Coupling Knowledge with GIS Operations: The Benefits of Extended Operation Descriptions
Abstract
:1. Introduction
2. Approaches to Automated Workflow Development
2.1. Improved Workflow Development
2.2. Extended Operation Descriptions
3. A Knowledge Base Providing Extended Operation Descriptions
- Concepts of geoprocessing operations,
- Categories of geoprocessing operations,
- Relations between operations, and
- A data type ontology for specifying the interfaces of operations including constraints.
3.1. Data Type Ontology
3.2. Interfaces of Geooperators
- Has_expression: this property contains SPARQL expressions of the constraints;
- Has_message: this property contains a message, which is a mix of text and SPARQL expressions that can be evaluated in the demonstrator tool.
4. A Demonstrator for the Validation of the Knowledge Base
5. Use Case and Application
5.1. Use Case: Multi-Criteria Decision Making Process
- Project: project data into the coordinate reference system used in the workflow,
- Clip: clip data to the study area at hand,
- Resample: resample raster data to the required resolution,
- Feature to raster: transform vector data input to raster.
- Discover ArcGIS operations like project, resample, reclassify etc.;
- Discover clipping operations for raster and vector data provided by ArcGIS;
- Discover the operation required to generate the input for the cost path operation, i.e., the cost distance operation.
- Feedback as to whether the inputs for the clip operation satisfy the precondition concerning geometries of inputs (e.g., polygons can only be clipped with polygons);
- Feedback as to whether the output of the clipped roads can directly be used as input for the project operation;
- Feedback stating that the output of the project operation cannot be directly linked to the reclassify operation;
- Recommendation of the feature_to_raster tool in between the steps project and the reclassification of roads.
5.2. Benefits of Knowledge about Operations during Workflow Development
6. Conclusions and Future Work
- The structured search for geooperators based on concepts and their combinations,
- The discovery of geooperators from different GIS tools,
- The exploitation of relations between geooperators within or across tools,
- The syntactically correct chaining of geoprocessing operations through feedback in case of violations of the constraints of operations,
- The automated discovery of geooperators in case type mismatches are identified between operations.
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Janowicz, K.; Hitzler, P. The Digital Earth as knowledge engine. Semant. Web IOS Press 2012, 3, 213–221. [Google Scholar]
- Gore, A. The Digital Earth: Understanding Our Planet in the 21st Century; Speech at the California Science Center; California Science Center: Los Angeles, CA, USA, 1998. [Google Scholar]
- Craglia, M.; de Bie, K.; Jackson, D.; Pesaresi, M.; Remetey-Fülöpp, G.; Wang, C.; Annoni, A.; Bian, L.; Campbell, F.; Ehlers, M.; et al. Digital Earth 2020: Towards the vision for the next decade. Int. J. Digit. Earth 2011, 5, 4–21. [Google Scholar] [CrossRef]
- Yue, P.; Baumann, P.; Bugbee, K.; Jiang, L. Towards intelligent GIServices. Earth Sci. Inform. 2015, 8, 463–481. [Google Scholar] [CrossRef]
- Kiehle, C.; Greve, K.; Heier, C. Requirements for next generation spatial data infrastructures-standardized web based geoprocessing and web service orchestration. Trans. GIS 2007, 11, 819–834. [Google Scholar] [CrossRef]
- Al-Areqi, S.; Lamprecht, A.-L.; Margaria, T. Constraints-driven automatic geospatial service composition: Workflows for the analysis of sea-level rise impacts. In Proceedings of the International Conference on Computational Science and its Applications, Beijing, China, 4–7 July 2016.
- Stasch, C.; Scheider, S.; Pebesma, E.; Kuhn, W. Meaningful spatial prediction and aggregation. Enviorn. Model. Softw. 2014, 51, 149–165. [Google Scholar] [CrossRef]
- Laniak, G.F.; Olchin, G.; Goodall, J.; Voinov, A.; Hill, M.; Glynn, P.; Whelan, G.; Geller, G.; Quinn, N.; Blind, M.; et al. Integrated environmental modeling: A vision and roadmap for the future. Environ. Model. Softw. 2013, 39, 3–23. [Google Scholar] [CrossRef] [Green Version]
- Kuhn, W.; Ballatore, A. Designing a language for spatial computing. In AGILE 2015; Bacao, F., Santos, M.Y., Painho, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 309–326. [Google Scholar]
- Kuhn, W. Core concepts of spatial information for transdisciplinary research. Int. J. Geogr. Inf. Sci. 2012, 26, 2267–2276. [Google Scholar] [CrossRef]
- Scheider, S.; Gräler, B.; Pebesma, E.; Stasch, C. Modeling spatiotemporal information generation. Int. J. Geogr. Inf. Sci. 2016, 30, 1980–2008. [Google Scholar] [CrossRef]
- Lutz, M. Ontology-Based descriptions for semantic discovery and composition of geoprocessing services. Geoinformatica 2007, 11, 1–36. [Google Scholar] [CrossRef]
- Fitzner, D.; Hoffmann, J.; Klien, E. Functional description of geoprocessing services as conjunctive datalog queries. Geoinformatica 2011, 15, 191–221. [Google Scholar] [CrossRef]
- Qi, K.; Gui, Z.; Li, Z.; Guo, W.; Wu, H.; Gong, J. An extension mechanism to verify, constrain and enhance geoprocessing workflows invocation. Trans. GIS 2015. [Google Scholar] [CrossRef]
- Brauner, J. Formalizations for Geooperators—Geoprocessing in Spatial Data Infrastructures. Ph.D. Thesis, Technische Universität Dresden, Dresden, Germany, 2015. [Google Scholar]
- Hofer, B.; Brauner, J.; Jackson, M.; Granell, C.; Rodrigues, A.; Nüst, D.; Wiemann, S. Descriptions of spatial operations—Recent approaches and community feedback. Int. J. Spat. Data Infrastruct. Res. 2015, 10, 124–137. [Google Scholar]
- Hofer, B.; Mäs, S.; Brauner, J.; Bernard, L. Towards a knowledge base to support geoprocessing workflow development. Int. J. Geogr. Inf. Sci. 2016, 31, 694–716. [Google Scholar] [CrossRef]
- World Wide Web Consortium. SPARQL 1.1 Recommendation; World Wide Web Consortium: Cambridge, MA, USA, 2013. [Google Scholar]
- Graser, A.; Olaya, V. Processing: A python framework for the seamless integration of geoprocessing tools in QGIS. ISPRS Int. J. Geo-Inf. 2015, 4, 2219–2245. [Google Scholar] [CrossRef]
- Di, L. GeoBrain—A web Services based geospatial knowledge building system. In Proceedings of the NASA Earth Science Technology Conference, Palo Alto, CA, USA, 22–24 June 2004.
- Qiu, F.; Ni, F.; Chastain, B.; Huang, H.; Zhao, P.; Han, W.; Di, L. GWASS: GRASS web application software system based on the GeoBrain web service. Comput. Geosci. 2012, 47, 143–150. [Google Scholar] [CrossRef]
- Yue, P.; Gong, J.; Di, L.; Yuan, J.; Sun, L.; Wang, Q. GeoPW: Towards the geospatial processing Web. In Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer: Berlin/Heidelberg, Germany, 2009; Volume 5886, pp. 25–38. [Google Scholar]
- Sun, Z.; Yue, P.; Di, L. GeoPWTManager: A task-oriented web geoprocessing system. Comput. Geosci. 2012, 47, 34–45. [Google Scholar] [CrossRef]
- Wang, J.; Pierce, M.; Ma, Y.; Fox, G.; Donnellan, A.; Parker, J.; Glasscoe, M. Using service-based GIS to support earthquake research and disaster response. Comput. Sci. Eng. 2012, 14, 21–30. [Google Scholar] [CrossRef]
- Bensmann, F.; Alcacer-Labrador, D.; Ziegenhagen, D.; Roosmann, R. The RichWPS Environment for Orchestration. ISPRS Int. J. Geo-Inf. 2014, 3, 1334–1351. [Google Scholar] [CrossRef]
- Open Geospatial Consortium. OGC WPS 2.0 Interface Standard; OGC Document 14-065; Open Geospatial Consortium: Wayland, MA, USA, 2015. [Google Scholar]
- Open Geospatial Consortium. Semantic Annotations in OGC Standards; OGC Best Practices; Open Geospatial Consortium: Wayland, MA, USA, 2012; p. 59. [Google Scholar]
- Vahedi, B.; Kuhn, W.; Ballatore, A. Question-based spatial computing—A case study. In Geospatial Data in a Changing World; Sarjakoski, T., Santos, M.Y., Sarjakoski, L.T., Eds.; Springer: Berlin/Heidelberg, Germany, 2016; pp. 37–50. [Google Scholar]
- Lemmens, R.; Granell, C.; Wytzisk, A.; de By, R.; Gould, M.; van Oosterom, P. Integrating semantic and syntactic descriptions to chain geographic services. IEEE Internet Comput. 2006, 10, 42–52. [Google Scholar] [CrossRef]
- Lutz, M.; Lucchi, R.; Friis-Christensen, A.; Ostländer, N. A rule-based description framework for the composition of geographic information services. In Proceedings of the 2nd International Conference on GeoSpatial Semantics, Mexico City, Mexico, 29–30 November 2007; pp. 114–127.
- Scheider, S.; Tomko, M. Knowing whether spatio-temporal analysis procedures are applicable to datasets. In Proceedings of the 9th International Conference on Formal Ontology in Information Systems (FOIS 2016), Annency, France, 6–9 July 2016; pp. 67–80.
- Farnaghi, M.; Mansourian, A. Disaster planning using automated composition of semantic OGC web services: A case study in sheltering. Comput. Environ. Urban Syst. 2013, 41, 204–218. [Google Scholar] [CrossRef]
- Yue, P.; Di, L.; Yang, W.; Yu, G.; Zhao, P. Semantics-based automatic composition of geospatial Web service chains. Comput. Geosci. 2007, 33, 649–665. [Google Scholar] [CrossRef]
- Küster, U.; Stern, M.; König-Ries, B. A classification of issues and approaches in automatic service composition. In Proceedings of the First International Workshop on Engineering Service Compositions (WESC05), Amsterdam, The Netherlands, 1 December 2005.
- Jones, R.; Cornford, D.; Bastin, L. UncertWeb processing service: Making models easier to access on the web. Trans. GIS 2012, 16, 921–939. [Google Scholar] [CrossRef]
- Lopez-Pellicer, F.J.; Rentería-Agualimpia, W.; Béjar, R.; Muro-Medrano, P.R.; Zarazaga-Soria, F.J. Availability of the OGC geoprocessing standard: March 2011 reality check. Comput. Geosci. 2012, 47, 13–19. [Google Scholar] [CrossRef]
- Müller, M. Hierarchical profiling of geoprocessing services. Comput. Geosci. 2015, 82, 68–77. [Google Scholar] [CrossRef]
- Miles, A.; Bechhofer, S. SKOS Simple Knowledge Organization System Reference. Recommendation; World Wide Web Consortium: Cambridge, MA, USA, 2009. [Google Scholar]
- Albrecht, J. Universal GIS-Operations—A Task-Oriented Systematization of Data Structure-Independent GIS Functionality Leading Towards a Geographic Modelling Language; ISPA—Mitteilungen: Vechta, Germany, 1996; Volume 23, pp. 1–94. [Google Scholar]
- The International Organization for Standardization. ISO 19107: Geographic Information—Spatial Schema; The International Organization for Standardization: Geneva, Switzerland, 2003. [Google Scholar]
- The International Organization for Standardization. ISO 19123: Geographic Information—Schema for Coverage Geometry and Functions; The International Organization for Standardization: Geneva, Switzerland, 2005. [Google Scholar]
- Keshkamat, S.S.; Looijen, J.M.; Zuidgeest, M.H.P. The formulation and evaluation of transport route planning alternatives: A spatial decision support system for the Via Baltica project, Poland. J. Transp. Geogr. 2009, 17, 54–64. [Google Scholar] [CrossRef]
- Ostermann, F.O.; Granell, C. Advancing science with VGI: Reproducibility and replicability of recent studies using VGI. Trans. GIS 2015. [Google Scholar] [CrossRef]
- World Wide Web Consortium. PROV-O: The PROV Ontology Recommendation; World Wide Web Consortium: Cambridge, MA, USA, 2013. [Google Scholar]
Geooperator Concept | Sub-Concepts (If Available) | Individuals | Explanation |
---|---|---|---|
Functional concept | Data management | CRS-conversion, format conversion, raster statistics, etc. | The functional concepts are based on the groups of GIS operations identified by Albrecht [39]. As data management is not considered in Albrecht’s work, this category has been added. |
Distribution/neigh-borhood | Nearest neighbor, proximity, cost-diffusion-spread | ||
Location analysis | Buffer, overlay, Voronoi, etc. | ||
Search | Thematic search, spatial search, etc. | ||
Reclassification | Interpolation, reclassification | ||
Spatial analysis | Pattern-dispersion, multivariate analysis, etc. | ||
Terrain analysis | Slope, aspect, viewshed analysis | ||
Measurements | Adjacency, distance, height, etc. |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hofer, B.; Papadakis, E.; Mäs, S. Coupling Knowledge with GIS Operations: The Benefits of Extended Operation Descriptions. ISPRS Int. J. Geo-Inf. 2017, 6, 40. https://doi.org/10.3390/ijgi6020040
Hofer B, Papadakis E, Mäs S. Coupling Knowledge with GIS Operations: The Benefits of Extended Operation Descriptions. ISPRS International Journal of Geo-Information. 2017; 6(2):40. https://doi.org/10.3390/ijgi6020040
Chicago/Turabian StyleHofer, Barbara, Emmanuel Papadakis, and Stephan Mäs. 2017. "Coupling Knowledge with GIS Operations: The Benefits of Extended Operation Descriptions" ISPRS International Journal of Geo-Information 6, no. 2: 40. https://doi.org/10.3390/ijgi6020040
APA StyleHofer, B., Papadakis, E., & Mäs, S. (2017). Coupling Knowledge with GIS Operations: The Benefits of Extended Operation Descriptions. ISPRS International Journal of Geo-Information, 6(2), 40. https://doi.org/10.3390/ijgi6020040