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Abstract: Technological advances have led to an increasing development of data sources. Since
the introduction of social networks, numerous studies on the relationships between users and their
behaviors have been conducted. In this context, trip behavior is an interesting topic that can be
explored via Location-Based Social Networks (LBSN). Due to the wide availability of various spatial
data sources, the long-standing field of collective human mobility prediction has been revived and
new models have been introduced. Recently, a parameterized model of predicting human mobility in
cities, known as rank-based model, has been introduced. The model predicts the flow from an origin
toward a destination using “rank” concept. However, the notion of rank has not yet been well explored.
In this study, we investigate the potential of LBSN data alongside the rank concept in predicting
human mobility patterns in Manhattan, New York City. For this purpose, we propose three scenarios,
including: rank-distance, the number of venues between origin and destination, and a check-in
weighted venue schema to compute the ranks. When trip distribution patterns are considered as a
whole, applying a check-in weighting schema results in patterns that are approximately 10 percent
more similar to the ground truth data. From the accuracy perspective, as the predicted numbers of
trips are closer to real number of trips, the trip distribution is also enhanced by about 50 percent.

Keywords: human mobility; rank-based model; location-based social networks

1. Introduction

Development of new data acquisition techniques has facilitated the study of human mobility
patterns. Taking advantages of Global Positioning System (GPS) devices embedded in smartphones,
location-based social networks (LBSN) have provided the possibility of studying the relationships
between users and places. A LBSN is a special type of social network allowing the users to share their
personal location. Researchers can, then, benefit from this data source. These kind of data have opened
the doors onto novel research about activities within the cities [1].

Up until now, numerous models of predicting collective human mobility have been developed.
Interdisciplinary in nature, human mobility prediction has a broad range of applications, from epidemic
control [2,3], spatial economy [4,5], energy management [6] and urban planning [7,8], to location-based
services [9] and toursim management [10,11]. There are two major, but different, assumptions in
modeling the collective human mobility patterns. Some models (e.g., the gravity model) assume
that a trip is directly related to the distance between an origin and a destination. In other words, the
greater the distance between an origin and a destination, the lower the probability of traveling from
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the origin to that destination will be [12]. Equation (1) presents the doubly-constrained gravity model
of spatial interaction.

Tij = AiTiBjTjf
(
rij
)

(1)

where Ti and Tj are the number of trips departing from i and ending in j respectively. f
(
rij
)
, a termed

deterrence function, is a function in terms of the cost of making the trip; usually the distance between
the two locations. It is commonly considered as a power law or exponential function of the distance.
Ai and Bj are balancing factors and their values are determined through an iterative process.

In contrast to the gravity framework, some models explain human mobility using an “opportunities”
concept. These models assume that trips are not directly related to the distance, but induced by
opportunities provided at the destination. The most known model that employs opportunities concept
is the Intervening Opportunities (I.O.) model. Equation (2) describes how trips distribute over an area
according to the I.O. model [13].

Tij = Ti
e−α(Sij−mj) − e−αSij

1− e−αM (2)

where Sij is the number of opportunities located between an origin and a destination, mj is the
population of the destination j, and M is the total population of the study area. The parameter α
is adjustable and its value should be determined through a calibration procedure. The I.O. model
assumes that opportunities have a specific effect on the probability of making a trip toward a region.

Some reserachers have taken the advantages of LBSN data in context of human mobililty
prediction. Liu and his colleagues have used social media check-ins to study the inter-urban trip
patterns at a collective level. They have employed the gravity model to study the collective movements
in China [14]. Yuan and Medel have also studied international travel behaviour using geotagged
photos from Flickr. They constructed a gravity model and investigated how the popularity of a
given destination affects the travel choice [15]. Due to the advent of novel positioning technologies,
researchers have developed various models based on the above assumptions. Among them is the
Rank-based model [16] that is a probabilistic model of human mobility prediction. It uses a rank
concept to predict the probability of going from an origin toward a destination. In fact, each destination
has a rank, with respect to the origin, that expresses the probability of going from a region to another.
However, the question that “how the rank should be computed?” has not been answered well, so far.
In this paper, we consider different versions of rank concept and evaluate each method to see which
version yields more accurate results. First, we use the common approach, that is, ranks are computed
using the distance between origins and destinations. Second, we propose a venue-based method in
which the number of venues located within a circle between origin and destination is used. Finally, we
apply a check-in weighting schema to the venues of the second scenario.

Similar to the research conducted by Noulas and his colleagues [16], who have also presented the
rank-based model, Yan et al. [17] employed the rank-based model to compare its results with that of
their own proposed model, called the Population Weighted Opportunities (PWO) model. They have
used the rank-distance between origins and destinations to compute the model. On the other hand,
the leading parameter of the PWO model, as its name implies, is the population between origin and
destination. Since the population is, to some extent, more dynamic than pure physical distance, the
comparison of results obtained from the PWO model and rank-based model does not seem to be fair.

Liang and his colleagues [18] have overcome the above issue in a sense, by using the population
located inside a circle, centered at the origin, with a radius equal to the travel distance. Moreover, they
have presented an alternative version of a rank-based model in which the adjustable parameter has
been eliminated. Although there should be a relatively large number of locations across the area for
their model to be formed, this is not necessarily the case, particularly in intra-urban scenarios.

Chen et al. [19] have utilized the rank-based model to investigate the urban mobility patterns and
understand the impact of spatial distribution of places of interest on them. In fact, they have simulated
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the urban mobility in some synthetic cities by rank-based model. Their approach of using Places Of
Interest (POIs) to compute the rank is replicated here, and the results are compared with that of our
proposed method.

Relating the human mobility to places of interest also has the advantage of conducting analyses
on land parcels within the city. Lu et al. [20], for instance, have developed a framework to characterize
the life cycle of POIs in Manhattan using human mobility patterns. A thorough understanding of
the POI life cycle may help in urban planning [21,22], site selection procedure [23], and real estate
evaluation [24].

Making use of the relationships between human mobility and activity records such as check-in
data extracted from social media, Long et al. [25], have proposed a methodology to evaluate the
effectiveness of urban growth in Beijing.

The structure of this paper is as follows: Section 2 explains the mechanism of a rank-based model
and the way it is calibrated and balanced. Section 3 introduces the study area and the datasets used.
Section 4 provides the methods of evaluating the model and presents the results. Finally, Section 5
concludes the key remarks of the study.

2. Methodology

According to the rank-based model, given a set of zones u ∈ U in a city, the probability of moving
from zone u ∈ U to a zone v ∈ U is defined as [16]

P[u→ v] ∝
1

ranku(v)
γ (3)

where ranku(v) is the rank of zone v relative to zone u and γ is an adjustable parameter. Assuming
that the total number of trips generated in each zone Tu is known, the trip distribution matrix, Tuv can
be computed as [17]

Tuv = Tu
ranku(v)

−γ

∑N
k 6=u ranku(v)

−γ (4)

where N is the total number of zones in the city.
A rank-based model is more similar to the well-known gravity framework than an Intervening

Opportunities model, as they commonly use distance to compute the rank. However, in contrast to the
gravity model, the cost variable is considered as rank-distance rather than spatial distance. Since people
and their behaviour, as dynamic components in mobility, are neglected in this approach (i.e., using
distance alone to rank the zones), the resulting mobility patterns always remain unchanged. To tackle
this issue, our paper proposes three methods to compute the ranks in the city using rank-distance and
LBSN data. These methods are as follows:

1. First, we implemented the model using the common method of rank computation (i.e., computing
the rank as rank-distance). This is more or less similar to the assumptions made in the gravity
model. In this approach, the resultant distribution is not subject to change, because the distances
between regions are constant. Figure 1a represents the schematic illustration of this scenario.

2. Second, we employed the number of venues located in a circle centered at the origin with a
radius equal to the distance between the origin and destination to compute the ranks. This way
of computing the ranks is similar to that of an intervening opportunities model. With such an
approach, resulting patterns are more dynamic. This is because new venues are created, some
venues may shut down, or may be transferred to other regions. This scenario can be seen in
Figure 1b.

3. The third approach is to use check-in data for weighting the venues. Thus, humans have
participated in the modeling, because venues are not the same in terms of mobility. For instance,
cinemas attract much more people, in a certain period of time, than hotels. Therefore, since the
amount of importance of venues, in terms of mobility are not the same, the relative importance
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should be taken into account. Therefore, we weighted each venue using check-ins occurred at
that venue, so that more dynamicity can be reflected in the resultant patterns. The schematic
view of this scenario is shown in Figure 1c.
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Figure 1. The schematic view of the proposed methods of computing the rank. (a) rank-distance method
computes the ranks based on mere physical distances between origin and destination; (b) POI-derived
rank computation in which the number of POIs between origin and destination is utilized; and
(c) check-in-weighted POI-derived rank computation method in which each POI is weighted based
on check-ins.

Since the rank-based model is parameterized, a calibration procedure is needed to determine
the adjustable parameter. This parameter serves, for geographers and planners, as a context and
explanatory power in the model, so that different conditions of a study area can be taken into account.
In this paper, due to its higher efficiency and simple implementation, the method introduced by
Hyman was employed to determine the parameter [26]. The Hyman method tries to minimize the
difference between the real average travel distance and modeled average travel distance in a repetitive
manner [27]. In fact, the following equation should be minimized.

E(γ) = |r(γ)− r| =
∣∣∣∣∣∑i ∑j Tij(γ)rij

∑i ∑j Tij(γ)
−

∑i ∑j Tijrij

∑i ∑j Tij

∣∣∣∣∣ (5)

where r is the average distance of observed trips and r(γ) is the average distance of predicted trips
using the parameter γ. Since obtaining a closed-form solution for Equation (5) is not straighforward, it
should be minimized in a repititive manner. One way of solving the above equation is to use the Secant
method. Algorithm 1 provides the pseudocode of the Secant method for solving the above equation.

Algorithm 1 Hyman method: pseudocode

1: Let γ0 (the initial value of the parameter) equal to 1/r.
2: Compute the trip distribution matrix using γ0.
3: Calculate the average distance of predicted trips.
4: Consider the next approximation for the parameter as γ1 = γ0r(γ0)/r.
5: while true do:
6: Compute the trip distribution matrix using γi.
7: Calculate the average distance of predicted trips.
8: if

∣∣r̂(γi)− r
∣∣ < ε :

9: break while loop
10: else:

11: γi+1 =
(r−r(γi−1))βi−(r−r(γi))γi−1

r(γi)−r(γi−1)

12: end if
13: end while
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In addition, since the rank-based model presented in Equation (4) does not guarantee the equality
of the real and predicted number of attracted trips, a balancing procedure called Furness is applied on
the matrix. Algorithm 2 shows the pseudocode of the Furness algorithm that aims at minimizing the
difference between the total number of real and predicted trips.

Algorithm 2 Furness method: pseudocode

1: Compute the trip distribution matrix.
2: Let = T′i and T′j be sum of elements in row i and column j, respectively.

3: while
∣∣Ti − T′i

∣∣ > ε and
∣∣∣Tj − T′j

∣∣∣ > ε do:

4: Multiply each column by Nj = Tj/T′j .

5: if
∣∣∣Tj − T′j

∣∣∣ < ε and
∣∣Ti − T′i

∣∣ < ε:

6: break while loop
7: end if
8: Multiply each row by Ni = Ti/T′i .

9: if
∣∣∣Tj − T′j

∣∣∣ < ε and
∣∣Ti − T′i

∣∣ < ε:

10: break while loop
11: end if
12: end while

Figure 2 illustrates the steps required to apply the model. First, it is required for the study area to
be partitioned into smaller parts, called zones. In addition, in order to compute the proposed ranking
schema, information about location of venues and check-ins are required. Using these information,
the zones are ranked. Then, the raw trip distribution matrix is obtained according to Equation (4). To
find the best value of the adjustable parameter, the Hyman method is applied on the matrix. Also, the
Furness method is applied on the matrix to balance it. Finally, the model is evaluated based on various
criteria. If the results of evaluation are acceptable, the model along with the determined parameter can
be employed to compute the distribution of mobility flow within the study area.
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3. Study Area and Datasets Used

In this paper, we considered a census tract reference map of Manhattan as trip production and
attraction zones. Manhattan is one of the most densely populated areas in the United States and the
rate of mobility is, then, very high. Being one of the world’s major commercial and financial centers,
Manhattan encounters a significant number of daily travels toward itself. In addition, thanks to the
networks of tunnels, bridges, railroad lines, and subways that link Manhattan to the surroundings,
there is an enormous influx of daily commuters from neighboring boroughs, including The Bronx,
Brooklyn, Queens, and Staten Island, and even from New Jersey, Connecticut, and NYC suburbs such
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as White Plains and Long Island who are surely making various trips within Manhattan throughout
the day [28]. Thus, modeling the mobility pattern within intra-urban areas such as Manhattan is
among the challenges that the spatial interaction models are facing [8,29]. There are 288 zones in the
2010 census tract reference map of Manhattan. In addition to the GIS map of the study area, we used a
dataset which includes long-term (about 18 months from April 2012 to September 2013) global-scale
check-in data collected from Foursquare through its Twitter Application Programming Interface [30].
It contains about 33 million check-ins on about three million venues worldwide. The location of each
venue within Manhattan was extracted from this dataset and mapped on the reference map. The
distribution of venues over census tracts are shown in Figure 3.
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Figure 3. The census tracts of Manhattan (left), and the distribution of POIs over it (right).

In order to evaluate the results obtained from models and to compare the rank concepts, GPS
traces of taxi vehicles over Manhattan were used. The datasets were collected and provided to
the New York City (NYC) Taxi and Limousine Commission (TLC) under the Taxicab and Livery
Passenger Enhancement Programs (TPEP/LPEP) (refer to Taxi and Limousine Commission website at
http://www.nyc.gov/tlc). The yellow and green taxi trip records include fields capturing pick-up and
drop-off dates/times, pick-up and drop-off locations, trip distances, passenger counts, and some other
information about payment and rate types. Although taxi data are not representative of the whole
mobility within a city, they can present it to some extent [17]. Usually, finer resolution datasets such as
taxi data suffer from having many zero-counts. In order to improve the completeness of evaluation
data, we combined yellow and green taxi traces. Since taxis are allowed to pick up passengers from
other boroughs of NYC, only trips originating from (and ending in) Manhattan were considered.
Figure 4 visualizes the sparsity pattern of the ground truth matrix of the trip distribution.

http://www.nyc.gov/tlc
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4. Results and Discussion

Following the research conducted by [31], the Sorensen Similarity Index (SSI), also known as
Sorensen-Dice Index, was used as a measure of similarity between real and predicted trip distribution
matrices. This index ranges from 0 to 1, where numbers closer to one indicate more similarity between
two matrices. Figure 5 presents a comparison among the performances of different rank concepts in
the model based on SSI. The Sorensen Similarity Index is shown in the following equation:

SSI =
2 ∑N

i ∑N
j min

(
Tij, T’

ij

)
∑N

i ∑N
j Tij + ∑N

i ∑N
j T’

ij
(6)

where Tij and T′ij are ith and jth element of real and predicted trip distribution matrices and N is the
total number of zones in the study area.
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Figure 5 indicates that employing opportunities (venues) rather than distance in the rank-based
model is not effective. However, according to the SSI, a check-in-weighted ranking schema will result
in predictions that are more similar to reality.

The scatter plot of predicted trips against observed trips for each scenario is shown in Figure 6.
This plot shows the relationship between two matrices. The points in the plot correspond to individual
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elements of trip distribution matrices. The values on the vertical and horizontal axes are from real
and predicted trip distribution matrices, respectively, and the plot is on a logarithmic scale. The red
line is the identity line (y = x) where predicted number of trips are equal to the real number of trips.
Obviously, the more the two matrices agree, the more the scatters tend to concentrate in the vicinity of
the identity line.
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POI-derived ranks, and (c) using check-in-weighted POI-derived ranks.

As can be seen from the above results, the difference between the two first scenarios is quite
negligible. However, the scatter on the left is much narrower than the others and concentrated about
the red line. To have a quantitative measure of how close the predicted numbers of trips are to the
ground truth data, we determined R2 values from the regression analysis applied on scatter plots of
Figure 6. Figure 7 compares the results in terms of R2.
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Figure 7. The performance of each ranking method in the model in terms of R-squared obtained from
regression analysis of Figure 6.

Again, the difference between using rank-distance and number of venues is not remarkable.
However, as Figure 7 illustrates, the value of R2 for the model, along with a check-in-weighted rank
concept, that has been dramatically increased.

In order to analyze the results in a more detailed manner, we computed the cosine similarity
between matrices at the zone level, rather than the city level. In fact, we partitioned the matrices
row- and column-wise. Then, the cosine similarities between corresponding rows and columns were
computed. In other words, each row (column) is considered to be a vector in a 288-dimensional space
(i.e., the dimension of space is equal to the number of zones). Now, if the angle between this vector and
the corresponding vector of the ground truth matrix in the space is equal to 0◦, there will be a complete
(1) similarity. On the other hand, if two vectors are in opposite orientations, the value of index will be
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−1. Since the trip distribution matrix is a non-negative matrix, the index practically ranges from 0 to 1,
where 0 and 1 refer to perpendicular and parallel vectors, respectively. Figure 8 shows the frequency
histograms of cosine similarities for rows and columns.
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The red line refers to the mean value of the histogram (µ) and the blue bounds show the interval
µ−
√

2σ and µ +
√

2σ, where σ is the standard deviation. According to Chebyshev’s inequality, at
least 50 percent of values lie within the blue area. The mean value of the histogram in the case of
Scenario 3 is, again, higher than that of the others. In addition, the blue area has been forwarded
toward higher similarities.

The reason for obtaining similar results for the two first scenarios can be attributed to the fact that
as the radius of the circle between origin and destination is increased, the number of venues within
this circle is also increased. As the rank-based model does not take into consideration the magnitude of
differences between ranks, the resultant trip distributions will be similar for similar rank distributions.
For example, in scenario 2, the number of venues located within each circle is counted. Then, these
values are sorted out in a matrix and ranks are assigned to each element of the matrix. Clearly, the
differences between ranks are always constant and equal to 1. However, the differences between the
numbers of venues in the circles vary remarkably. This is a major disadvantage of the model. Although
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applying a weighting schema on the venues using check-ins changes the distribution of ranks within
the matrix.

Figure 9 shows flow maps illustrating the interactions between Central Park of Manhattan,
designated by a green pin, and other zones. Apparent in the upper maps is the fact that the trips in the
two first scenarios are regularly distributed. However, the ground truth map indicates irregularities in
the distribution which are too complicated to be modeled using a mere physical parameter such as
distance. In fact, large flows, in these scenarios, are directed towards closer zones; while the lower left
map conducts trips towards southern zones at which commercial and activity centers are located.
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5. Conclusions

In this paper, we conducted research to study the concept of ranking, in a model of predicting
collective human mobility, called a rank-based model. For this purpose, we proposed three scenarios
including rank-distance, the number of venues in the region, and a check-in weighted venue schema
to compute the ranks in the model.
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Results show that the two first scenarios will result in very similar patterns. The reason is that as
the distance between origin and destination increases, the number of venues located between them
also increases. However, results of applying the third scenario show a remarkable increase in the
accuracy of predictions. Therefore, check-ins play a significant role in improving the predictability of
mobility patterns.

Considering the rank as distance and number of places of interest (POIs) is, to some extent,
objective in the sense that they do not represent real specific conditions of a city. In other words, the
concepts of distance and number of POIs are the same for all cities in the world. However, using
check-in weights, has some aspects of reality added to the model. Surely, the role of a crowded park in
human mobility is not the same as of a hotel, for instance. Thus, applying check-ins occurred at each
POI will result in closer predictions to reality.

Moreover, using a check-in weighting schema, the dynamicity of human mobility could be
accounted for. As check-in data are dynamic, they can consider the variations in people’s interests
and behaviors. By using check-ins, any change in land use of POIs is also accountable. In addition,
since ongoing events are reflected in check-in data, but not in distance and number of venues in
the city, check-in data are particularly useful when events are in progress in the region. The use of
check-in data to weigh the POIs implies no particular assumption or restriction on the study area.
Since the assumptions made about the ranking method are independent of the study area and its
conditions, the conclusions can be potentially generalized to any city. Although employing check-in
data in the rank-based model resulted in more promising predictions, the differences between rank
numbers is still fixed, and should be addressed in future works. In addition, the temporal dimension
of human mobility has not been discussed in this paper. The applicability of the proposed method in
spatiotemporal analysis of human mobility can be elaborated on in the future.

In a complex system, such as human mobility, the interactions between its many constituent parts
(i.e., people, venues, distances, etc.) determine the properties of the system’s behavior (i.e., urban
environments). The study of the relationships between the venues, people, and distance deepens our
understanding of the urban properties. The usability of these relationships in real world applications,
however, needs an accurate model of human mobility prediction. This study betters our understanding
of human mobility by including dynamic aspects of destination selection in the rank-based model.
Moreover, the increase in the accuracy of the resulting patterns using the proposed method also
increases the applicability of the model in real world applications.

Author Contributions: Omid Reza Abbasi conceived, designed, and performed the experiments; Ali Asghar
Alesheikh and Mohammad Sharif revised the methodology and analyzed the results; Omid Reza Abbasi and
Mohammad Sharif wrote the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Agryzkov, T.; Martí, P.; Tortosa, L.; Vicent, J.F. Measuring urban activities using foursquare data and network
analysis: A case study of Murcia (Spain). Int. J. Geogr. Inf. Sci. 2016, 31, 100–121. [CrossRef]

2. Prothero, R.M. Disease and mobility: A neglected factor in epidemiology. Int. J. Epidemiol. 1977, 6, 259–267.
[CrossRef] [PubMed]

3. Tizzoni, M.; Bajardi, P.; Decuyper, A.; King, G.K.K.; Schneider, C.M.; Blondel, V.; Smoreda, Z.; González, M.C.;
Colizza, V. On the use of human mobility proxies for modeling epidemics. PLoS Comput. Biol. 2014, 10,
e1003716. [CrossRef] [PubMed]

4. Matyas, L. The gravity model: Some econometric considerations. World Econ. 1998, 21, 397–401. [CrossRef]
5. Huo, J.; Wang, X.-M.; Hao, R.; Wang, P. Statistical dynamics of regional populations and economies. arXiv

2016, arXiv:1609.00876.
6. Mohammadi, N.; Taylor, J.E. Urban energy flux: Human mobility as a predictor for spatial changes. arXiv

2016, arXiv:1609.01239.

http://dx.doi.org/10.1080/13658816.2016.1188931
http://dx.doi.org/10.1093/ije/6.3.259
http://www.ncbi.nlm.nih.gov/pubmed/591173
http://dx.doi.org/10.1371/journal.pcbi.1003716
http://www.ncbi.nlm.nih.gov/pubmed/25010676
http://dx.doi.org/10.1111/1467-9701.00136


ISPRS Int. J. Geo-Inf. 2017, 6, 136 12 of 13

7. Camagni, R.; Gibelli, M.C.; Rigamonti, P. Urban mobility and urban form: The social and environmental
costs of different patterns of urban expansion. Ecol. Econ. 2002, 40, 199–216. [CrossRef]

8. Kang, C.; Ma, X.; Tong, D.; Liu, Y. Intra-urban human mobility patterns: An urban morphology perspective.
Phys. A Stat. Mech. Appl. 2012, 391, 1702–1717. [CrossRef]

9. Noulas, A.; Scellato, S.; Lathia, N.; Mascolo, C. Mining user mobility features for next place prediction in
location-based services. In Proceedings of the 2012 IEEE 12th International Conference on Data Mining,
Brussels, Belgium, 10–13 December 2012.

10. Buhalis, D.; Amaranggana, A. Smart tourism destinations. In Information and Communication Technologies in
Tourism 2014; Springer: Berlin, Germany, 2013; pp. 553–564.

11. Zheng, W.; Huang, X.; Li, Y. Understanding the tourist mobility using gps: Where is the next place? Tour.
Manag. 2017, 59, 267–280. [CrossRef]

12. Zipf, G.K. The p 1 p 2/d hypothesis: On the intercity movement of persons. Am. Sociol. Rev. 1946, 11,
677–686. [CrossRef]

13. Stouffer, S.A. Intervening opportunities: A theory relating mobility and distance. Am. Sociol. Rev. 1940, 5,
845–867. [CrossRef]

14. Liu, Y.; Sui, Z.; Kang, C.; Gao, Y. Uncovering patterns of inter-urban trip and spatial interaction from social
media check-in data. PLoS ONE 2014, 9, e86026. [CrossRef] [PubMed]

15. Yuan, Y.; Medel, M. Characterizing international travel behavior from geotagged photos: A case study of
flickr. PLoS ONE 2016, 11, e0154885. [CrossRef] [PubMed]

16. Noulas, A.; Scellato, S.; Lambiotte, R.; Pontil, M.; Mascolo, C. A tale of many cities: Universal patterns in
human urban mobility. PLoS ONE 2012, 7, e37027. [CrossRef]

17. Yan, X.-Y.; Zhao, C.; Fan, Y.; Di, Z.; Wang, W.-X. Universal predictability of mobility patterns in cities. J. R.
Soc. Interface 2014, 11, 20140834. [CrossRef] [PubMed]

18. Liang, X.; Zhao, J.; Xu, K. A general law of human mobility. Science 2015, 10, 1–14. [CrossRef]
19. Chen, W.; Gao, Q.; Xiong, H.-G. Uncovering urban mobility patterns and impact of spatial distribution of

places on movements. Int. J. Mod. Phys. C 2016. [CrossRef]
20. Lu, X.; Yu, Z.; Sun, L.; Liu, C.; Xiong, H.; Guan, C. Characterizing the life cycle of point of interests using

human mobility patterns. In Proceedings of the 2016 ACM International Joint Conference on Pervasive and
Ubiquitous Computing, Heidelberg, Germany, 12–16 September 2016.

21. Yuan, J.; Zheng, Y.; Xie, X. Discovering regions of different functions in a city using human mobility and
pois. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, Beijing, China, 12–16 August 2012.

22. Fan, Z.; Song, X.; Shibasaki, R. Cityspectrum: A non-negative tensor factorization approach. In Proceedings
of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing, Seattle, WA, USA,
13–17 September 2014.

23. Niu, H.; Liu, J.; Fu, Y.; Liu, Y.; Lang, B. Exploiting human mobility patterns for gas station site selection. In
Proceedings of the International Conference on Database Systems for Advanced Applications, Dallas, TX,
USA, 16–19 April 2016.

24. Fu, Y.; Liu, G.; Papadimitriou, S.; Xiong, H.; Ge, Y.; Zhu, H.; Zhu, C. Real estate ranking via mixed land-use
latent models. In Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, Sydney, Australia, 10–13 August 2015.

25. Long, Y.; Han, H.; Tu, Y.; Shu, X. Evaluating the effectiveness of urban growth boundaries using human
mobility and activity records. Cities 2015, 46, 76–84. [CrossRef]

26. Celik, H.M. Sample size needed for calibrating trip distribution and behavior of the gravity model. J. Transp.
Geogr. 2010, 18, 183–190. [CrossRef]

27. Hyman, G. The calibration of trip distribution models. Environ. Plan. 1969, 1, 105–112. [CrossRef]
28. Moss, M.L.; Qing, C. The Dynamic Population of Manhattan. New York. Available online: http://wagner.

nyu.edu/rudincenter/publications/dynamic_pop_manhattan.pdf (accessed on 20 August 2012).
29. Liang, X.; Zhao, J.; Dong, L.; Xu, K. Unraveling the origin of exponential law in intra-urban human mobility.

Sci. Rep. 2013. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/S0921-8009(01)00254-3
http://dx.doi.org/10.1016/j.physa.2011.11.005
http://dx.doi.org/10.1016/j.tourman.2016.08.009
http://dx.doi.org/10.2307/2087063
http://dx.doi.org/10.2307/2084520
http://dx.doi.org/10.1371/journal.pone.0086026
http://www.ncbi.nlm.nih.gov/pubmed/24465849
http://dx.doi.org/10.1371/journal.pone.0154885
http://www.ncbi.nlm.nih.gov/pubmed/27159195
http://dx.doi.org/10.1371/annotation/ca85bf7a-7922-47d5-8bfb-bcdf25af8c72
http://dx.doi.org/10.1098/rsif.2014.0834
http://www.ncbi.nlm.nih.gov/pubmed/25232053
http://dx.doi.org/10.1007/s11432-015-5402-y
http://dx.doi.org/10.1142/S0129183117500048
http://dx.doi.org/10.1016/j.cities.2015.05.001
http://dx.doi.org/10.1016/j.jtrangeo.2009.05.013
http://dx.doi.org/10.1068/a010105
http://wagner.nyu.edu/rudincenter/publications/dynamic_pop_manhattan.pdf
http://wagner.nyu.edu/rudincenter/publications/dynamic_pop_manhattan.pdf
http://dx.doi.org/10.1038/srep02983
http://www.ncbi.nlm.nih.gov/pubmed/24136012


ISPRS Int. J. Geo-Inf. 2017, 6, 136 13 of 13

30. Yang, D.; Zhang, D.; Chen, L.; Qu, B. Nationtelescope: Monitoring and visualizing large-scale collective
behavior in lbsns. J. Netw. Comput. Appl. 2015, 55, 170–180. [CrossRef]

31. Kang, C.; Liu, Y.; Guo, D.; Qin, K. A generalized radiation model for human mobility: Spatial scale, searching
direction and trip constraint. PLoS ONE 2015. [CrossRef] [PubMed]

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.jnca.2015.05.010
http://dx.doi.org/10.1371/journal.pone.0143500
http://www.ncbi.nlm.nih.gov/pubmed/26600153
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Methodology 
	Study Area and Datasets Used 
	Results and Discussion 
	Conclusions 

