and each point behind it pj(i < j ≤ N) need to be calculated. Only edges that are less
than the given approximation error threshold, εth, can be added to the graph. This process is called
the Edge Test, as shown in Figure 4. Define the weight function for each edge as ω : E→ R , which
represents the approximation error between pi and pj, namely ω

(
pi, pj

)
= LISSED

(
pi, pj

)
. Finally,

the trajectory graph can be represented as G(T, εth) = {V, E}, where V = {pi ∈ T|1 ≤ i ≤ N} and
E =

{(
pi, pj

)∣∣i < j and ω
(

pi, pj
)
< εth

}
.
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Figure 4. (a) The process of the Edge Test. (b) The trajectory graph.

3.2.2. Breadth-First Search

The min-# problem is to discover the path that contains the smallest number of vertices from the
graph. Define the Shortest Path Distance as L(p1, pn) to denote the minimum number of points in the
path from p1 to pn. If there is no path between p1 and pn, then L(p1, pn) = ∞.

L(p1, pn) =

 min{l(path(pi)) : p1
path(pi)−−−−→ pi} i f there is a path f rom p1 to pi

∞ otherwise
(5)

The breadth-first search algorithm [16] can calculate the minimum number of edges from p1 to
any reachable node. During the breadth-first search, for each reachable node pi of p1, its predecessor
node pi.π is maintained and pi.l records the minimum distance from p1 to pi. After the breadth-first
search, a breadth-first spanning tree is generated, as is illustrated in Figure 5. The shortest path from
p1 to pi in the graph corresponds to the simple path from p1 to pi in the spanning tree and the length
of the path equals the height of the tree. Details of the breadth-first search and the correctness of BFS
solving the shortest length path can be found in [16].
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3.3. Solving the Min-ε Problem Based on the Single Source Shortest Path Search

3.3.1. Edge Regeneration

The breadth-first tree computed by BFS may vary depending on the ordering within adjacency
lists. As illustrated in Figure 6a, if p5 precedes p6 in Adj[p1], breadth-first tree in Figure 5b can be
generated. However, if p6 precedes p5 in Adj[p1], and p8 precedes p7 in Adj[p6], the tree in Figure 6b
can be obtained. However, the height of each node in the spanning tree are fixed.
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Theorem 1: The value pi.l assigned to a vertex pi is independent of the order in which the vertices appear in
each adjacency list.

Proof of Theorem 1: The correctness proof for the BFS algorithm in [16] shows that pi.l = L(p1, pi),
and the algorithm does not assume that the adjacency lists are in any particular order.

According to Theorem 1, nodes in each layer of the tree remain unchanged. The non-uniqueness
of the breadth-first spanning tree corresponds to the different connections between the points in
two adjacent layers. Each connection represents a compression schema. The min-ε problem aims to
find the compression schema with the minimum global approximation error. Therefore, all possible
connections of the breadth-first spanning tree should be generated, which is called Edge Regeneration.

Define the node collection in the k layer of breadth-first spanning tree as Vk = {pi|pi.l = k}.
Nodes in the k + 1 layer can be represented as Vk+1 =

{
pj
∣∣pj.l = k + 1

}
. Edge regeneration will

connect points in Vk and Vk+1 if the approximate error satisfies ω
(

pi, pj
)
< εth. Ultimately, the

regeneration tree can be obtained, which is recorded as GTree = (V, ETree), as is illustrated in Figure 7.
The min-ε problem is to find a path from p1 to pN in the regeneration tree that has the minimum
approximation error.
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3.3.2. Single-Source Shortest Path in DAG

Define the total approximation error of path {p1, p2, . . . , pk} as ω(path) = ∑k
i=1 ω(pi−1, pi).

The minimum approximation error of path from p1 to pi in the regeneration tree is defined as follows:

δ(p1, pi) =

 min{ω(path) : p1
path−−→ pi} i f there is a path f rom p1 to pi

∞ otherwise
(6)

The Dijkstra algorithm [17] solves the single-source shortest path problem on a weighted, directed
graph. The algorithm maintains a priority queue to record the minimum weight from the source
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node to the current node. Muckell et al. [15] and Chen et al. [6] use the idea of the priority queue in
their methods to minimize the approximation error. However, the time complexity of the Dijkstra
algorithm is O

(
N2 + E

)
. In this paper, the shortest path search algorithm based on directed acyclic

graph proposed by Lawler [16] is utilized to reduce time complexity.
Define pi.d as the shortest path estimate from p1 to pi. The most critical step in the shortest path

search is Relaxation. pi.d is added with the edge weight between pi and pj, and compared with pj.d.
If the former is smaller, then pj.π and pj.d are updated. The pseudo code of the Relaxation is listed in
Function 1.

Function 1 RELAX
(

pi, pj, ω
)

1. IF pj.d > pi.d + ω
(

pi, pj
)

2. pj.d = pi.d + ω
(

pi, pj
)

3. pj.π = pi

It is easy to prove that the trajectory graph is a Directed Acyclic Graph (DAG). Meanwhile, each
edge in the regeneration tree is formed by the connection from the small index point to the large index
point, so the regeneration tree is topologically sorted. Therefore, to solve the minimum path weight is
to relax all edges from each node in accordance with the order of topological sort. Finally, a path with
the minimum total approximation errors is obtained from the regeneration tree, which is the optimal
compression solution. The pseudo code of the process is illustrated in Function 2.

Function 2 DAG_SHORTEST_PATHS(G, ω)

1. FOR pi IN G
2. FOR pj IN G.Adj[pi]

3. RELAX
(

pi, pj, ω
)

3.4. Complexity Analysis

OPTTS solves the optimal solution through four steps, namely the construction of graph, the
breadth-first search, the regeneration of spanning tree and the DAG-based shortest path search.
The most time consuming in the graph construction is the edge test. N(N − 1)/2 approximation errors
are calculated for every pair of vertices and thus the time complexity is O

(
N2). As demonstrated

in [16], the time complexity of BFS is O(N + E). In the regeneration step, every point in Vk is examined
to see if it has connections to the points in Vk+1. Therefore, the time complexity is O(N). According
to [16], the DAG-based shortest path search has a time complexity of O(N + E). Since all steps are
performed independently, the overall time complexity of OPTTS is O

(
N2 + 3N + 2E

)
. In the trajectory

graph, each point is connected to several points behind it, so the edge number E is linear to N. Thus,
the time complexity is similar to O

(
N2).

4. An Online Trajectory Simplification Algorithm Based on Directed Acyclic Graph

4.1. Problems of Adopting OPTTS to Online Services

OPTTS is designed in offline mode and is unsuitable for online services for the following reasons.
First, the construction of trajectory graph and the breadth-first search are needed to traverse all
points in the trajectory, while online services cannot obtain the whole trajectory in advance. Secondly,
the shortest path search is conducted only after the regeneration of the spanning tree. Such a process
also requires the whole trajectory so it is not suitable for online services. Finally, online services need
to continuously output compressed points as the input of trajectory flow, while OPTTS has only one
output after the whole trajectory has been imported.
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In order to deal with trajectory flow in online services, improvements have been made to address
the problem above. A new Online Trajectory Simplification Algorithm based on Directed Acyclic
Graph (OLTS) is proposed in this section. The overall procedure of the OLTS is illustrated in Figure 8.
First of all, the dynamic construction of breadth-first spanning tree and the stopping criterion is raised
to deal with trajectory flow (Section 4.2). By integrating the breadth-first search into graph construction,
a point is assigned into the spanning tree as soon as it is plugged in to the algorithm. Then, when the
construction of each layer in the spanning tree is completed, the real-time minimizing approximation
error is carried out to solve the min-ε problem (Section 4.3). Finally, the real-time output is utilized to
meet the demand of online services (Section 4.4).ISPRS Int. J. Geo-Inf. 2016, 5, 19  10 of 20 
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4.2. Dynamic Construction of Breadth-First Spanning Tree

4.2.1. Dynamic Layer Construction

The construction of trajectory graph and the breadth-first search are combined. The spanning tree
is directly constructed as the input of trajectory flow. Define Vk as the nodes set in the k level of the
spanning tree, namely Vk = {pi|pi.L = k}. Suppose that Vk has been built already, the construction
of Vk+1 is determined as follows: when a new point pj is input to the system, edge test should be
conducted for pj and each point in Vk. If ω

(
pi, pj

)
< εth, then pj is added into Vk+1, and pj.L = pi.L+ 1,

pj.π = pi, pj.d = pi.d + ω
(

pi, pj
)
. As demonstrated in Figure 9, suppose that pa, pb ∈ Vk and a < b

when pj is coming, if ω
(

pa, pj
)
< εth, set pj as the child of pa and continuously input another point.

Once pj is added to the tree, edge tests of pj with other points in Vk and Vk+1 can be avoided, which
significantly reduces the time cost.

Define an array Visited[] to restore whether a point has been edge tested or not. If pj has been
edge tested with all nodes in Vk but still has not been added into the spanning tree, then Visited[] = true.
If ω

(
pi, pj

)
> εth, join pj into the temporary queue QT to wait for the edge test in the next layer and

mark Visited[] = true.
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4.2.2. Stopping Criterion for Layer Construction of the Spanning Tree

Construction of the layer in the spanning tree should be terminated at the proper time. Several
studies have been conducted on stopping strategies. D. Chen et al. [18] proposed a tolerance zone
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criterion by two intersecting cones. Kolesnikov [19] claimed that the edge test should be terminated
once the approximation error was larger than the given threshold. This paper defines the stopping
criterion in a similar way. For a newly imported point pj, if the approximation error between pj and all
points in Vk satisfies ω

(
pi, pj

)
> 2·εth, construction of the k + 1 layer is accomplished.

Define an integer numTerminated as a counter. If there is a point in Vk whose approximation error
with pj meets ω

(
pi, pj

)
> 2·εth, the counter will be incremented by one. If numTerminated equals

the number of points in Vk, the construction of the k + 1 layer will be terminated. The process is
demonstrated in Figure 10.ISPRS Int. J. Geo-Inf. 2016, 5, 19  11 of 20 
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Application of the stopping criterion can significantly reduce the time cost in the construction of
the spanning tree, but optimality is not guaranteed. However, only by using stopping criterion can
it be adapted to online services. Therefore, it is worthwhile to sacrifice certain optimality for greater
enhancement in efficiency. The pseudo code of the process is showed in Algorithm 1.

Algorithm 1. Dynamic Breadth-First Spanning Tree Construction (Iteration k)

Input: The current input pj, points set Vk, temporary queue Qt and error threshold εth.
1. ENQUEUE

(
Qt, pj

)
;

2. WHILE Qt 6= ∅
3. pj = DEQUEUE(Qt); numTerminated = 0;
4. IF visited[j] == FALSE
5. visited[j] = true;
6. FOR pi in Vk
7. IF ω

(
pi, pj

)
< εth

8. pj.Length = pi.Length + 1;
9. pj.π = pi;
10. pj.d = pi.d + ω

(
pi, pj

)
;

11. visited[j] = true;
12. Vk+1.APPEND

(
pj
)
;

13. BREAK FOR
14. ELSE IF ω

(
pi, pj

)
> 2·εth

15. numTerminated ++;
16. IF pj IS NOT INSERTED
17. ENQUEUE

(
Qt, pj

)
18. IF numTerminated == Vk.count
19. MINIMIZE ISSED according to Section 4.3;
20. Vk = Vk+1;
21. visited[j in Qt] = f alse;
22. OUTPUT according to Section 4.4;
23. INPUT NEXT POINT
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4.3. Real Time Minimizing the Approximation Error

Once the construction of k + 1 layer is completed, edges will be reconnected between the k layer
and the k + 1 layer to achieve the minimum approximation error. This process is actually a combination
of the edge regeneration and the dag-based shortest path search described in Section 3. Each node
pi in Vk will be edge-tested with nodes pj in Vk+1. If ω

(
pi, pj

)
< εth, execute relaxation operation:

If pj.d > pi.d + ω
(

pi, pj
)
, then pj.d = pi.d + ω

(
pi, pj

)
, and pj.π = pi. The pseudo code of the real-time

minimizing approximation error is showed in Algorithm 2.

Algorithm 2. Real-Time Minimizing Approximation Error (Iteration k)

Input: Points set Vk and Vk+1, error threshold εth.
1. FOR pj IN Vk+1

2. minDistance = pj.d; minParent = pj.π;
3. FOR pi IN Vk
4. IF ω

(
pi, pj

)
< εth AND pi.d + ω

(
pi, pj

)
< minDistance

5. minDistance = pi.d + ω
(

pi, pj
)
;

6. minParent = pi;
7. pj.d = minDistance; pj.π = minParent;

4.4. Real Time Output

After the process of minimizing approximation error, the real-time output is carried out to decide
which point will be output. The shortest weight path from p1 to pj may change because pj may be
a child of any nodes in its upper layer. As illustrated in Figure 11, the first four layers have been
constructed. Since p12 may be a child of any four nodes in V4, it is possible that p8∼p12 become a
point in the path. If p12 is connected to p8 or p9, p6 will appear in the path. If p12 is connected to p10

or p11, then it is p7 which will be in the path. However, there is no child node of p5 in V4, so it is not
possible for p5 to be part of the path. A point that may be contained in the path is called an active
node, represented by a solid circle in Figure 11. A point that cannot be in the path is defined as an
inactive node, shown as a hollow circle. When there are no children in the next layer, active node will
become inactive.
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If pi lies in the path from root node p1 to pj, then pi is the ancestor of pj. Parents of all nodes in Vk
are defined as first generation ancestors, namely Ancestor1(Vk) = {p.π|∀p ∈ Vk}. The m generation of
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)
, which denotes all nodes from layer k to

m that still have children in layer k, which is defined as an active node. Other nodes in this layer are
called inactive nodes, as shown in Figure 12.
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Define d as the layer where the previous output point is. When the k + 1 layer is constructed and
the approximate error is minimized, the active status of every point from the d layer to the k layer
is updated. If the point is an ancestor of the last point, it is set as an active node, otherwise it is an
inactive node. If the m layer has only one single active node, then output this node. The pseudo code
of the process is illustrated in Algorithm 3.

Algorithm 3. Real-Time Output (Iteration k)

Input: Indice of the layer d, Points set Vd to Vk+1.
1. FOR m = k : −1 : d
2. FOR pj in Vm+1 and pj is active
3. Set Parent

(
pj
)

as active;
4. m = d;
5. WHILE m ≤ k AND Vm has 1 active vertex pm∗
6. Output pm∗ to T′;
7. m = m + 1;
8. d = m;

4.5. Complexity Analysis

Each point imported to the OLTS goes through a three-step processing, namely the dynamic
construction of breadth-first tree, the real-time minimizing approximation error, and the real-time
output. During the construction of spanning tree, edge tests between the current point and each
point in the upper layer are carried out. There are N/M points of each layer on average, so the time
complexity is O(N/M). After the construction of a layer, points in the adjacent layers Vk and Vk+1
are relaxed to minimize the approximation error. O

(
N2/M2) times of relaxations are needed. Lastly,

during the output step, nodes from k to d layers will be updated. There will be (k− d)N/M nodes in
all so the time complexity is linear to O(N/M). Dealing with trajectory stream with N points, suppose
there are M points of output, the total time complexity is

O
(

N/M · N +
(

N2/M2 + N/M
)
×M

)
= O

(
2N2/M + N

)
= O((2γ + 1)× N)

(7)

In Equation (10), γ represents the compression ratio. Therefore, the complexity of OLTS is linear
to the number of points.
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5. Experiments

This section first describes three common datasets and three algorithms for comparison, then
evaluates three aspects, namely error metrics, time cost, and delay/gap analysis. Finally, the results
are discussed and the performance of the proposed algorithms is summarized.

5.1. Experimental Preparation

5.1.1. Datasets

Algorithms may behave differently on various datasets. To validate the sensitivity of algorithms,
three datasets, namely Mopsi [20], Geolife [21], and Movebank [22] are used in this experiment.
The Mopsi dataset contains 344 trajectories of human sport activities generated in 2011 in Finland.
Geolife records the outdoor movements of 182 users in Beijing, China, within five years and contains
14,638 trajectories and 18 million points. Movebank is a public, online database maintained by over
11,000 users containing animal movement data that moves within local areas and migrates across
countries. The robustness of TS algorithms may be affected by different characteristics of the datasets,
such as sampling rate, range of motion, moving speed, etc. Therefore, three representative trajectories
with distinct features are selected from each dataset. The graphical presentations of three example
trajectories are shown in Figure 13.ISPRS Int. J. Geo-Inf. 2016, 5, 19  14 of 20 
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student traveling from home to school in Beijing, China. (c) Movebank: A three-year track (January
2006~December 2008) of an osprey migrating from the United States to Brazil.

Table 2 summarizes the characteristics of the three representative trajectories. Each trajectory
contains 3747, 3273 and 12,380 points respectively, which is quite large compared to the average
points of real-world trajectory. For example, each trajectory in Geolife dataset contains 1234 points
on average. The trajectory from the Movebank dataset has the longest distance between two points
and the largest sampling rate. The trajectory from the Geolife dataset has the highest average speed
and the largest variations in speed. In contrast, trajectory from the Mopsi dataset has more moderate
features than others.

Table 2. Statistics of three example trajectories.

Dataset Points AvgRate (sec) AvgDis (m) StdDis (m2) AvgSpd (m/s) StdSpd (m2/s2)

Mopsi 3747 2.2 10 6.3 4.5 2.1
Geolife 3273 2.6 16.5 5.7 7.9 5.9

Movebank 12,380 2 h 3800 13,000 1 2.3
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5.1.2. Selection of Compared Algorithms

We utilized three algorithms for comparison, namely the Douglas–Peucker Algorithm (D-P),
the Open Window based Algorithm (OPW), and the Multi-resolution Polygonal Approximation
Algorithm (MRPA). The characteristics of the three compared algorithms and two proposed methods
are summarized in Table 3. The OPTTS works in offline mode, so two other offline algorithms are
chosen for comparison. D-P is widely used in industry communities due to its easy implementation
and high efficiency. MRPA is a state-of-the-art algorithm that claims to achieve better approximation
error. The differences are that OPTTS is an optimal-based algorithm, while D-P is heuristics-based and
MRPA utilizes hybrid strategy. OLTS works in online mode, so the classical online algorithm OPW
is chosen.

Table 3. Characteristics of compared algorithms.

Scene Proposed Algorithm Mode Compared Algorithm Mode

Offline OPTTS Optimal D-P Heuristics

MRPA Hybrid

Online OLTS Hybrid OPW Heuristics

5.2. Evaluation Based on Error Metrics

Error metrics measure the compression effectiveness. Generally, a smaller approximation error
indicates a better compression result. This section compares five algorithms across multiple metrics
including average SED, max SED, median SED, and average ISSED. The abbreviation and calculation
formula of the above four kinds of error metrics are listed in Table 4.

Table 4. Abbreviation and calculation formula of different error metrics.

Error Metric Abbr. Calculation Formula

Average SED Error SEDavg SEDavg =
N
∑

k=1
SED(pk, pk

′)/N

Max SED Error SEDmax SEDmax = max
1≤k≤N

{SED(pk, pk
′)}

Median SED Error SEDmed
SEDmed = median

1≤k≤N
{SED(pk, pk

′)}

Average ISSED Error ISSEDavg
ISSEDavg = ∑

pki∈T′
LISSED

(
Tki+1

ki

)
/N

Experiment settings. A trajectory of 3747 points in Mopsi is selected. Error metrics are
measured under different compression rates. Ten compression rates are chosen by setting different
distance thresholds.

Average SED. Generally, smaller average SED error indicates better compression results.
As shown in Figure 14a, the average SED error increases as the compression rate grows. OPTTS
has the smallest error at each compression rate, followed by OLTS. The average SED error of OLTS is
reduced by 40.8%, while the SED error of OPTTS is reduced by 45.6%.

Max SED. Max SED error is used to evaluate the stability of TS algorithms. The gentler the
upward trend of the curve, the more stable of the algorithm. Figure 14b shows that OPTTS and OLTS
have stable performance under different compression rates. The maximum value is 3~4 times of
the average value. However, OPW, D-P, and MRPA have large fluctuation as the compression rates
increase. The maximum values have a sudden surge to 6~8 times of the average values.

Median SED. Abnormal large value of SED may increase the average value, so it is insufficient
to measure the performance only by average SED error. Median SED error is chosen as the auxiliary
condition of average SED. As shown in Figure 14c, the situation of the median values are similar to the
average values. OPTTS still has the smallest error, followed by OLTS.
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Average ISSED. Average ISSED measures the overall approximation error of the compressed
trajectory, which is also the optimization goal. Figure 14d shows that OPTTS has the lowest average
LISSED error, followed by OLTS. OPTTS reduces the LISSED error by 82.2% compared to traditional
algorithms, while OLTS reduces the error by 77.1%.

Average SEDs on different datasets. Average SED error is used to evaluate the robustness of the
algorithms under different datasets. Three representative trajectories are selected respectively from
Geolife, Mopsi, and Movebank datasets. Average SED error is calculated with fixed compression
ratio γ = 10. For better comparison, max-min normalization is utilized to unify different datasets to
the same reference system. Figure 14e shows that OPTTS and OLTS perform relatively stable on all
datasets, while OPW, D-P, and MRPA show a large fluctuation.

Visualization of Compression Result. The approximation error represents the deviation between
the compressed and the original trajectory. It can be seen intuitively from the graphical representation
of trajectories how large the difference is. Figure 15 shows the visualization of the compressed and
the original trajectories by different algorithms. The same trajectory in the evaluation of error metrics
is selected and the compression ratio is set to 100. In Figure 15a–d, the blue line always represents
the original trajectory and the red one represents the result of OPTTS. The green lines respectively
show the results of OLTS, MRPA, OPW, and D-P. It can be seen from Figure 15d that the compressed
trajectory of D-P has the largest deviation, and the result of OPTTS is the most accurate representation
of the original trajectory.ISPRS Int. J. Geo-Inf. 2016, 5, 19  16 of 20 
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Experiment settings. Time cost is measured through two aspects, namely the number of points
and compression rate. First, a trajectory from Geolife is selected and compression is executed every
5000 points from 5000 to 40,000 with a fixed rate γ = 10. When exploring the relationship with
the compression rate, a trajectory from Mopsi is chosen and simplification is made at 10 different
compression rates with a fixed number of points. All algorithms were implemented in C++ and run on
a Windows (64 bit) platform with a 2.50 GHz i7 CPU and 8 GB RAM.

Effect of number of points. As illustrated in Figure 16a, time costs of all algorithms show
an increasing trend with the growth of points. OLTS is 32.2% faster than the traditional online
algorithm OPW, even 40.3% faster than offline algorithm MRPA. While OPTTS is slower compared to
other algorithms.

Effect of compression rates. As shown in Figure 16b, time costs of D-P, OPW, and OPTTS do not
change with compression ratio, while MRPA and OLTS show an upward trend. When the compression
ratio is less than 20, OLTS runs ahead of the D-P, OPW, and OPTTS. OLTS is faster than MRPA when
the compression ratio is higher than 20.
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5.3. Evaluation Based on Delay/Gap Analysis

Visualization of delay and gap. Delay and gap are important features of OLTS. Three trajectories
from Mopsi, Geolife, and Movebank with 3273 points are simplified on a fixed compression rate γ = 10.
The relationship between input index and output index is shown in Figure 17a. The Movebank dataset
(red line) has the largest delay and gap. When the 2181st point is imported, the OLTS outputs the
2078th point. From the 2182nd to the 2457th point, there is no output of the algorithm. Until the input
of the 2458th point, the 2160th point is output. Therefore, Delay = 2458 − 2181 and Gap = 2458 − 2160.

Average Delay. The relationship between delay and compression rate is shown in Figure 17b.
The average delay is approximately equal to the compression rate in all datasets. Therefore, OLTS can
guarantee a stable delay in various datasets.

Average Gap. The association between compression rate and average gap is shown in Figure 17c.
Generally, OLTS’s gap becomes larger as the compression rate increases. The average gap of the
Movebank dataset is the largest, followed by Geolife and Mopsi.ISPRS Int. J. Geo-Inf. 2016, 5, 19  18 of 20 
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5.4. Discussion

Effectiveness analysis. First, OPTTS has achieved the smallest result over all error metrics.
OPTTS utilizes breadth-first spanning-regeneration tree and shortest path search to solve both min-#
and min-ε problem and thus achieves the optimal solution. The approximation error of OLTS is
slightly higher than OPTTS. Since OLTS extends the basic framework of OPTTS and utilizes a stopping
criterion to speed up the construction of spanning tree, which leads to a near optimal result. However,
D-P, OPW, and MRPA uses greedy strategy to improve efficiency, but the compression error is large.
As is shown in Figure 15d, the green line representing the result of D-P has large deviation from the
original trajectory. The performance of D-P may be unacceptable to some applications where the
trajectory should be compressed as accurate as possible. For example, in some navigation applications,
if the user’s trajectories compressed by D-P have a large approximation error, it may lead to deviation
from the road map which is misleading. Secondly, OPTTS and OLTS have stable max SED errors since
they use global optimal methods. However, D-P, OPW, and MRPA have abnormally large max SED at
some parts of trajectory, due to the inappropriate selection of local optimization conditions. Finally,
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OPTTS and OLTS can achieve stable performance in all datasets. The influence of different features of
the three datasets is reduced by the selection of an optimal method.

Time complexity analysis. Time complexity from theoretical derivation is summarized in Table 5.
In the efficiency evaluation, D-P is the fastest among five algorithms, followed by OLTS and MRPA.
D-P is heuristic-based and does not suffer from high complexity, while OPTTS utilizes optimization
method during the construction of a breadth-first spanning regeneration tree, which is time consuming.
However, the time cost of OPTTS is still acceptable to most offline applications, where the time cost
is not considered as important as the performance of the compression. As is shown in Figure 15a,
the time cost of OPTTS to a 1200 point trajectory is around 100 ms. It can be calculated that the total
time cost for compressing all 14,638 trajectories in Geolife is about 24 min, which is tolerable. Thus,
the improvement of compression effectiveness of OPTTS overwhelms the loss of computing efficiency.
Furthermore, the time complexity of OLTS and MRPA is positively correlated with N/M, so the time
cost rises as the increasing of compression rate. While OPTTS, OPW and D-P are only related to the
number of points.

Table 5. Time complexity of five algorithms.

Algorithm OPTTS OLTS MRPA OPW D-P

Time complexity O
(

N2) O
(

N2/M
)

O
(

N2/M
)

O
(

N2) O(NlogN)

Delay and gap analysis. The proposed OLTS have uncertain delay and gap, introduced by the
incremental construction of the breadth-first spanning tree and real-time output. The gap is correlated
with the distance between Vd and Vk, and delay represents the number of nodes in each layer of the
spanning tree, that is γ = N/M. First, local delay and gap may be influenced by the moving status
of the object. As illustrated in Figure 17a, delay and gap have abnormally large values at some parts
of the trajectory. This is because that the osprey may maintain a direct flight status for a long time.
Secondly, average delay is approximately equal to compression rate. Because delay in OLTS represents
the number of nodes in each layer of the spanning tree, which is equal to the compression rate. Finally,
as illustrated in Figure 17c, the gap is 3~5 times of the compression rate, because the gap is related to
the distance between Vd and Vk, which is bounded by O(logN/M). Therefore, the gap should be in
proportion to logγ in theory.

6. Conclusions

In order to solve the problem that heuristic-based algorithms may cause high approximation error,
this paper presents an Optimal Trajectory Simplification Algorithm based on Graph Model (OPTTS).
First, the optimal solution is defined as the compression schema with the minimum number of points
as well as the minimum ISSED error. Then, a three-step algorithm is proposed to solve the optimal
solution. By transferring trajectory into a graph model, breadth-first search is used to solve the min-#
problem, followed by the single source shortest path search to solve the min-ε problem. Experimental
study has illustrated that OPTTS lessens the approximation error by 82% compared to traditional
methods. OPTTS works in batch mode and has a time complexity of O

(
N2).

To extend OPTTS to online application, a new Online Trajectory Simplification Algorithm based
on Directed Acyclic Graph (OLTS) is proposed, which follows the structure of OPTTS. Dealing with
trajectory stream, OLTS dynamically constructs the breadth-first spanning tree with the stopping
criterion to terminate the construction of each layer. Then the approximation error of the current layer
is minimized, followed by the real-time output. OLTS achieves a near optimal solution that reduces
the approximation error by 77%. Meanwhile, OLTS is 32% faster than the classic online algorithm.
Both OPTTS and OLTS have stable effectiveness and time cost on different datasets.

There are several potential extensions of this paper. First, the stay points in trajectory are of
great significance in mining point-of-interest and activity pattern recognition. [23,24]. However,
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the traditional TS algorithms reduce all stay points. The construction of a breadth-first tree in OPTTS
and OLTS will be improved to reserve the stay point. Furthermore, multi-resolution display of
trajectory is needed in many navigation applications. A huge amount of trajectory data in coarse
resolution may cause the application to stall and crash [25,26]. Existing multi-resolution TS algorithms
often work in batch mode. A key goal of our future work is to explore a new online multi-resolution
TS method.
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