Using Remote Sensing Products to Identify Marine Association Patterns in Factors Relating to ENSO in the Pacific Ocean
Abstract
:1. Introduction
2. Remote Sensing Data Sets and Preprocessing
3. Quantitative Association Rule Mining with an Apriori Algorithm
4. Results
4.1. Variations of Marine Environmental Parameters Inducing ENSO Occurrences
4.2. Variations in Marine Environmental Parameters Derived from ENSO Events
5. Discussion
5.1. Association Patterns among La Niña Events and Marine Environmental Parameters
5.2. Association Patterns among El Niño Events and Marine Environmental Parameters
6. Conclusions
- Association patterns among marine environmental parameters and ENSO events in the PO mainly occur in five sub-regions of the PO: the western PO, the central and eastern tropical PO, the middle of the northern subtropical PO, offshore of the California coast, and in the southern PO. In the western PO and the middle and east of the equatorial PO, the association patterns are more complicated.
- The following factors are considered predicators of and responses to La Niña events: abnormal decrease of SLAA and WSA in the east of the equatorial PO, abnormal decrease of SSPA and WSA in the middle of the equatorial PO, abnormal decrease of SSTA in the eastern and central tropical PO, and abnormal increase of SLAA in the western PO.
- The following factors change with La Niña events through oceanic and atmospheric bridge (e.g., the western Pacific warm pool, Kelvin and Rossby wave, trade winds, Walker circulation, equatorial circulation, and the Peru and California Cold Currents): SSTA in the western PO, northern subtropical PO, and offshore of the California coast; SLAA in the southern PO; and WSA in the middle of the equatorial PO.
- Only abnormal decrease of CHLA in the middle of the equatorial PO is considered a predicator of and response to El Niño events.
- El Niño events affect variations of SSTA in the middle of the tropical PO and southern PO, SSPA in the middle of the equatorial PO, and SLAA in the east of the equatorial PO. The effects are due to the eastward expansion of displacement of the western Pacific warm pool, variation of trade winds, Kelvin and Rossby wave, Walker circulation and Hadley cell circulation.
- The association patterns between and among marine environmental parameters and La Niña events are more complicated in mutual relationships and typical in spatial domain than those of El Niño events. The primary reason for this is that the two types of El Niño events dominate different physical processes of the marine environment.
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Chen, G.; Fang, C.Y.; Zhang, C.Y.; Chen, Y. Observing the coupling effect between warm pool and “rain pool” in the Pacific Ocean. Remote Sens. Environ. 2004, 91, 153–159. [Google Scholar] [CrossRef]
- Karl, D.M.; Letelier, R.; Hebel, D.; Tupas, L.; Dore, J.; Christian, J.; Winn, C. Ecosystem changes in the North Pacific subtropical gyre attributed to the 1991–1992 El Niño. Nature 1995, 373, 230–234. [Google Scholar] [CrossRef]
- Polovina, J.; Howell, J.E.A.; Abecassis, M. Ocean’s least productive waters are expanding. Geophys. Res. Lett. 2008, 35, L03618. [Google Scholar] [CrossRef]
- Oliver, M.J.; Irwin, A.J. Objective global ocean biogeographic provinces. Geophys. Res. Let. 2008, 35, L15601. [Google Scholar] [CrossRef]
- Milne, G.A.; Gehrels, W.R.; Hughes, C.W.; Tamisiea, M.E. Identifying the causes of sea-level change. Nat. Geosci. 2009, 2, 471–478. [Google Scholar] [CrossRef] [Green Version]
- Hollmann, R.; Merchant, C.R.; Saunders, R.; Downy, C.; Buchwitz, M.; Cazenave, A.; Chuvieco, E.; Defourny, P.; DeLeeuw, G.; Forsberg, R.; et al. The ESA climate change initiative: Satellite data records for essential climate variables. Bull. Am. Meteor. Soc. 2013, 94, 1541–1552. [Google Scholar] [CrossRef]
- Yang, J.; Gong, P.; Fu, R.; Zhang, M.; Chen, J.; Liang, S.; Xu, B.; Shi, J.; Dickinson, R. The role of satellite remote sensing in climate change studies. Nat. Clim. Chang. 2013, 13, 875–883. [Google Scholar] [CrossRef]
- McPhaden, M.J.; Zebiak, S.E.; Glantz, M.H. ENSO as an integrating concept in earth science. Science 2006, 314, 1740–1745. [Google Scholar] [CrossRef] [PubMed]
- Camargo, S.J.; Adam, H. Western North Pacific tropical cyclone intensity and ENSO. J. Clim. 2005, 18, 2996–3006. [Google Scholar] [CrossRef]
- Wu, B.; Zhou, T.J.; Li, T. Contrast of rainfall-SST relationships in the western North Pacific between the ENSO-developing and ENSO-decaying summers. J. Clim. 2009, 22, 4398–4405. [Google Scholar] [CrossRef]
- Picaut, J.; Ioualalen, M.; Menkes, C.; Delcroix, T.; McPhaden, M.J. Mechanism of the zonal displacements of the Pacific warm pool: Implications for ENSO. Science 1996, 274, 1486–1489. [Google Scholar] [CrossRef] [PubMed]
- Matsuura, T.; Iizuka, S. Zonal migration of the Pacific warm-pool tongue during El Niño events. J. Phys. Oceanogr. 2000, 30, 1582–1600. [Google Scholar] [CrossRef]
- Curtis, S.; Salahuddin, A.; Adler, R.F.; Huffman, G.J.; Gu, G.; Hong, Y. Precipitation extremes estimated by GPCP and TRMM: ENSO relationships. J. Hydrometeor. 2007, 8, 678–689. [Google Scholar] [CrossRef]
- Murtugudde, R.; Wang, L.P.; Hackert, E.; Beauchamp, J.; Christian, J.; Busalacchi, A. Remote sensing of the Indo-Pacific region: Ocean colour, sea level, winds and sea surface temperatures. Int. J. Remote Sens. 2004, 25, 1423–1435. [Google Scholar] [CrossRef]
- Mennis, J.; Liu, J.W. Mining association rules in spatio-temporal data: An analysis of urban socioeconomic and land cover change. Trans. GIS 2005, 9, 13–18. [Google Scholar] [CrossRef]
- Korting, T.S.; Fonseca, L.M.G.; Camara, G. GeoDMA—Geographic data mining analyst. Comput. Geosci.-UK 2013, 57, 133–145. [Google Scholar] [CrossRef]
- Levy, G.; Gower, J. Oceanic manifestation of global changes: Satellite observations of the atmosphere, ocean and their interface. Int. J. Remote Sens. 2010, 31, 4509–4514. [Google Scholar] [CrossRef]
- Kahru, M.; Gille, S.T.; Murtugudde, R.; Strutton, P.G.; Manzano-Sarabia, M.; Wang, H.; Mitchell, B.G. Global correlations between winds and ocean chlorophyll. J. Geophys. Res. Ocean. 2010, C12040, 115. [Google Scholar]
- Radenac, M.H.; Léger, F.; Singh, A.; Delcroix, T. Sea surface chlorophyll signature in the tropical Pacific during eastern and central Pacific ENSO events. J. Geophys. Res. Ocean. 2012, 117, C04007. [Google Scholar] [CrossRef]
- Wilson, C.; Adamec, D. Correlations between surface chlorophyll and sea surface height in the tropical Pacific during the 1997–1999 El Niño-Southern Oscillation event. J. Geophys. Res. Ocean. 2001, 106, 31175–31188. [Google Scholar] [CrossRef]
- Park, J.Y.; Kug, J.S.; Park, Y.J. An exploratory modeling study on bio-physical processes associated with ENSO. Prog. Oceanogr. 2014, 124, 28–41. [Google Scholar] [CrossRef]
- Park, J.Y.; Kug, J.S.; Park, Y.J.; Yeh, S.W.; Jang, C.J. Variability of chlorophyll associated with El Niño-Southern Oscillation and its possible biological feedback in the equatorial Pacific. J. Geophys. Res. Ocean. 2011, 116. [Google Scholar] [CrossRef]
- Casey, K.S.; Adamec, D. Sea surface temperature and sea surface height variability in the North Pacific Ocean from 1993 to 1999. J. Geophy. Res.-Ocean. 2002, 107, 3099. [Google Scholar] [CrossRef]
- Wang, C.; Fiedler, P.C. ENSO variability and the eastern tropical Pacific: A review. Prog. Oceanogr. 2006, 69, 239–266. [Google Scholar] [CrossRef]
- Yokoyama, C.; Takayabu, Y.N. Relationships between rain characteristics and environment. Part I: TRMM precipitation features and the large-scale environment over the tropical Pacific. Mon. Weather Rev. 2012, 140, 2831–2840. [Google Scholar] [CrossRef]
- Xue, C.J.; Song, W.J.; Qin, L.J.; Dong, Q.; Wen, X.Y. A spatiotemporal mining framework for abnormal association patterns in marine environments with a time series of remote sensing images. Int. J. Appl. Earth Obs. 2015, 38, 105–114. [Google Scholar] [CrossRef]
- Xue, C.J.; Dong, Q.; Fan, X. Spatiotemporal association patterns of multiple parameters in the northwestern Pacific Ocean and their relationships with ENSO. Int. J. Remote Sens. 2014, 35, 4467–4483. [Google Scholar] [CrossRef]
- Ganguly, A.; Steinhaeuser, K. Data Mining for Climate Change and Impacts. In Proceedings of the IEEE International Conference on Data Mining Workshops, ICDMW, Pisa, Italy, 15–19 Decmber 2008; pp. 385–394.
- Saulquin, B.; Fablet, R.; Mercier, G.; Demarcq, H.; Mangin, A.; Fantond’Andon, O.H. Multiscale Event-Based Mining in Geophysical Time Series: Characterization and Distribution of Significant Time-Scales in the Sea Surface Temperature Anomalies Relatively to ENSO Periods from 1985 to 2009. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 3543–3552. [Google Scholar] [CrossRef]
- Kumar, V. Discovery of patterns in global earth science data using data mining. Lect. Notes Comput. Sci. 2010, 6118. [Google Scholar] [CrossRef]
- Holloway, P.; Miller, J.A. Exploring spatial scale, autocorrelation and nonstationarity of bird species richness patterns. ISPRS Int. J. Geo-Inf. 2015, 4, 783–798. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, J.F.; Zhu, F.B.; Zhang, W.W. Analysis of spatial pattern of aerosol optical depth and affecting factors using spatial autocorrelation and spatial autoregressive model. Environ. Earth Sci. 2016, 75, 822. [Google Scholar]
- Su, F.Z.; Zhou, C.H.; Lyne, V.; Du, Y.Y.; Shi, W.Z. A data mining approach to determine the spatio-temporal relationship between environmental factors and fish distribution. Ecol. Model. 2004, 174, 421–431. [Google Scholar] [CrossRef]
- Huang, P.Y.; Kao, L.J.; Sandnes, F.E. Efficient mining of salinity and temperature association rules from ARGO data. Expert Syst. Appl. 2008, 35, 59–68. [Google Scholar] [CrossRef]
- Reynolds, R.W.; Rayner, N.A.; Smith, T.M.; Stokes, D.C.; Wang, W. An improved in situ and satellite SST analysis for climate. J. Clim. 2002, 15, 1609–1625. [Google Scholar] [CrossRef]
- Hooker, S.B.; McClain, C.R. The calibration and validation of SeaWiFS data. Prog. Oceanogr. 2000, 45, 427–465. [Google Scholar] [CrossRef]
- MSLA—Monthly Mean and Climatology Maps of Sea Level Anomalies. Available online: http://www.aviso.altimetry.fr/en/data/products/sea-surface-height-products/global/msla-mean-climatology.html (accessed on 20 January 2017).
- Remote Sensing Systems (RSS). Available online: http://data.remss.com/ccmp/v02.0/ (accessed on 20 January 2017).
- Wolter, K.; Timlin, M.S. El Nino/Southern Oscillation behaviour since 1871 as diagnosed in an extended multivariate ENSO index (MEI. ext). Int. J. Climatol. 2011, 31, 1074–1087. [Google Scholar] [CrossRef]
- Xue, C.J.; Song, W.J.; Qin, L.J.; Dong, Q. A normalized-mutual-information-based mining method for marine abnormal association rules. Comput. Geosci.-UK 2015, 76, 121–129. [Google Scholar]
- Srikant, R.; Agrawal, R. Mining sequential patterns: Generalizations and performance improvements. In Proceedings of the 5th International Conference on Extending Database Technology (EDBT’96), Avignon, France, 25–29 March 1996; pp. 3–17.
- Li, X.Y.; Zhai, P.M. On indices and indictors of ENSO episodes. Acta Metall. Sin. 2000, 58, 102–119. [Google Scholar]
- Trenberth, K.E. The definition of El Niño. Bull. Am. Meteor. Soc. 1997, 78, 2771–2777. [Google Scholar] [CrossRef]
- Messié, M.; Chavez, F.P. A global analysis of ENSO synchrony: The oceans’ biological response to physical forcing. J. Geophys. Res. Ocean. 2012, 117, C09001. [Google Scholar] [CrossRef]
- Curtis, S.; Adler, R. ENSO indices based on patterns of satellite-derived precipitation. J. Clim. 2000, 13, 786–2793. [Google Scholar] [CrossRef]
- Yu, J.Y.; Liu, W.T.; Mechos, C.R. An SST anomaly dipole in the northern subtropical pacific and its relationships with ENSO. Geophys. Res. Lett. 2000, 27, 1931–1934. [Google Scholar] [CrossRef]
- Messié, M.; Chavez, F.P. Physical-biological synchrony in the global ocean associated with recent variability in the central and western equatorial Pacific. J. Geophys. Res. Ocean. 2013, 118, 3782–3794. [Google Scholar] [CrossRef]
- Li, Z.X. Influence of Tropical Pacific El Nino on the SST of the Southern Ocean through atmospheric bridge. Geophys. Res. Lett. 2000, 27, 3505–3508. [Google Scholar] [CrossRef]
- Ashok, K.; Behera, S.K.; Rao, S.A.; Weng, H.; Yamagata, T. El Niño Modoki and its possible teleconnection. J. Geophys. Res. Ocean. 2007, C11007. [Google Scholar] [CrossRef]
- Larkin, N.K.; Harrison, D.E. Global seasonal temperature and precipitation anomalies during El Niño autumn and winter. Geophys. Res. Lett. 2005, 32, L16705. [Google Scholar] [CrossRef]
- Ashok, K.; Yamagata, T. The El Niño with a difference. Nature 2009, 461, 481–484. [Google Scholar] [CrossRef] [PubMed]
No | Product | Source | Timespan | Temporal Resolution | Spatial Coverage | Spatial Resolution |
---|---|---|---|---|---|---|
1 | SST 1 | NOAA/PSD | December 1981–April 2014 | Monthly | Global | 1° × 1° |
2 | CHL 2 | SeaWifs | September 1997–November 2010 | Monthly | Global | 9 km × 9 km |
MODIS | July 2002–May 2014 | Monthly | Global | 9 km × 9 km | ||
3 | SSP 3 | TRMM | January 1998–February 2014 | Monthly | Global | 0.25° × 0.25° |
4 | SLA 4 | AVISO | January 1993–December 2012 | Monthly | Global | 0.25° × 0.25° |
5 | WindSpeed 5 | RSS | January 1988–December 2012 | Monthly | Global | 0.25° × 0.25° |
6 | ENSO 6 | MEI | January 1950–May 2014 | Monthly | - | - |
El Niño Events | La Niña Events | ||||
---|---|---|---|---|---|
Characterizations | Start Time–End Time | Characterizations | Start Time–End Time | ||
1 | Strong | January 1998–June 1998 | 1 | Strong | September 1998–March 2000 |
2 | Strong | May 2002–March 2003 | 2 | Weak | November 2000–March 2001 |
3 | Weak | August 2004–May 2005 | 3 | Weak | December 2005–April 2006 |
4 | Strong | June 2006–February 2007 | 4 | Strong | August 2007–April 2008 |
5 | Strong | June 2009–May 2010 | 5 | Weak | September 2008–March 2009 |
6 | Strong | May 2012–August 2012 | 6 | Strong | July 2010–April 2011 |
7 | Strong | September 2011–February 2012 |
© 2017 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xue, C.; Fan, X.; Dong, Q.; Liu, J. Using Remote Sensing Products to Identify Marine Association Patterns in Factors Relating to ENSO in the Pacific Ocean. ISPRS Int. J. Geo-Inf. 2017, 6, 32. https://doi.org/10.3390/ijgi6010032
Xue C, Fan X, Dong Q, Liu J. Using Remote Sensing Products to Identify Marine Association Patterns in Factors Relating to ENSO in the Pacific Ocean. ISPRS International Journal of Geo-Information. 2017; 6(1):32. https://doi.org/10.3390/ijgi6010032
Chicago/Turabian StyleXue, Cunjin, Xing Fan, Qing Dong, and Jingyi Liu. 2017. "Using Remote Sensing Products to Identify Marine Association Patterns in Factors Relating to ENSO in the Pacific Ocean" ISPRS International Journal of Geo-Information 6, no. 1: 32. https://doi.org/10.3390/ijgi6010032
APA StyleXue, C., Fan, X., Dong, Q., & Liu, J. (2017). Using Remote Sensing Products to Identify Marine Association Patterns in Factors Relating to ENSO in the Pacific Ocean. ISPRS International Journal of Geo-Information, 6(1), 32. https://doi.org/10.3390/ijgi6010032