Novel Algorithm for Mining ENSO-Oriented Marine Spatial Association Patterns from Raster-Formatted Datasets
Abstract
:1. Introduction
2. EOMSAP with Raster-Formatted Datasets
2.1. Algorithm Workflow
2.2. Quantization of Marine Abnormal Variations from Raster-Formatted Datasets
- Step 1: Calculate the mean and standard deviation of the time series’ real values of marine parameters from long-term raster-formatted datasets.
- Step 2: Extract the abnormal variations of marine parameters using the z-score algorithm.
- Step 3: Calculate the mean and standard deviation values on the basis of long-term abnormal variations of marine parameters.
- Step 4: Quantify the abnormal variations into continuous intervals (i.e., −1, 0 and +1), using Equation (1) for each time and each grid pixel.
2.3. Identification of ENSO Events
2.4. A Recursive Algorithm
2.5. Generating Meaningful Marine Spatial Association Patterns
3. Experiments
3.1. Research Area and Datasets
3.2. Performance Evaluation and Analysis
3.2.1. Computational Complexity
3.2.2. Numbers of Database Scans
3.2.3. Database Record Sizes
3.3. Spatial Abnormal Association Patterns among Marine Environmental Parameters
4. Discussion and Conclusions
- EOMSAP includes a process of quantification that ranks abnormal variations of marine parameters using long-term raster-formatted datasets and identification that defines ENSO events using the MEI. The quantification process has similar results with the prevalent algorithms.
- EOMSAP reduces the number of database scans and improves the efficiency of finding frequent association patterns against ENSO by embedding the conditional support. The greater the number of evolved marine parameters considered, the greater the superiority of EOMSAP over ENSO-Apriori and quantitative Apriori. Additionally, the lower the support threshold, the greater the superiority of EOMSAP over ENSO-Apriori and Apriori.
- EOMSAP explores marine spatial association patterns within the Pacific Ocean against ENSO events using multiple long-term raster-formatted datasets. Among these spatial association patterns, some are well known to earth scientists, and some are new.
- EOMSAP improves the abilities to address multiple remote sensing products and helps marine experts identify new phenomena or knowledge.
Acknowledgment
Author Contributions
Conflicts of Interest
References
- McPhaden, M.J.; Zebiak, S.E.; Glantz, M.H. ENSO as an integrating concept in earth science. Science 2006, 314, 1740–1745. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Fiedler, P.C. ENSO variability and the eastern tropical Pacific: A review. Prog. Oceanogr. 2006, 69, 239–266. [Google Scholar] [CrossRef]
- Messié, M.; Chavez, F.P. Physical-biological synchrony in the global ocean associated with recent variability in the central and western equatorial Pacific. J. Geophys. Res. Oceans 2013, 118, 3782–3794. [Google Scholar] [CrossRef]
- Korting, T.S.; Fonseca, L.M.G.; Camara, G. GeoDMA—Geographic Data Mining Analyst. Comput. Geosci. 2013, 57, 133–145. [Google Scholar] [CrossRef]
- Yang, J.; Gong, P.; Fu, R.; Zhang, M.H.; Chen, J.M.; Liang, S.L.; Xu, B.; Shi, J.C.; Dickinson, R. The role of satellite remote sensing in climate change studies. Nat. Clim. Chang. 2013, 3, 875–883. [Google Scholar] [CrossRef]
- Hannachi, A.; Jolliffe, I.T.; Stephenson, D.B. Empirical orthogonal functions and related techniques in atmospheric science: A review. Int. J. Climatol. 2007, 27, 1119–1152. [Google Scholar] [CrossRef]
- Smith, T.M.; Arkin, P.A.; Sapiano, M.R.P. Reconstruction of Near-global Annual Precipitation using Correlations with Sea Surface Temperature and Sea Level Pressure. J. Geophy. Res. 2009, 114, D12107. [Google Scholar] [CrossRef]
- Cherry, S. Some Comments on Singular Value Decomposition Analysis. J. Clim. 1997, 10, 1759–1761. [Google Scholar] [CrossRef]
- Liao, S.H.; Chu, P.H.; Hsiao, P.Y. Data mining techniques and applications—A decade review from 2000 to 2011. Expert Syst. Appl. 2012, 39, 11303–11311. [Google Scholar] [CrossRef]
- Hoffman, F.M.; Larson, J.W.; Mills, R.T.; Brooks, B.G.J.; Ganguly, A.R.; Hargrove, W.W.; Huang, J.; Kumar, J.; Vatsavai, R.R. Data Mining in Earth System Science (DMESS 2011). Procedia Comput. Sci. 2011, 4, 1450–1455. [Google Scholar] [CrossRef]
- Su, F.Z.; Zhou, C.H.; Lyne, V.; Du, Y.Y.; Shi, W.Z. A data mining approach to determine the spatio-temporal relationship between environmental factors and fish distribution. Ecol. Model. 2004, 174, 421–431. [Google Scholar] [CrossRef]
- Saulquin, B.; Fablet, R.; Mercier, G.; Demarcq, H.; Mangin, A.; Fantond’Andon, O.H. Multiscale Event-Based Mining in Geophysical Time Series: Characterization and Distribution of Significant Time-Scales in the Sea Surface Temperature Anomalies Relatively to ENSO Periods from 1985 to 2009. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 3543–3552. [Google Scholar] [CrossRef]
- Ke, Y.P.; Cheng, J.; Ng, W. An information-theoretic approach to quantitative association rule mining. Knowl. Inf. Syst. 2008, 16, 213–244. [Google Scholar] [CrossRef]
- Ke, Y.P.; Cheng, J.; Ng, W. Correlated pattern mining in quantitative databases. ACM Trans. Database Syst. 2008, 33, 1–44. [Google Scholar] [CrossRef]
- Xue, C.J.; Song, W.J.; Qin, L.J.; Dong, Q.; Wen, X. A mutual-information-based mining method for marine abnormal association rules. Comput. Geosci. 2015, 76, 121–129. [Google Scholar]
- Tsay, Y.J.; Chiang, J.Y. CBAR: An efficient method for mining association rules. Knowl. Based Syst. 2005, 18, 99–105. [Google Scholar] [CrossRef]
- Wu, C.M.; Huang, Y.F. Generalized association rule mining using an efficient data structure. Expert Syst. Appl. 2011, 38, 7277–7290. [Google Scholar] [CrossRef]
- Liu, X.B.; Zhai, K.; Pedrycz, W. An improved association rules mining method. Expert Syst. Appl. 2012, 39, 1362–1374. [Google Scholar] [CrossRef]
- Wu, T.S.; Song, G.J.; Ma, X.J.; Xie, K.Q.; Gao, X.P.; Jin, X.X. Mining geographic episode association patterns of abnormal events in global earth science data. Sci. China Ser. E Technol. Sci. 2008, 51, 155–164. [Google Scholar] [CrossRef]
- Xue, C.J.; Dong, Q.; Fan, X. Spatiotemporal association patterns of multiple parameters in the northwes tern Pacific Ocean and their relationships with ENSO. Int. J. Remote Sens. 2014, 35, 467–4483. [Google Scholar] [CrossRef]
- Huang, P.Y.; Kao, L.J.; Sandnes, F.E. Efficient mining of salinity and temperature association rules from ARGO data. Expert Syst. Appl. 2008, 35, 59–68. [Google Scholar] [CrossRef]
- Satheesh, A.; Patel, R. Use of object-oriented concepts in databases for effective mining. Int. J. Comput. Sci. Eng. 2009, 1, 206–216. [Google Scholar]
- Rao, K.V.; Govardhan, A.; Rao, K.V.C. An object-oriented modeling and implementation of spatio-temporal knowledge discovery system. Int. J. Comput. Sci. Inf. Technol. 2011, 3, 61–76. [Google Scholar]
- Li, G.Q.; Deng, M.; Zhang, W.L.; Chen, Y. Events-coverage based spatio-temporal association rules mining method. J. Remote Sens. 2010, 14, 468–481. [Google Scholar]
- Julea, A.; Meger, N.; Bolon, P.; Rigotti, C.; Doin, M.P.; Lasserre, C.; Trouve, E.; Lazarescu, V.N. Unsupervised spatiotemporal mining of satellite image time series using grouped frequent sequential patterns. IEEE Trans. Geosci. Remote Sens. 2011, 49, 1417–1430. [Google Scholar] [CrossRef]
- Romani, L.A.S.; de Avila, A.M.H.; Chino, D.Y.T.; Zullo, J.; Chbeir, R.; Traina, C.; Traina, A.J.M. A New Time Series Mining Approach Applied to Multitemporal Remote Sensing Imagery. IEEE Trans. Geosci. Remote Sens. 2013, 51, 140–150. [Google Scholar] [CrossRef]
- Blanchard, J.; Pinaud, B.; Kuntz, P.; Guillet, F. A 2D-3D visualization support for human-centered rule mining. Comput. Graph. 2007, 31, 350–360. [Google Scholar] [CrossRef]
- Kumar, V. Discovery of Patterns in Global Earth Science Data Using Data Mining. Lecture Notes Comput. Sci. 2010, 6118, 2. [Google Scholar] [CrossRef]
- Trenberth, K.E. The Definition of El Niño. Bull. Am. Met. Soc. 1997, 78, 2771–2777. [Google Scholar] [CrossRef]
- Smith, T.M.; Reynolds, R.W. Improved extended reconstruction of SST (1854–1997). J. Clim. 2004, 17, 2466–2477. [Google Scholar] [CrossRef]
- Curtis, S.; Adler, R. ENSO Indices Based on Patterns of Satellite-Derived Precipitation. J. Clim. 2000, 13, 786–2793. [Google Scholar] [CrossRef]
- Wolter, K.; Timlin, M.S. El Nino/Southern Oscillation behavior since 1871 as diagnosed in an extended multivariate ENSO index (MEI.ext). Int. J. Climatol. 2011, 31, 1074–1087. [Google Scholar] [CrossRef]
- Agrawal, R.; Srikant, R. Fast algorithms for mining association rules. In Proceedings of the 20th International Conference on Very Large Databases, Santiago, Chile Bocca, 12–15 September 1994; Bocca, J.B., Jarke, M., Zaniolo, C., Eds.; Morgan Kaufmann Publishers Inc.: San Francisco, CA, USA; pp. 407–419. [Google Scholar]
- Srikant, R.; Agrawal, R. Mining quantitative association rules in large relational tables. In Proceedings of the ACM SIGMOD Conference on Management of Data, Montreal, QC, Canada, 4–6 June 1996. [Google Scholar]
- Han, J.W.; Pei, J. Mining Frequent Patterns by Pattern-Growth: Methodology and Implications. SIGKDD Explor. 2000, 2, 14–20. [Google Scholar] [CrossRef]
- Reynolds, R.W.; Rayner, N.A.; Smith, T.M.; Stokes, D.C.; Wang, W. An improved in situ and satellite SST analysis for climate. J. Clim. 2002, 15, 1609–1625. [Google Scholar] [CrossRef]
- Hooker, S.B.; McClain, C.R. The Calibration and Validation of SeaWiFS Data. Prog. Oceanogr. 2000, 45, 427–465. [Google Scholar] [CrossRef]
- Curtis, S.; Salahuddin, A.; Adler, R.F.; Huffman, G.J.; Gu, G.; Hong, Y. Precipitation Extremes Estimated by GPCP and TRMM: ENSO Relationships. J. Hydrometeorol. 2007, 8, 678–689. [Google Scholar] [CrossRef]
- Chen, G.; Wang, Z.; Qian, C.C.; Lv, C.; Han, Y. Seasonal-to-decadal modes of global sea level variability derived from merged altimeter data. Remote Sens. Environ. 2010, 114, 2524–2535. [Google Scholar] [CrossRef]
- Wu, B.; Zhou, T.J.; Li, T. Contrast of Rainfall-SST Relationships in the Western North Pacific between the ENSO-Developing and ENSO-Decaying Summers. J. Clim. 2009, 22, 4398–4405. [Google Scholar] [CrossRef]
- Murtugudde, R.; Wang, L.P.; Hackert, E.; Beauchamp, J.; Christian, J.; Busalacchi, A.J. Remote sensing of the Indo-Pacific region: Ocean colour, sea level, winds and sea surface temperatures. Int. J. Remote Sens. 2004, 25, 1423–1435. [Google Scholar] [CrossRef]
- Casey, K.S.; Adamec, D. Sea surface temperature and sea surface height variability in the North Pacific Ocean from 1993 to 1999. J. Geophys. Res. Oceans 2002, 107, 3099. [Google Scholar] [CrossRef]
- Li, X.Y.; Zhai, P.M. On indices and indictors of ENSO episodes. Acta Meteorol. Sin. 2000, 58, 102–119. [Google Scholar]
A1 | A2 | A3 | A4 | A5 | ENSO | |
---|---|---|---|---|---|---|
0 | +1 | +1 | +1 | 0 | +1 | +1 |
1 | +1 | 0 | +1 | 0 | +1 | +1 |
2 | +1 | +1 | 0 | +1 | 0 | 0 |
3 | +1 | +1 | +1 | +1 | +1 | 0 |
4 | +1 | +1 | +1 | 0 | 0 | +1 |
5 | +1 | +1 | +1 | +1 | +1 | −1 |
6 | +1 | 0 | +1 | 0 | +1 | −1 |
7 | 0 | +1 | +1 | +1 | 0 | 0 |
8 | +1 | +1 | 0 | 0 | +1 | 0 |
9 | 0 | +1 | +1 | +1 | 0 | −1 |
Product | Source | Timespan (DD-MM-YY) | Temporal Resolution | Spatial Coverage | Spatial Resolution | |
---|---|---|---|---|---|---|
1 | SST 1 | NOAA/PSD | 01-12-1981–30-04-2014 | Monthly | Global | 1° × 1° |
2 | Chl-a 2 | SeaWifs | 01-09-1997–30-11-2010 | Monthly | Global | 9 × 9 km |
MODIS | 01-07-2002–31-05-2014 | Monthly | Global | 9 × 9 km | ||
3 | Sea surface precipitation 3 | TRMM | 01-01-1998–28-02-2014 | Monthly | Global | 0.25° × 0.25° |
4 | SLA 4 | AVISO | 01-01-1993–31-12-2012 | Monthly | Global | 0.25° × 0.25° |
5 | ENSO 5 | MEI | 01-01-1950–30-05-2014 | Monthly | - | - |
EOMSAP | ENSO-Apriori | Apriori | ||
---|---|---|---|---|
Number of Database Scans | Build frequent 1-items | |||
Find all frequent candidates | ||||
Generate all meaningful patterns | ||||
Intensive Computing | Find all frequent items | |||
Generate all meaningful patterns |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cunjin, X.; Xiaohan, L. Novel Algorithm for Mining ENSO-Oriented Marine Spatial Association Patterns from Raster-Formatted Datasets. ISPRS Int. J. Geo-Inf. 2017, 6, 139. https://doi.org/10.3390/ijgi6050139
Cunjin X, Xiaohan L. Novel Algorithm for Mining ENSO-Oriented Marine Spatial Association Patterns from Raster-Formatted Datasets. ISPRS International Journal of Geo-Information. 2017; 6(5):139. https://doi.org/10.3390/ijgi6050139
Chicago/Turabian StyleCunjin, Xue, and Liao Xiaohan. 2017. "Novel Algorithm for Mining ENSO-Oriented Marine Spatial Association Patterns from Raster-Formatted Datasets" ISPRS International Journal of Geo-Information 6, no. 5: 139. https://doi.org/10.3390/ijgi6050139
APA StyleCunjin, X., & Xiaohan, L. (2017). Novel Algorithm for Mining ENSO-Oriented Marine Spatial Association Patterns from Raster-Formatted Datasets. ISPRS International Journal of Geo-Information, 6(5), 139. https://doi.org/10.3390/ijgi6050139