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Abstract: Photogrammetry and Terrestrial laser scanning (TLS) are the two primary non-contact
active measurement techniques in geology. Integrating TLS data with digital images may achieve
complementary advantages of spatial information as well as spectrum information, which would be
very valuable for automatic rock surface extraction. In order to extract accurate and comprehensive
geological information with both digital images and TLS point cloud, the registration problem for
different sensor sources should be solved first. This paper presents a Generalized Super 4-points
Congruent Sets (G-Super4PCS) algorithm to register the TLS point cloud as well as Structure from
Motion (SfM) point cloud generated from disordered digital images. The G-Super4PCS algorithm
mainly includes three stages: (1) key-scale rough estimation for point clouds; (2) extraction for
the generalized super 4-points congruent base set and scale adaptive optimization; and (3) fine
registration with Iterative Closest Point (ICP) algorithm. The developed method was tested with
the columnar basalt data acquired in Guabushan National Geopark in Jiangsu Province, China.
The results indicate that the proposed method could be used for indirect registration between
digital images and TLS point cloud, and the result of which would be prepared for further
integration research.
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1. Introduction

Rock surface includes joints, fractures, faults and other geological structures; the properties
of which govern the overall behavior of the rock masses. A detailed investigation aiming at the
corresponding geological environment is necessary for a rock engineering research. The geometrical
information, distribution and combination condition of the rock surface are the basis on which rock
mass classification and engineering geological evaluation can proceed well. Therefore, it is vital for
hydropower engineering, transportation engineering and mining engineering to extract rock surface
accurately, efficiently and fully, which has important realistic significance for engineering exploration,
design, evaluation and construction.

However, most basic engineering construction projects focus on alpine and gorge regions,
which are so dangerous and inaccessible that the traditional contact measurements cannot proceed
efficiently, safely, and quickly. Instead of the traditional contact measurements, the non-contact active
measurements, mainly including close-range photogrammetry and TLS, could collect image or point
cloud data and then finish rock surface extraction more conveniently and comprehensively in a virtual
digital environment generated from these data.
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Terrestrial laser scanning (TLS), emerging in the mid-1990s, allows capturing an accurate 3D
model of an object in short time, which could be used for several purposes. TLS is an active and
non-contact measurement technique, which can obtain the spatial coordinates of an object with high
speed and accuracy by measuring the time-of-flight of laser signals [1]. High temporal resolution, high
spatial resolution and uniform accuracy make the TLS data rather appropriate for many applications,
including dangerous and inaccessible regions. However, TLS data are poor at expressing the object
features due to characteristics such as unstructured 3D point clouds. Photogrammetric techniques
processing stereoscopic images may be considered largely complementary to TLS, delivering RGB data
plus possibly further spectral channel information. Thus, integrating the TLS data with digital image
data may achieve complementary advantages of spatial information as well as spectrum information.
This integration may be very valuable for geology research.

One crucial problem that the research of geological information extraction based on the integration
of TLS data and image data involves is about the registration between point cloud and digital image.
Because of the different sensor sources and reference systems, a spatial similarity transformation is
essential to achieve registration. At present, many domestic and international scholars carried on a
great deal of research on this, which can mainly be divided into four groups: (1) registration with the
digital image and the intensity image generated by point cloud data; (2) registration with the point
cloud data respectively acquired by TLS and generated by digital images; (3) registration through
corresponding features extracted from both the TLS point cloud and the images; and (4) registration
through artificial targets (e.g., retro-reflective targets). As each of the above methods has its pros
and cons in certain application, it is important to find the tradeoff that is best suited for geology
applications. Compared with the first two groups, the latter two implement the registration based
on the original data sources, which effectively reduces error accumulation. However, for geological
research objects, the irregular appearance and indeterminate distribution of rock surface make it
difficult to directly extract corresponding primitives from the two data either by interactive methods
or by automatic methods.

As a primary technique of computer vision to reconstruct 3D scene geometry and camera motion
from a set of images of a static scene, Structure from Motion (SfM) has been applied in more and more
areas, including geomorphology, medical science, archaeology and cultural heritage [2–6]. SfM has the
potential to provide both a low cost and time efficient method for collecting data on the object surface [7].
SfM technique neither needs any prior knowledge about camera positions and orientation, nor targets
with known 3D coordinates, all of which can be solved simultaneously using a highly redundant,
iterative bundle adjustment procedure, based on a database of features automatically extracted from a
set of multiple overlapping images [8,9]. Therefore, it seems more feasible to indirectly register digital
images and TLS point cloud by use of the SfM point cloud from images and TLS point cloud.

Because of the complicated and irregular geological structure, it is difficult for registration to
directly and automatically extract primitives from SfM point cloud and TLS point cloud, such as
point-based, regular line segment-based and planar-based. In recent years, a novel 4-points congruent
base has been proposed for 3D point clouds registration [10]. Instead of more than three corresponding
points’ selection, these algorithms calculate the rigid transformation parameters by use of 4-points
congruent base sets, the advantages of which could be concluded as follows: (1) There is no need
to assume both the initial position and orientation of the two point clouds. (2) It is unnecessary to
depend on any regular geometrical features from the research object itself. (3) The overlap between
the two point clouds does not need to be known in advance. (4) It is robust to noise and outliers,
thus it does not require preprocessing such as filtering or noise reduction. In consideration of all the
above advantages, the registration theory of the 4-points congruent base is especially suitable for the
geological objects. The existing algorithms, such as 4PCS and Super4PCS, are limited to those data sets
from the same sensor. However, the geological data sources in this paper are r acquired by a digital
camera and a terrestrial laser scanner, and with different scales. Therefore, to use 4-points congruent
base sets for registration, the scales between the two point clouds should be unified first.
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Based on all the above analysis, this paper presents a fully automated method, G-Super4PCS,
for indirect registration of digital images and TLS point cloud data. This algorithm firstly takes the
SfM and TLS key point clouds, respectively, extracted from digital images and the original TLS point
cloud for rigid transformation parameters rough estimation, and then takes the dense SfM point cloud
from images and the original TLS point cloud for fine registration. Finally, the developed method
was verified by use of the columnar basalt data acquired in Guabushan National Geopark in Jiangsu
Province, China. The experimental results demonstrate that the G-Super4PCS registration algorithm
could achieve fine registration between digital images and TLS point cloud without any manual
interactions, the result of which provides a crucial data basis for further integration research.

The rest of this paper is organized as follows: Section 2 reviews the existing 4PCS and Super4PCS
algorithms. Section 3 introduces the detailed methodology of the proposed G-Super4PCS algorithm
for registration between digital images and TLS point cloud. The feasibility of the algorithm and its
applicability in geology are illustrated through an experiment with the columnar basalt data acquired
by digital camera and terrestrial laser scanner in Section 4. Section 5 presents the conclusion.

2. Related Work

2.1. 4PCS Algorithm

The 4-Points Congruent Sets (4PCS) algorithm achieves global fast registration by use of wide
base [10]. The basic idea is to extract all coplanar 4-points bases from the target point cloud which
are approximately congruent with the given 4-points base in the reference point cloud, build the
rigid transformation relationship, and then calculate the optimal transformation parameters with
RANSAC [11]. The flowchart of the 4PCS algorithm is shown as Figure 1. LCP is the abbreviation for
Largest Common Pointset (for details, see [10]), which reflects the accuracy of registration.
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Figure 1. The flowchart of the 4-Points Congruent Sets (4PCS) algorithm.

The extraction of 4-points congruent base sets is based on 3D affine invariant transformation.
Given three collinear points a, b and c, the ratio ‖a − b‖/‖a − c‖ is constant. Similarly, given two
coplanar and nonparallel lines ab and cd in R3, their intersection is e. The two ratios defined as
Equation (1) are invariant under affine transformation. The 4-points set {a, b, c, d} ⊂ R3 denotes a
coplanar base B. {

λ1 = ‖a− e‖/‖a− b‖
λ2 = ‖c− e‖/‖c− d‖ , (1)
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Suppose one coplanar base B1 = {p1, p2, p3, p4} is in the reference point cloud P (i.e., surface S1)
and the other coplanar base B2 = {q1, q2, q3, q4} is in the target point cloud Q (i.e., surface S2), which
are shown as Figure 2. If B1 and B2 satisfy the following conditions, they are defined as a coplanar
4-points congruent base.

1. The corresponding affine invariant ratios are equal, i.e., λ1 = λ3 and λ2 = λ4, where, λ1 − λ4 are
defined as Equation (2).{

λ1 = ‖p1 − e1‖/‖p1 − p4‖
λ2 = ‖p2 − e1‖/‖p2 − p3‖

,

{
λ3 = ‖q1 − e2‖/‖q1 − q4‖
λ4 = ‖q2 − e2‖/‖q2 − q3‖

, (2)

2. They have the same line angle, i.e., θ1 = θ2.
3. The lengths of the corresponding lines are equal, i.e., d1 = d3 and d2 = d4, where, d1 − d4 are

expressed as Equation (3).

d1 = ‖p4 − p1‖, d2 = ‖p3 − p2‖, d3 = ‖q4 − q1‖, d4 = ‖q3 − q2‖, (3)

ISPRS Int. J. Geo-Inf. 2017, 6, x FOR PEER REVIEW  4 of 23 

 

which are shown as Figure 2. If ܤଵ and ܤଶ satisfy the following conditions, they are defined as a 
coplanar 4-points congruent base. 
1. The corresponding affine invariant ratios are equal, i.e., ߣଵ = ଶߣ ଷ andߣ = ଵߣ ,ସ, whereߣ −  ସߣ

are defined as Equation (2). ൜ߣଵ = ଵ‖ − ݁ଵ‖ ଵ‖ − ଶߣ⁄‖ସ = ଶ‖ − ݁ଵ‖ ଶ‖ − ⁄‖ଷ , ൜ߣଷ = ଵݍ‖ − ݁ଶ‖ ଵݍ‖ − ସߣ⁄‖ସݍ = ଶݍ‖ − ݁ଶ‖ ଶݍ‖ − ⁄‖ଷݍ , (2)

2. They have the same line angle, i.e., ߠଵ =  .ଶߠ
3. The lengths of the corresponding lines are equal, i.e., ݀ଵ = ݀ଷ and ݀ଶ = ݀ସ, where, ݀ଵ − ݀ସ 

are expressed as Equation (3). ݀ଵ = ସ‖ − ,‖ଵ 	݀ଶ = ଷ‖ − ଶ‖, ݀ଷ = ସݍ‖ − ,‖ଵݍ ݀ସ = ଷݍ‖ − ଶ‖, (3)ݍ

e1

p1

p2

S1

p4

p3
e2

q1

S2

q2

q3

q4

B1 B2θ1 
θ2 

λ1 , λ2;   d1 , d2 λ3 , λ4;   d3 , d4  
(a) (b)

Figure 2. A coplanar 4-points congruent base: (a) one coplanar base ܤଵ = ,ଵ} ,ଶ ,ଷ  .ଶ in surface ܵଶܤ ସ} in surface ଵܵ; and (b) the congruent coplanar base

2.2. Super4PCS Algorithm 

Super4PCS was proposed in 2014 [12] In comparison to 4PCS, Super4PCS introduces 
SmartIndexing to achieve efficient data organization and index, the complexity of which has been 
reduced to linear complexity. With SmartIndexing, both the candidate point-pairs and candidate 
4-points congruent base set could be extracted more quickly and more accurately, which greatly 
improves the operation efficiency of the algorithm. 

Let d denote the distance of one point-pair in a given 4-points base in the reference point cloud 
P, the 4PCS requires extracting all point-pairs with the same distance, which could be equivalent to 
a classical incidence problem between spheres and points in 3D, i.e., drawing a sphere with radius d 
centered at each point and then getting all points intersecting with it [13]. In the practical 
calculation, the range of the distance is relaxed to be approximately d with a given margin ߝ, i.e., ሾ݀ − ,ߝ ݀ + ሿ	ߝ , and the graph is shown as Figure 3. Through the above analysis, candidate 
point-pairs extraction could be achieved by efficient computation of incidences between spheres 
and point cloud, which could be finished by use of a rasterization approach [14]. Put the target 
point cloud into a 3D grid with cell size ߝ, in which the sphere with radius d is rasterized. All 
points falling in those cells (as well as their neighbors) encountered by the sphere are enumerated. 
Then, all candidate point-pairs could be extracted successfully, which are used to find all candidate 
4-points congruent bases.  

In Figure 4a, both (ଵ, (ସ  and (ଶ, (ଷ  define a coplanar 4-points base under affine 
transformation, and corresponding (ݍଵ, (ସݍ  and (ݍଶ, (ଷݍ  in Figure 4b could arbitrarily rotate 
around the intersection ݁ଶ. It is obvious that {(ଵ, ,(ସ ,ଶ) ,ଵݍ)} ଷ)} and ,(ସݍ ,ଶݍ) ,ଵ)} ଷ)} as well asݍ ,(ସ ,ଶ) ଵᇱݍ)} ଷ)} and , ସᇱݍ ), ,ଶݍ)  ଷ)} are both defined under affine transformation, but only theݍ
former is the right coplanar 4-points congruent base. Therefore, the candidate coplanar 4-points 
congruent base set is a super set, in which all noncoplanar 4-points congruent bases should be 
eliminated in order for more accurate results. 
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2.2. Super4PCS Algorithm

Super4PCS was proposed in 2014 [12] In comparison to 4PCS, Super4PCS introduces
SmartIndexing to achieve efficient data organization and index, the complexity of which has been
reduced to linear complexity. With SmartIndexing, both the candidate point-pairs and candidate
4-points congruent base set could be extracted more quickly and more accurately, which greatly
improves the operation efficiency of the algorithm.

Let d denote the distance of one point-pair in a given 4-points base in the reference point cloud P,
the 4PCS requires extracting all point-pairs with the same distance, which could be equivalent to a
classical incidence problem between spheres and points in 3D, i.e., drawing a sphere with radius d
centered at each point and then getting all points intersecting with it [13]. In the practical calculation,
the range of the distance is relaxed to be approximately d with a given margin ε, i.e., [d− ε, d + ε], and
the graph is shown as Figure 3. Through the above analysis, candidate point-pairs extraction could
be achieved by efficient computation of incidences between spheres and point cloud, which could
be finished by use of a rasterization approach [14]. Put the target point cloud into a 3D grid with
cell size ε, in which the sphere with radius d is rasterized. All points falling in those cells (as well as
their neighbors) encountered by the sphere are enumerated. Then, all candidate point-pairs could be
extracted successfully, which are used to find all candidate 4-points congruent bases.
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In Figure 4a, both (p1, p4) and (p2, p3) define a coplanar 4-points base under affine
transformation, and corresponding (q1, q4) and (q2, q3) in Figure 4b could arbitrarily rotate
around the intersection e2. It is obvious that {(p1, p4), (p2, p3)} and {(q1, q4), (q2, q3)} as well as
{(p1, p4), (p2, p3)} and

{(
q′1, q′4

)
, (q2, q3)

}
are both defined under affine transformation, but only

the former is the right coplanar 4-points congruent base. Therefore, the candidate coplanar 4-points
congruent base set is a super set, in which all noncoplanar 4-points congruent bases should be
eliminated in order for more accurate results.
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For the Super4PCS registration algorithm, the challenge is how to extract the accurate coplanar
4-points congruent base set by matching the corresponding angles between the given base in the
reference point cloud P and the candidate base in target point cloud Q. This problem could be solved
by use of a unit sphere rasterization approach according to the mapping relationship between angles
and vector indices.

Suppose a given coplanar 4-points base B1 = {p1, p2, p3, p4} is in the reference point cloud P,
and let d1 = ‖p1 − p4‖ and d2 = ‖p2 − p3‖. Let λ1 and λ2 be the corresponding affine invariant ratios.
The steps of the coplanar 4-points congruent base set extraction with Super4PCS could be described
as follows:

1. Extract candidate point-pairs sets S1 and S2 from the target point cloud Q according to the
distance constraint condition.
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2. Build a grid G with cell size ε.

3. For vector
→

p1 p4 and
→

p4 p1, traverse the candidate point-pairs set S1, calculate all possible
intersections e′2 according to the affine invariant ratio λ1, and, respectively, store the intersections
in grid G and normalized vectors with the same orientation in the corresponding vector indices.

4. For vector
→

p2 p3 and
→

p3 p2, traverse the candidate point-pairs set S2, calculate all possible
intersections e′′2 according to the affine invariant ratio λ2, and, respectively, store the intersections
in grid G and normalized vectors with the same orientation in the corresponding vector indices.

5. Let θ denote the angle between the two point-pairs in the given base B1, and extract all point-pairs
according to the intersections stored in grid G and the corresponding vector indices, the angles of
which are equal to θ.

3. Methodology

For 4PCS and Super4PCS algorithms, the coplanar 4-points congruent base sets are extracted
under some condition constraints, including the same distance of point-pairs, the same affine invariant
ratios and the same angles. In the strict sense, the coplanar 4-points congruent base is just a special
congruent base, which means that both 4PCS and Super4PCS registration algorithms are only suitable
for those point clouds with the same scale. Moreover, in the process of the 4-points congruent base set
extraction, some local features associations of point clouds have not been considered, which may have
some effect on the efficiency and precision. Therefore, a new Generalized Super 4-points Congruent
Sets (G-Super4PCS) registration algorithm has been proposed in this paper. The new algorithm firstly
introduces a key-scale rough estimation approach for SfM and TLS key point clouds.; Instead of the
traditional 4-points congruent base, this algorithm defines a new generalized super 4-points congruent
base which combines geometric relationship and local features including local roughness and normal
vector of rock surface. Then scale adaptive optimization and candidate point-pairs extraction could
be finished by combination of local roughness and distance constraint condition. The congruent
base set could be further filtered with the local normal vector, which largely reduces times of rigid
transformation verification, and improves the efficiency and precision of the registration algorithm.
The flowchart of G-Super4PCS algorithm is shown as Figure 5.
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3.1. Key-Scales Rough Estimation for SfM and TLS Key Point Clouds

Scale estimation is the key and precondition for registration of point clouds with different scales.
The scale estimation methods could be divided into two groups [15]: the first one is to directly estimate
the scale ratio of the two point clouds; and the second one is to estimate the scale for each point
cloud. In this paper, a key-scale rough estimation approach based on spin images and cumulative
contribution rate of PCA has been used for registration of SfM and TLS point clouds.

3.1.1. Spin Images

A spin image is a local feature descriptor for a 3D point, which describes local geometry by a
2D distance histogram about the 3D point and its neighbors. The generation of spin image is closely
associated to point cloud normal vectors. An oriented-point is defined by a point pi in a point cloud P
as well as its unit normal vector ni, which is used to be the central axis of cylindrical coordinates. For
any other point pj ∈ P near pi, rij and cij, respectively, denote distances along the unit normal vector
ni and the tangent plane at pi, the graph of which is shown as Figure 6.
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rij and cij could be calculated by Equation (4).{
rij =

√
‖pi − pj‖2 −

(
nT

i
(

pi − pj
))2

cij = nT
i
(

pi − pj
) , (4)

where rij ≥ 0,
∣∣cij
∣∣ ≥ 0. Let w denote the spin image width, then 0 ≤ rij ≤ w and

∣∣cij
∣∣ ≤ w. Discretize

distances
(
rij, cij

)
into a m×m grid and vote to a 2D distance histogram of m×m bins, and then a spin

image is generated.
Generally, the spin image width is related to the grid size (m×m) and its cell size. The grid size

decides the spin image resolution, and the larger the grid size is, the higher the resolution is. However,
the grid size should be set neither too large nor too small, which would not well describe the difference
of spin images. For the experimental data in this paper, the grid size is set to 25× 25. Therefore, the
spin image width changes with the cell size. As the key-scales rough estimation method only needs to
obtain the scale ratio between the two point clouds, the spin image width is actually represented by
the cell width in this paper.

3.1.2. Relationship of Spin Image and Point Cloud Scale

As a spin image is a feature descriptor which is not scale invariant, the image width has a large
effect on local geometry description. Figure 7a shows an original point cloud, and Figure 7b shows the
corresponding spin images (Spin 1, Spin 2, . . . , Spin 6) at different image widths.
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Figure 7. (a) A point cloud of a monster; and (b) the corresponding spin images (Spin 1, Spin 2, . . . ,
Spin 6) for some points at different image widths (w = 0.005, 0.5 and 2).

When the image width is too small, as shown in the top row of Figure 7b, the local geometry
cannot be expressed correctly with spin images, the reason of which is that for any object, its surface
can be regarded as flat in an extremely small locality. In this case, all spin images look the same or
very similar to each other, because they all describe a plane. Conversely, as shown in the bottom row
of Figure 7b, the local geometry still cannot be described correctly with spin images when the image
width is too large. In this case, all 3D points may fall in the same bin (or just in few bins) of a histogram
for a spin image, which would make all spin images very similar to each other. Therefore, it can be
concluded that the similarity between spin images has a minimum at a certain width. Moreover, spin
images keep the most difference from each other at the minimum (as shown in the middle row of
Figure 7b). That is to say, the real scale of point cloud could be estimated according to the optimal
width of spin images.

3.1.3. Cumulative Contribution Rate of PCA Based on Spin Image

Principal Components Analysis (PCA) is a statistical procedure that uses an orthogonal
transformation to convert a set of observations of possibly correlated variables into a set of values of
linearly uncorrelated variables [16]. The similarity between spin images could be described by the
cumulative contribution rate of PCA in special dimension as well as special space. The lower the
cumulative contribution rate is, the more dissimilar spin images are. Let Spini(r, c, w) denote a spin
image with m×m bins, then it can be described with an m2-dimension vector Sw

i . After performing

PCA on a set of spin images
{

Sw
i
}

, m2 eigenvectors with m2-dimension,
{

ew
1 , ew

2 , . . . , ew
m2

}
, as well

as corresponding real eigenvalues,
{

λw
1 , λw

2 , . . . , λw
m2

}
, could be obtained. Let d = 1, 2, . . . , m2, then

the cumulative contribution rate of the first d-dimension principal components, cw
d , could be defined

as follows:
cw

d = ∑ d
i=1λw

i / ∑ m2

i=1λw
i , (5)

3.1.4. Key-Scale Estimation of Point Clouds

The idea of key-scale estimation is to determine the optimal spin image width when the value of
cumulative contribution rate is minimum. It is difficult to show the dissimilarity between spin images
if the spin image width w is too large or too small compared to the object itself.

Figure 8 describes how the cumulative contribution rate changes with dimension d and spin
image width w. In Figure 8a, it is obvious that the cumulative contribution rate increases monotonically
with dimension d when spin image width w is fixed. Besides, the cumulative contribution rate curves
quickly approach 1 when w = 0.005 and w = 2, while the curve at w = 0.5 increases more slowly,
which means that spin images are very dissimilar with each other. In other words, when dimension
d is fixed (such as d = 100), the figure visually shows that the value of the cumulative contribution
rate at w = 0.5 is lower than that at w = 0.005 and w = 2. Figure 8b describes a group of cumulative
contribution rate curves change with different spin image width w for fixed dimensions d (d = 10, 30,
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50, 70 and 90), which shows the above results more clearly. In this figure, all contribution rate curves
get the minimum at w ≈ 0.5, where the corresponding spin images are most dissimilar. Therefore,
w ≈ 0.5 corresponds to the key-scale of the point cloud. With the relationship between the key-scale
and the spin image width, it is not difficult to conclude that the spin image width is a variable for the
key-scale rough estimation, the optimal value range of which appears near the minimum of cumulative
contribution rate.
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With the scale rough estimation method mentioned above, the key-scales of the SfM and TLS key
point clouds could be estimated; the results of which would be used for further registration process.

3.2. Definition for Generalized Super 4-Points Congruent Base Set

In order to extract generalized super 4-points congruent base set more accurately, this paper
introduces local roughness of rock surface, which is defined as the distance between each point pi in
point cloud and the plane fitted by all of its nearest points

{
pj
}

in the spherical neighborhood of radius
r centered at pi. Suppose the radius r is changed with the scale of point cloud; then the local roughness
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of point pi is proportional to the scale. The above characteristic contributes to improving the precision
of candidate point-pairs extraction.

Based on the coplanar 4-points congruent base, generalized super 4-points congruent base
can be defined as follows: Let P and Q denote two point clouds with different scales under rigid
transformation, and S1 and S2 denote corresponding surfaces. Figure 9 shows the graph of a pair of
generalized super 4-points congruent base, and lines with arrow mean normal vectors of points.
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Let s1 and s2 denote the key-scales of two point clouds estimated with the scale rough estimation
method introduced in Section 3.1. For one given coplanar 4-points base B1 = {p1, p2, p3, p4} in
surface S1 and another coplanar 4-points base B2 = {q1, q2, q3, q4} in surface S2, if B1 and B2 are the
generalized super 4-points congruent base, they have to satisfy the following fundamental conditions:

1. The affine invariant ratios of B1 and B2 are equal to each other, i.e., λ1 = λ3 and λ2 = λ4, where
λ1 − λ4 have been defined in Equation (2).

2. The angles between the two point-pairs in B1 and B2 are equal to each other, i.e., θ1 = θ2.
3. The distance of corresponding point-pairs in B1 and B2 are proportional, i.e., s2d1 = s1d3 and

s2d2 = s1d4, where d1 − d4 have been defined in Equation (3).
4. The normal vector angles of corresponding points in B1 and B2 are equal to each other, which is

shown as Equation (6).
α1 = α2; β1 = β2, (6)

5. The local roughness RPi and RQi of corresponding points in B1 and B2 are proportional to each
other in spherical neighborhoods of radius r and kr, which is shown as Equation (7).

s2RPi = s1RQi, (i = 1, 2, 3, 4), (7)

Let k = s2/s1, then Equation (7) could be written as follows:

kRPi = RQi, (i = 1, 2, 3, 4), (8)

Figure 10 reflects the relationship of generalized super 4-points congruent base, local roughness
and scales of point clouds. In the figure, B1 denotes the given 4-points base in point cloud P, B2

denotes the corresponding congruent base in point cloud Q, and B′2 denotes the base B2 performed
scale adjustment.
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Figure 10. The label (I) refers to the given base B1 in point cloud P as well as its original congruent
base B2 in point cloud Q; the label (II) refers to the given base B1 in point cloud P as well as the base B′2
in point cloud Q; and the label (III) refers to the base B2 before scale adjustment as well as the base B′2
after scale adjustment for point cloud Q.

3.3. Scale Adaptive Optimization and Candidate Point-Pairs Extraction

The key-scale estimation method for point clouds determines the optimal width w by searching
the minimum of cumulative contribution rate based on spin images. As the optimal width w may be
valid in an extremely small range, it is difficult to get the exact value with this method. Therefore,
this paper makes a further adaptive optimization process about the width w during the candidate
point-pairs extraction.

Figure 11a shows a coplanar 4-points base B1 in point cloud P, and Figure 11b shows the distance
indexing sphere of the two corresponding point-pairs in point cloud Q. After rasterization for distance
indexing sphere, the candidate point-pairs could be extracted. The 2D profile of the rasterized sphere
is shown as Figure 12.

Suppose a refined scale ratio µ ∈ [k− δ, k + δ], where δ denotes a slack variable, which could be
set according to the experimental data and the result of key-scales rough estimation. The scale adaptive
optimization is to find the optimal µ in the range of [k− δ, k + δ]. The errors of local roughness and
distance are both closely related with the value of µ. The total error can be expressed as Equation (9).

σ2 =
(

σ2
md

+ σ2
mR

)
σ2

md
=

(
n
∑

i=1

(
∆2

di

))
/n

σ2
mR

=

(
n
∑

i=1

2
∑

j=1
∆2

Rij

)
/(2n)

, (9)

where σmd means the deviation of mean distance; ∆di
means the deviation of normalized distance

between the given point-pairs in point cloud P and the i-th candidate point-pairs in point cloud Q;
and ∆di

∈ [−εd,+εd]. The candidate point-pairs here are extracted at µ = µi, which satisfy Condition
3 of generalized super 4-points congruent base definition. σmR means the deviation of mean local
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roughness. Similarly, ∆di
and ∆Rij mean the deviation of normalized local roughness between the given

point-pairs in point cloud P and the i-th candidate point-pairs in point cloud Q, and ∆Rij ∈ [−εR,+εR].
The total error has the minimum at the optimal accurate scale, which can be calculated by parabola

fitting. Correspondingly, the candidate point-pairs are the optimal ones for generalized super 4-points
congruent base set extraction.
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3.3. Scale Adaptive Optimization and Candidate Point-Pairs Extraction 

The key-scale estimation method for point clouds determines the optimal width w by 
searching the minimum of cumulative contribution rate based on spin images. As the optimal 
width w may be valid in an extremely small range, it is difficult to get the exact value with this 
method. Therefore, this paper makes a further adaptive optimization process about the width w 
during the candidate point-pairs extraction. 

Figure 11a shows a coplanar 4-points base ܤଵ in point cloud P, and Figure 11b shows the 
distance indexing sphere of the two corresponding point-pairs in point cloud Q. After rasterization 
for distance indexing sphere, the candidate point-pairs could be extracted. The 2D profile of the 
rasterized sphere is shown as Figure 12. 
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the two corresponding point-pairs in point cloud Q. 
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3.4. Extraction of Generalized Super 4-Points Congruent Base Set

In this paper, a two-step method has been proposed in order to extract generalized super 4-points
congruent base set from two groups of candidate point-pairs S1 and S2 with high efficiency and
high accuracy.

The first step filters candidate point-pairs according to the constraint condition that the angles of
normal vectors between the point-pairs in the given base and the corresponding ones in the candidate
point-pairs are equal to each other. Figure 13 plots a graph for the angles of normal vectors between
point-pairs in given base and the corresponding ones in the candidate point-pairs sets. For a given
base B1 in point cloud P, normal vectors of each point are respectively denoted by nP1, nP2, nP3 and
nP4, where, α1 denotes the angle of normal vectors nP1 and nP4, and β1 denotes the angle of normal
vectors nP2 and nP3. Similarly, for candidate point-pairs sets S1 and S2 in point cloud Q, α2 denotes
the angle of corresponding normal vectors nQ1 and nQ4, and β2 denotes the angle of corresponding
normal vectors nQ2 and nQ3. For point-pairs from the candidate point-pairs sets, if ‖α2 − α1‖ ≤ ε or
‖β2 − β1‖ ≤ ε, the point-pairs are preserved; otherwise, they are rejected.
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In the second step, in combination of the affine invariant ratios of the given base and the two
corresponding candidate point-pairs, two sets of possible intersections {e′2} and

{
e′′2
}

in point cloud Q
are obtained. Both intersections {e′2} and

{
e′′2
}

as well as vectors of their corresponding point-pairs
are, respectively, stored in a 3D grid G and vector indices. Then, with the unit sphere rasterization
approach mentioned in Section 2.2, let each intersection ei in {e′2} be the center of a unit sphere, and
find the intersection ej from

{
e′′2
}

which fall in or on the edge of the rasterized unit sphere according
to the mapping relationship between angles and vector indices. If

{
ej
}

is not empty, the point-pairs
correspond to ei and ej in point cloud Q constitute a coplanar 4-points base which is congruent with
the given base in point cloud P. With the above process, all generalized super 4-points congruent bases
could be extracted successfully.

3.5. Algorithm Description of G-Super4PCS

Having stated the above, the procedures of G-Super4PCS could be described as follows:

1. Build multi-dimension eigenvectors with spin images, and estimate key-scales of SfM and TLS key
point clouds according to the relationship between the similarity of spin images and cumulative
contribute rate curves of PCA.

2. Extract candidate point-pairs from the target point cloud, the distances of which are proportional
to the ones of the given base in the reference point cloud. Meanwhile, the accuracy of candidate
point-pairs extraction has been improved greatly by the local roughness constraint as well as
scale adaptive optimization.

3. Extract all generalized super 4-points congruent bases from candidate point-pairs according
to Constraint Conditions 1, 2 and 4 mentioned in Section 3.2, and then calculate the rigid
transformation parameters.

4. Select L groups of generalized super 4-points congruent bases with RANSAC to test, and find the
optimal registration parameters with the LCP.

5. Perform ICP algorithm on the SfM dense point cloud and TLS point cloud registered with the
parameters calculated by Steps 1–4 in order to refine the registration results.

4. Experiment and Discussion

In this Section, the developed algorithm would be verified by use of the columnar basalt data
acquired in Guabushan National Geopark in Jiangsu Province, China. The experiment data include
digital images and TLS point cloud, which are, respectively, acquired by Fujifilm X-T10 digital camera
(produced by Japan’s Fuji Photo Film) and FARO Focus3D X330 terrestrial laser scanner (produced
by FARO company in Lake Mary, Florida), the resolution (point spacing on the object surface) and
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the ranging precision of which were, respectively, set to 0.006 m and 0.002 m. The dimensions of the
measured geological research area are approximately 14 m× 11 m× 2 m, which is shown as Figure 14.
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Figure 14. The image of the geological research area.

The experiment firstly takes the SfM key point cloud and the TLS key point cloud, respectively,
extracted from digital images and the original TLS point cloud as data sources for rough registration,
on the basis of which performs ICP algorithm on the SfM dense point cloud and the original TLS point
cloud in order to refine the registration results. The SfM key point cloud (Figure 15a) and TLS key
point cloud (Figure 15b) are shown as Figure 15. The SfM key point cloud, as the reference point cloud,
has about 5194 points, and the TLS key point cloud, as the target point cloud, includes approximately
5326 points.
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Figure 15. (a) The SfM key point cloud; and (b) the TLS key point cloud.

A scale rough estimation is performed on the two point clouds. The size of spin image is set to
25× 25 pixels. Figures 16 and 17 show spin images (Spin 1, Spin 2, . . . , Spin 8) of some 3D points at
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different image width (w = 10−4, 0.005 and 0.5 for SfM key point cloud; w = 0.001, 0.01 and 1.0 for TLS
key point cloud). In the figures, it can be seen that spin images of the two key point clouds change
with the image width, and are rather dissimilar at w = 0.005 (for SfM key point cloud) and w = 0.01 (for
TLS key point cloud), which possibly approach the real key-scales.ISPRS Int. J. Geo-Inf. 2017, 6, x FOR PEER REVIEW  15 of 23 
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Figure 17. Spin images (Spin 1, Spin 2, . . . , Spin 8) of some TLS 3D points at different image width
(w = 0.001, 0.01 and 1.0).

Each spin image generates a 1× 625 eigenvector. The cumulative contribution rate could be
calculated by performing PCA on these eigenvectors, the curves of which are shown in Figure 18
(for SfM key point cloud) and Figure 19 (for TLS key point cloud). The curve charts depict the
relationship between cumulative contribution rates cd

w and dimension d at different image width w.
The cumulative contribute rate curves for SfM and TLS key point cloud show a slowly rising trend at
w = 0.005 and w = 0.01, respectively. Moreover, for the same dimension, the cumulative contribute rate
is lower than that at other image widths. That is to say, the optimal key-scales of the two point clouds
correspond to w = 0.005 and w = 0.01. The key-scale ratio is approximately 1/2.

The line graphs in Figures 20 and 21 depict the relationship between cumulative contribution
rate and image width at different dimensions. Each broken line in the figure corresponds to a special
dimension. The dimension value d is in the range of (30, 100)with an interval of 5. Obviously, the
cumulative contribution rate has the minimum at w = 0.005 (for SfM key point cloud) and w = 0.01
(for TLS key point cloud), i.e., the key-scale ratio of SfM and TLS key point cloud is about 1/2. Therefore,
the results of the scale ratio estimated with the two different groups of line charts are consistent.
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The registration results of SfM and TLS key point clouds are shown as Figure 23. Figure 23a,b, 
respectively, shows the front and the bottom view of the point clouds after registration. Figure 23c 
shows the distance distribution histogram about 5326 points in registered TLS key point cloud as 

Figure 21. The relationship between cumulative contribution rate and image width at different
dimensions (TLS key point cloud).

The SfM and TLS key point clouds are unified in the same scale, as shown in Figure 22. The red
one represents the original SfM key point cloud, and the blue one represents the TLS key point cloud
after scale adjustment.
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Figure 22. SfM (a) and TLS (b) key point cloud with the same scale.

The SfM key point cloud is taken as the reference point cloud, and the TLS key point cloud is
taken as the target point cloud. In this experiment, the overlap between the two key point clouds is
set to 0.8, and the threshold of registration precision is set to 0.1. The whole registration process is
performed iteratively. The registration results of key point clouds are shown as Table 1, where LCP
responses the accuracy of registration.

Table 1. The results of registration parameters before ICP optimization.

Rotation Matrix (R) Translation (T)

Scale Ratio LCP

Before
Optimization

After
Optimization

The First
Iteration

The Optimal
Iteration

0.930 0.361 −0.063 −44.712
0.50 0.65 13.77% 93.48%0.103 −0.093 0.990 −54.862

0.352 −0.928 −0.124 −46.877

The registration results of SfM and TLS key point clouds are shown as Figure 23. Figure 23a,b,
respectively, shows the front and the bottom view of the point clouds after registration. Figure 23c
shows the distance distribution histogram about 5326 points in registered TLS key point cloud as well
as their nearest neighbor points in SfM key point cloud. The histogram is composed of 72 bins, and the
mean value and standard deviation are 0.044 m and 0.027 m, respectively.

In order to improve the registration precision, taking the registration parameters of key point
clouds as inputs, ICP algorithm is performed on the SfM dense point cloud and the original TLS
point cloud for further registration optimization. An overlapping display for the SfM dense point
cloud as well as the transformed TLS point cloud is shown as Figure 24. A hierarchical display of
distances about the two registered point clouds is shown as Figure 25a, and the corresponding distance
histogram is shown as Figure 25b. The mean value and standard deviation of the distance statistic
results about the SfM dense point cloud and the transformed TLS point cloud are 0.022 m and 0.023 m.
It can be concluded that the distances between the points and their nearest neighbor points in the
overlapping part of the two point clouds are all less than 2 cm.
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After fine registration with ICP algorithm, the results of registration parameters are listed in
Table 2. The overlapping display of the SfM dense point cloud and the original TLS point cloud after
fine registration with ICP is shown in Figure 26.

Table 2. The results of registration parameters after ICP optimization.

Rotation Matrix (R) Translation (T) RMS (meters)

0.992 0.065 −0.018 −0.125
0.005−0.064 0.991 0.047 0.410

0.021 −0.046 0.993 −0.081
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With the registration result, the corresponding 3D point-pairs between the SfM dense point cloud
generated from the digital images and the TLS point cloud could be obtained. Moreover, as there is a
one-to-one correspondence between pixels in the digital images and 3D points in the SfM dense point
cloud, the mapping relationship between the digital images and the TLS point cloud could be built,
and the 2D visualization result of which is shown in Figure 28. The green rectangles represent the
locations of pixels in different digital images corresponding to the same 3D point in TLS point cloud.
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Figure 28. Pixel locations in the four images (a–d) corresponding to the same 3D point in TLS
point cloud.

Figure 29 projects the texture information of seven digital images into the TLS point cloud
according to the mapping relationship between pixels in the digital images and 3D points in the TLS
point cloud. The final 3D visualization result by the fusion of spatial information of TLS point cloud
and texture information of digital images is shown in Figure 30.
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Figure 30. 3D visualization for the fusion of spatial information of TLS point cloud and texture
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All of the above experimental results demonstrate that the G-Super4PCS registration algorithm
could achieve fine registration between digital images and TLS point cloud without any manual
interactions, and the result of which provides a crucial data basis for further integration research.

5. Conclusions

Some traditional methods usually select more than three pairs of corresponding feature points
as registration primitives, and calculate the registration transformation parameters. However, such
registration methods are not appropriate for some special application fields, especially for geological
objects with the characteristics of complicated and irregular distribution. In recent years, 4PCS and
Super4PCS algorithms have been applied more broadly, which register two point clouds that are not
dependent on corresponding feature points, but on 4-points base sets satisfying the 3D affine invariant
transformation. While the above algorithms are limited for those point clouds from different sensors
and with various scales, this paper proposed a new registration algorithm, G-Super4PCS, for digital
images and TLS point cloud in geology. This algorithm combines spin images with cumulative
contribute rate for key-scale rough estimation, defines a new generalized super 4-point congruent base,
and introduces the rock surface feature constraints for the scale adaptive optimization as well as high
efficient extraction of the bases. The feasibility of the algorithm was validated by use of the columnar
basalt data acquired in Guabushan National Geopark in Jiangsu Province, China. The results indicate
that it is unnecessary for the proposed method to depend on any regular feature information of the
research object itself. Moreover, although the digital images and TLS point cloud data are acquired
by different sensors and with different scales, they can be registered automatically with the proposed
algorithm in high efficiency and high precision. The registration results would be used for further
research on rock surface extraction integrating spatial and optical information. For geological objects,
the whole algorithm only involves the local orientation and roughness of point clouds, which could be
calculated by point clouds normal vectors and neighbor relationship. Therefore, for point clouds data
acquired by other techniques, the algorithm would be appropriate if point clouds normal vectors are
provided. Besides geological objects, the registration method proposed in this paper may be valuable
for some other potential application fields.
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